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A Proof of Lemma 1: diameter of the cells

We start by recalling some important properties of the Mondrian process, which are exposed in [RT09].
Fact 1 (Consistency, Mondrian slices). Let Mλ ∼ MP(λ, [0, 1]d) be a Mondrian partition, and
C =

∏d
j=1[aj , bj ] ⊂ [0, 1]d, be an axis-aligned box (we authorize lower-dimensional boxes when

aj = bj for some dimensions j). Consider the restriction Mλ|C of Mλ on C, i.e. the partition on C
induced by the partition Mλ of [0, 1]d. Then Mλ|C ∼ MP(λ,C).
Fact 2 (Dimension 1). For d = 1, the splits from a Mondrian process Mλ ∼ MP(λ, [0, 1]) form a
subset of [0, 1], which is distributed as a Poisson point process of intensity λdx.

We will now establish the technical lemma 1. In what follows, x ∈ [0, 1]d is arbitrary, and we let
Aλ(x) denote the (random) cell of a Mondrian partition Mλ ∼ MP(λ, [0, 1]d) containing x.

Proof of Lemma 1. Let Aλ(x) =
∏d
j=1[Ljλ(x), Rjλ(x)] denote the (random) cell of a Mondrian

partition Mλ ∼ MP(λ, [0, 1]d) containing x ∈ [0, 1]d. By definition, the `∞-diameter Dλ(x) of
Aλ(x) is max16j6d(R

j
λ(x)− Ljλ(x)). Since the random variables Rjλ(x)− Ljλ(x), 1 6 j 6 d, all

have the same distribution (by symmetry of the definition of the Mondrian process with respect to the
dimension), it suffices to consider D1

λ(x) := R1
λ(x)− L1

λ(x).

Consider the segment I1(x) = [0, 1] × {(xj)26j6d} ' [0, 1] (through the natural identification)
containing x = (xj)16j6d, and denote Φ1

λ(x) ⊂ [0, 1] the restriction of Mλ to I1(x). Note that
R1
λ(x) (resp. L1

λ(x)) is the lowest element of Φ1
λ(x) that is larger than x1 (resp. the highest element

of Φ1
λ(x) that is smaller than x1), and is equal to 1 (resp. 0) if Φ1

λ(x)∩ [x1, 1] (resp. Φ1
λ(x)∩ [0, x1])

is empty. By the facts 1 and 2, Φλ(x) is a Poisson point process of intensity λ.

Now, note that the characterization ofL1
λ(x) andR1

λ(x) in terms of Φ1
λ(x) (a Poisson process on [0, 1])

implies the following: the distribution of (L1
λ(x), R1

λ(x)) is the same as that of (L̃1
λ(x)∨0, R̃1

λ(x)∧1),
where Φ̃1

λ(x) is a Poisson process on R of intensity λ, and L̃1
λ(x) = sup(Φ̃1

λ(x) ∩ (−∞, x]),
R̃1
λ(x) = inf(Φ̃1

λ(x) ∩ [x,+∞)). By the properties of the Poisson point process, this implies that

(R1
λ(x)− x1, x1 − L1

λ(x))
d
= (E1 ∧ (1− x1), E2 ∧ x1), where E1, E2 are independent exponential

random variables with parameter λ. In particular,D1
λ(x) = R1

λ(x)−x1+x1−L1
λ(x) is stochastically

upper bounded by E1 + E2 ∼ Γ(2, λ), so that we have for every δ > 0:

P(D1
λ(x) > δ) 6 (1 + λδ)e−λδ (6)

(with equality if δ 6 x1 ∧ (1−x1)), and E[D1
λ(x)2] 6 E(E2

1) +E(E2
2) = 4

λ2 . Finally, the bound (2)

for the diameter Dλ(x) =
√∑d

j=1D
j
λ(x)2 follows from the observation that P(Dλ(x) > δ) 6

P(∃j : Dj
λ(x) > δ√

d
) 6 dP(D1

λ(x) > δ√
d
) and inequality (6); the bound (3) is obtained by noting

that E[Dλ(x)2] = dE[D1
λ(x)2] 6 4d

λ2 .

B Proof of Lemma 2: number of splits

Proof. Let A ⊂ Rd be an arbitrary box, and let KA
λ denote the number of splits performed by

MA
λ ∼ MP(λ,A). As shown in the proof of Proposition 3 in [BLG+16], since the time until a leaf φ

is split follows an exponential distribution of rate |Aφ| 6 |A| (independently of the other leaves), the
number of leaves Kt + 1 > Kt at time t is dominated by the number of individuals in a Yule process
with rate |A|, which gives the first estimate

E(KA
λ ) 6 exp(λ|A|) . (7)
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This bound can be refined to the correct order of magnitude in λ in the following way. Consider the
covering C of A by a regular grid of dλed boxes obtained by dividing each coordinate of A in dλe.
Since each split of A induces a split in at least one box C ∈ C (i.e. a split in the restriction MC

λ of
MA
λ to C), and since MC

λ ∼ MP(λ,C) by Fact 1,

E(KA
λ ) 6

∑
C∈C

E(KC
λ )

(∗)
6 dλed exp

(
λ
|A|
dλe

)
6 (λ+ 1)d exp(|A|) (8)

where in the inequality (*) we applied the bound (7) to every cell C ∈ C (and the fact that |C| =
|A|/dλe). The bound of Lemma 2 follows by taking A = [0, 1]d in (8).

C Proof of Proposition 1: original Mondrian Forests are inconsistent

In this appendix, we show that Mondrian Forests with fixed lifetime λ are inconsistent, as stated in
Proposition 1. We establish that this is true both for the variant based on the full domain [0, 1]d, and
for the original Mondrian Forests algorithm [LRT14] that restricts to the range of training data.

C.1 Reduction to the full domain

First, we begin by showing that, asymptotically, there is little difference between Mondrian trees
constructed on the full domain and those restricted to the range of the training data. This is due to the
fact that, as the sample size n grows large, the training data will span the whole domain, as well as
every cell contained in it.
Lemma 3. Assume the distribution µ of X satisfies: µ(A) > α vol(A) for every measurable
A ⊂ [0, 1]d, for some α ∈ (0, 1]. Fix λ > 0. For every n > 1, there exists a couple (Mλ,M

range(n)
λ )

such that Mλ ∼ MP(λ, [0, 1]d), Mrange(n)
λ is a Mondrian partition with parameter λ restricted to

the range defined by the data points X1, . . . , Xn, and P(Mλ = M
range(n)
λ )→ 1 as n→∞.

Proof of Lemma 3. Let Mλ ∼ MP(λ, [0, 1]d) be sampled by the procedure SampleMondrian (Al-
gorithm 1). We will define explicitly each Mrange(n)

λ so that they have the desired distribution, and
agree with Mλ on an event of high probability.

First, consider the event Ωn that all splits of Mλ occur inside the range defined by the feature points
among X1, . . . , Xn that belong to the cell to be split. We will show that P(Ωn) → 1 as n → ∞.
Since the tree Mλ is grown independently of (X1, . . . , Xn), we may reason conditionally on Mλ,
and (X1, . . . , Xn) remains distributed as µ⊗n. Note that Ωn is equivalent to the following: no leaf
cell of Mλ contain no points among X1, . . . , Xn. We can now write, denoting Ωcn the complementary
of Ωn,

P(Ωcn |Mλ) = P(∃φ ∈ L(Mλ) : Aφ ∩ {X1, . . . , Xn} = ∅)

6
∑

φ∈L(Mλ)

P(Aφ ∩ {X1, . . . , Xn} = ∅)

=
∑

φ∈L(Mλ)

(1− µ(Aφ))n

6
∑

φ∈L(Mλ)

(1− α vol(Aφ))n (9)

→
n→∞

0 a.s. (10)

where equation (9) used the hypothesis µ > α vol, and the convergence (10) is almost sure with
respect to Mλ, since a.s. vol(Aφ) > 0 for every φ ∈ L(Mλ). By the dominated convergence
theorem (since each random variable P(Ωcn |Mλ), n > 1, is dominated by 1), we have P(Ωn) =
E[P(Ωcn |Mλ)]→ 0 as n→∞.

For every n > 1, we define Mrange(n)
λ as follows: on Ωcn, we let Mrange(n)

λ be a random Mondrian
partition of lifetime λ, on the range defined by the data points X1, . . . , Xn. On Ωn, we take
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M
range(n)
λ to be a pruning of Mλ. Specifically, for η ∈ N (Mλ), denote Eη = EAη ∼ Exp(|Aη|)

the exponential random variables drawn during the construction of Mλ (see Algorithm 1). Now,
set Erange(n)

η :=
|Aη|

|Arange(n)
η |

Eη ∼ Exp(|Arange(n)
η |), and τ range(n)η :=

∑
η′ E

range(n)
η′ , where the sum

spans over the (strict) ancestors η′ ∈ N (Mλ) of η. Finally, we define Mrange(n)
λ on Ωn to be equal to

the pruning of Mλ obtained by keeping only the nodes N such that τ range(n)η 6 λ. By construction,
M

range(n)
η has the distribution of a Mondrian process of parameter λ restricted to the range of the

data X1, . . . , Xn.

It remains to show that P(M
range(n)
λ = Mλ) → 1. Since we already proved that P(Ωn) → 1, it

suffices to show that P(M
range(n)
λ = Mλ |Ωn)→ 1.

Second, consider the random variable ∆n = supφ∈L(Mλ)
|Aφ|

|Arange(n)
φ |

− 1 > 0. By the same argument

as above, but replacing the boxes Aφ (φ ∈ L(Mλ)) by interior cubes of size ε around the edges
of the cells Aη (η ∈ N (Mλ)), we see that ∆n → 0 in probability as n → ∞. Since a.s. τφ < λ

and τ range(n)φ 6 (1 + ∆n)τφ for every φ ∈ L(Mλ), we have P(M
range(n)
λ = Mλ |Ωn)→ 1, which

concludes the proof.

C.2 A simple example for fixed lifetime and range

In order to establish Proposition 1, it remains to provide a simple counter-example that proves the
inconsistency of the Mondrian Forest algorithm for a fixed range and lifetime.

Proof. Fix λ > 0, and let ε ∈ (0, 14 ) to be specified later. Let X be uniformly distributed on [0, 1];
we set Y = 1 if |X − 1

2 | 6 ε, and 0 otherwise. Clearly, we have L∗ = 0.

Denote ĝ
(K)
λ,n the classifier described in Algorithm 4 with λn = λ, trained on the dataset

((X1, Y1), . . . , (Xn, Yn)), and denote η̂(K)
λ,n the corresponding estimate of the conditional proba-

bility η. Also, let Mλ ∼ MP(λ, [0, 1]d) and denote Aλ(x) ⊂ [0, 1] the cell of x ∈ [0, 1], as well
as

Nλ,n(x) :=

n∑
i=1

1{Xi∈Aλ(x)} , η̂λ,n(x) :=
1

Nλ,n(x)

n∑
i=1

Yi · 1{Xi∈Aλ(x)}

(with η̂λ,n(x) = 0 if Nλ,n(x) = 0) and ĝλ,n(x) := 1{η̂n(x)> 1
2}

. For each x ∈ [ 12 − ε,
1
2 + ε], we

have

P(ĝ
(K)
λ,n (x) = 1) = P(η̂

(K)
λ,n (x) > 1/2) 6 2E[η̂

(K)
λ,n (x)] = 2E[η̂λ,n(x)]

by Markov’s inequality and the fact the K trees in the forest have the same distribution as Mλ. Now,
conditionally on Aλ(x) and on Nλ,n(x) = N > 1, the points among X1, . . . , Xn that fall in Aλ(x)
are N i.i.d. points drawn uniformly in the interval Aλ(x), and η̂λ,n(x) is just the fraction of those
points that satisfy |Xi − 1

2 | 6 ε. In particular,

E[η̂λ,n(x) |Aλ(x), Nλ,n(x) = N ] =
|Aλ(x) ∩ [1/2− ε, 1/2 + ε]|

|Aλ(x)|
6

2ε

|Aλ(x)|
so that

P(ĝ
(K)
λ,n (x) = 1) 6 2εE[|Aλ(x)|−1] . (11)

Now, recall that Mλ is a partition of [0, 1] into subintervals whose endpoints form a Poisson point
process of intensity λ (Fact 2). In particular, a direct derivation shows that E[|Aλ(x)|−1] 6 F (λ) :=

λ+ 4e−λ/4 < +∞. Choosing ε := 1
4 ∧

1
4F (λ) and using Equation (11), we get P(ĝ

(K)
λ,n (x) = 1) 6 1

2 .
Finally, integrating over X , we get for each n > 1:

L(g(K)
n ) >

∫ 1/2+ε

1/2−ε
P(ĝ

(K)
λ,n (x) = 0)dx > ε > 0 , (12)

so that L(g
(K)
n ) is bounded away from 0, as announced.
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D Proof of Theorem 1: consistency for Mondrian forests

D.1 Some general consistency results

Let us recall two general consistency results that will be used in the proof. First, the consistency of
Mondrian forests can be deduced from that of the individual trees, using Proposition 2.

Proposition 2 (Proposition 1 in [BDL08]). If a sequence (ĝn)n>1 of randomized classifiers is
consistent, then for each K > 1, the averaged classifier ĝ(K)

n is consistent.

Then, to establish the consistency of individual trees, we use the following consistency theorem for
partitioning classifiers.

Proposition 3 ([DGL96], Theorem 6.1). Consider a sequence of randomized tree classifiers
(ĝn(·, Z)), grown independently of the labels Y1, . . . , Yn. For x ∈ [0, 1]d, denote An(x) = An(x, Z)
the cell containing x, diamAn(X) its diameter, and Nn(x) = Nn(x, Z) the number of input vectors
among X1, . . . , Xn that fall in An(x). Assume that, if X is drawn from the distribution µ:

1. diamAn(X)→ 0 in probability, as n→∞,

2. Nn(X)→∞ in probability, as n→∞,

Then, the tree classifier ĝn is consistent.

D.2 Universal consistency

We will need Lemma 4 which states that the number of training observations in the cell of a point
tends to infinity with n, if the number of splits is controlled.

Lemma 4. Assume that the total number of splits Kλn performed by the Mondrian tree partition
Mλn satisfies E(Kλn)/n→ 0. Then, Nn(X)→∞ in probability.

Proof. The proof extends a result in [BDL08] to a random number of splits. We fix n > 1, and
reason conditionally on Mλn , which is by construction independent of Dn and X . Note that the
number of leaves is |L(Mλn)| = Kλn + 1, and let (Aφ)φ∈L(Mλn )

be the corresponding cells. For
φ ∈ L(Mλn) we define Nφ to be the number of points (with repetition) among X1, . . . , Xn, X that
fall in the cell Aφ. Since X1, . . . , Xn, X are i.i.d., so that the joint distribution of (X1, . . . , Xn, X)
is invariant under permutation of the n+ 1 points, conditionally on the set S = {X1, . . . , Xn, X}
(and on Mλn ) the probability that X falls in the cell Aφ is Nφ

n+1 . Therefore, for each t > 0,

P(Nn(X) 6 t) = E{P(Nn(X) 6 t |S,Mλn)}

= E

 ∑
φ∈L(Mλn ) : Nφ6t

Nφ
n+ 1


6 E

{
t|L(Mλn)|
n+ 1

}
=
t(E(Kλn) + 1)

n+ 1
,

which tends to 0 as n→∞ by assumption.

Proof of Theorem 1. To prove the consistency of Mondrian forest with a lifetime sequence, we show
that the two assumptions of Proposition 3 are satisfied, which proves Theorem 1 since our algorithm
performs splits independently of the labels Y1, . . . , Yn. First, Lemma 1 ensures that, if λn → ∞,
Dλn(x) = diamAλn(x) → 0 in probability for every x ∈ [0, 1]d. In particular, for every δ > 0,
P(diamAλn(X) > δ) =

∫
[0,1]d

P(diamAλn(x) > δ)µ(dx) → 0 as n → ∞ by the dominated
convergence theorem. This establishes the first condition.

For the second condition, Lemma 2 implies that E(Kλn)/n 6 ed(λn + 1)d/n→ 0 by hypothesis.
By Lemma 4, this establishes the second condition of Lemma 3, which concludes the proof.
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E Proof of Theorem 2: Minimax rates for Mondrian forests in regression

In this section, we demonstrate how the properties about Mondrian trees established in Lemmas 1
and 2 imply minimax rates over the class of Lipschitz regression function, in arbitrary dimension d.
We consider the following regression problem

Y = f(X) + ε,

whereX is a [0, 1]d-valued random variable, ε is a real-valued random variable such that E(ε |X) = 0
and Var(ε |X) 6 σ2 < ∞ a.s., and f : [0, 1]d → R is L-Lipschitz. We assume to be given n
i.i.d. observations (X1, Y1), . . . , (Xn, Yn), distributed as (X,Y ). We draw K i.i.d. Mondrian tree
partitions M (1)

λn
, . . . ,M

(K)
λn

, distributed as MP(λn, [0, 1]d). For all k = 1, . . . ,K, we let f̂ (k)n (x) be
the kth Mondrian tree estimate at x, that is the average1 of the labels Yi such that Xi belongs to the
cell containing x in the partition M (k)

λn
. Finally, the Mondrian forest estimate at x is given by

f̂n =
1

K

K∑
k=1

f̂ (k)n : [0, 1]d → R .

Proposition 4. The quadratic risk R(f̂n) = E(f̂n(X)− f(X))2 of f̂n is upper bounded as follows:

R(f̂n) 6
4dL2

λ2n
+

1 + ed(1 + λn)d

n

(
2σ2 + 9‖f‖∞

)
(13)

In particular, the choice λn = n1/(d+2) yields a risk rate R(f̂n) = O(n−2/(d+2)).

Proof. First, by the convexity of the function y 7→ (y − f(x))2 for any x ∈ [0, 1]d, we have
R(f̂n) 6 1

K

∑K
k=1R(f̂

(k)
n ) = R(f̂

(1)
n ) since the random trees classifiers have the same distribution.

Hence, it suffices to prove the risk bound (13) for a single tree; in the following, we assume that
K = 1, and consider the random estimator f̂n associated to a tree partition Mλn ∼ MP(λn, [0, 1]d).

Since the splits of the tree partition Mλn are performed independently of the training data
(X1, Y1), . . . , (Xn, Yn) we can write the following bias-variance decomposition of the risk for
purely random forests, first noticed by [Gen12]:

R(f̂n) = E(f(X)− f̃λn(X))2 + E(f̃λn(X)− f̂λn(X))2 , (14)

where we denoted f̃λn(x) := E(f(X)|X ∈ Aλn(x)) (which only depends on the random partition
Mλn ) for every x in the support of µ. The first term of the sum, the bias, measures how close f is to
its best approximation f̃n that is constant on the leaves of Mλn (on average over Mλn ). The second
term (the variance) measures how well the expected value f̃n(x) = E(Y |X ∈ Aλn(x)) (i.e. the
optimal label on the leaf Aλn(x)) is estimated by the empirical average f̂n(x), averaged over the
sample Dn and the partition Mλn .

The bias term is bounded as follows: for each x ∈ [0, 1]d in the support of µ, we have

|f(x)− f̃n(x)| =

∣∣∣∣∣ 1

µ(Aλn(x))

∫
Aλn (x)

(f(x)− f(z))µ(dz)

∣∣∣∣∣
6 sup
z∈Aλn (x)

|f(x)− f(z)|

6 L sup
z∈Aλn (x)

‖x− z‖2 (15)

= LDλn(x),

where Dλn(x) is the `2-diameter of Aλn(x); note that inequality (15) used the assumption that f is
L-Lipschitz. By Lemma 1, this implies

E(f(x)− f̃n(x))2 6 L2E[Dλn(x)2] 6
4dL2

λ2n
. (16)

1With the convention that if no training point Xi, 1 6 i 6 n, falls in Aλn(x), then f̃n(x) := 0.
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Integrating the bound (16) with respect to µ yields the following bound on the integrated bias:

E(f(X)− f̃n(X))2 6
4dL2

λ2n
. (17)

In order to bound the variance term, we use the following fact ([AG14], Proposition 2): if U is a
random tree partition of the unit cube in k+ 1 cells (with k ∈ N deterministic) formed independently
of the training data Dn, we have

E(f̃U (X)− f̂U (X))2 6
k + 1

n

(
2σ2 + 9‖f‖∞

)
. (18)

For every k ∈ N, applying the upper bound (18) to the random partition Mλn ∼ MP(λn, [0, 1]d)
conditionally on the event {Kλn = k} (where Kλn denotes the number of splits performed by Mλn ),
and summing over k, we get

E(f̃λn(X)− f̂λn(X))2 =

+∞∑
k=0

P(Kλn = k)E[(f̃λn(X)− f̂λn(X))2 |Kλn = k]

6
+∞∑
k=0

P(Kλn = k)
k + 1

n

(
2σ2 + 9‖f‖∞

)
=

1 + E(Kλn)

n

(
2σ2 + 9‖f‖∞

)
.

Then, applying Lemma 2 gives an upper bound of the variance term:

E(f̃λn(X)− f̂λn(X))2 6
1 + ed(1 + λn)d

n

(
2σ2 + 9‖f‖∞

)
. (19)

Combining the bounds (17) and (19) with the decomposition (14) yields the desired bound (13).
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