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Abstract

The last decade has witnessed a growing interest in random forest models
which are recognized to exhibit good practical performance, especially in
high-dimensional settings. On the theoretical side, however, their predic-
tive power remains largely unexplained, thereby creating a gap between
theory and practice. In this paper, we present some asymptotic results on
random forests in a regression framework. Firstly, we provide theoretical
guarantees to link finite forests used in practice (with a finite number M
of trees) to their asymptotic counterparts (with M = ∞). Using empirical
process theory, we prove a uniform central limit theorem for a large class
of random forest estimates, which holds in particular for Breiman’s (2001)
original forests. Secondly, we show that infinite forest consistency implies
finite forest consistency and thus, we state the consistency of several infi-
nite forests. In particular, we prove that q quantile forests—close in spirit
to Breiman’s (2001) forests but easier to study—are able to combine in-
consistent trees to obtain a final consistent prediction, thus highlighting
the benefits of random forests compared to single trees.

Index Terms — Random forests, randomization, consistency, central limit
theorem, empirical process, number of trees, q-quantile.

2010 Mathematics Subject Classification: 62G05, 62G20.

1 Introduction

Random forests are a class of algorithms used to solve classification and regres-
sion problems. As ensemble methods, they grow several trees as base estimates
and aggregate them to make a prediction. In order to obtain many different trees
based on a single training set, random forests procedures introduce randomness
in the tree construction. For instance, trees can be built by randomizing the set
of features (Dietterich and Kong, 1995; Ho, 1998), the data set (Breiman, 1996,
2000), or both at the same time (Breiman, 2001; Cutler and Zhao, 2001).

Among all random forest algorithms, the most popular one is that of Breiman
(2001), which relies on CART procedure (Classification and Regression Trees,
Breiman et al., 1984) to grow the individual trees. As highlighted by several ap-
plied studies (see, e.g., Hamza and Laroque, 2005; Dı́az-Uriarte and de Andrés,
2006), Breiman’s (2001) random forests can outperform state-of-the-art meth-
ods. They are recognized for their ability to handle high-dimensional data sets,
thus being useful in fields such as genomics (Qi, 2012) and pattern recognition
(Rogez et al., 2008), just to name a few. On the computational side, Breiman’s
(2001) forests are easy to run and robust to changes in the parameters they
depend on (Liaw and Wiener, 2002; Genuer et al., 2008). Besides, extensions
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have been developed in ranking problems (Clémençon et al., 2013), quantile
estimation (Meinshausen, 2006), and survival analysis (Ishwaran et al., 2008).
Interesting new developments in the context of massive data sets have been
achieved. For instance, Geurts et al. (2006) modified the procedure to reduce
calculation time, while other authors extended the procedure to online settings
(Denil et al., 2013; Lakshminarayanan et al., 2014, and the references therein).

While Breiman’s (2001) forests are extensively used in practice, some of their
mathematical properties remain under active investigation. In fact, most the-
oretical studies focus on simplified versions of the algorithm, where the forest
construction is independent of the training set. Consistency of such simpli-
fied models has been proved (e.g., Biau et al., 2008; Ishwaran and Kogalur,
2010; Denil et al., 2013). However, these results do not extend to Breiman’s
(2001) original forests whose construction critically depends on the whole train-
ing set. Recent attempts to bridge the gap between theoretical forest models
and Breiman’s (2001) forests have been made by Wager (2014) and Scornet
et al. (2014) who establish consistency of the original algorithm under suitable
assumptions.

Apart from the dependence of the forest construction on the data set, there is
another fundamental difference between existing forest models and ones imple-
mented. Indeed, in practice, a forest can only be grown with a finite number M
of trees although most theoretical works assume, by convenience, that M =∞.
Since the predictor with M = ∞ does not depend on the specific tree realiza-
tions that form the forest, it is therefore more amenable to analysis. However,
surprisingly, no study aims at clarifying the link between finite forests (finite
M) and infinite forests (M = ∞) even if some authors (Mentch and Hooker,
2014; Wager et al., 2014) proved results on finite forest predictions at a fixed
point x.

In the present paper, our goal is to study the connection between infinite forest
models and finite forests used in practice in the context of regression. We start
by proving a uniform central limit theorem for various random forests estimates,
including Breiman’s (2001) ones. In Section 3, assuming some regularity on the
regression model, we point out that the L2 risk of any infinite forest is bounded
above by the risk of the associated finite forests. Thus infinite forests are better
estimate than finite forests in terms of L2 risk. Under the same assumptions,
our analysis also shows that the risks of infinite and finite forests are close,
if the number of trees is chosen to be large enough. An interesting corollary
of this result is that infinite forest consistency implies finite forest consistency.
Finally, in Section 4, we prove the consistency of several infinite random forests.
In particular, taking one step toward the understanding of Breiman’s (2001)
forests, we prove that q quantile forests, a variety of forests whose construction
depends on the positions Xi’s of the data, are consistent. As for Breiman’s
(2001) forests, each leaf of each tree in q quantile forests contains a small number
of points that does not grow to infinity with the sample size. Thus, q quantile
forests average inconsistent trees estimate to build a consistent prediction.

We start by giving some notation in Section 2. All proofs are postponed to
Section 5.
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2 Notation

Throughout the paper, we assume to be given a training sample Dn = (X1, Y1),
. . . , (Xn, Yn) of [0, 1]d× R-valued independent random variables distributed as
the prototype pair (X, Y ), where E[Y 2] <∞. We aim at predicting the response
Y , associated with the random variable X, by estimating the regression function
m(x) = E [Y |X = x]. In this context, we use random forests to build an estimate
mn : [0, 1]d → R of m, based on the data set Dn.

A random forest is a collection ofM randomized regression trees (for an overview
on tree construction, see Chapter 20 in Györfi et al., 2002). For the j-th tree in
the family, the predicted value at point x is denoted by mn(x,Θj ,Dn), where
Θ1, . . . ,ΘM are independent random variables, distributed as a generic random
variable Θ, independent of the sample Dn. This random variable can be used
to sample the training set or to select the candidate directions or positions for
splitting. The trees are combined to form the finite forest estimate

mM,n(x,Θ1, . . . ,ΘM ) =
1

M

M∑
m=1

mn(x,Θm). (1)

By the law of large numbers, for any fixed x, conditionally on Dn, the finite
forest estimate tends to the infinite forest estimate

m∞,n(x) = EΘ [mn(x,Θ)] .

The risk of m∞,n is defined by

R(m∞,n) = E[m∞,n(X)−m(X)]2, (2)

while the risk of mM,n equals

R(mM,n) = E[mM,n(X,Θ1, . . . ,ΘM )−m(X)]2. (3)

It is stressed that both risks R(m∞,n) and R(mM,n) are deterministic since the
expectation in (2) is over X,Dn, and the expectation in (3) is over X,Dn and
Θ1, . . . ,ΘM . Throughout the paper, we say that m∞,n (resp. mM,n) is L2

consistent if R(m∞,n) (resp. R(mM,n)) tends to zero as n→∞.

As mentioned earlier, there is a large variety of forests, depending on how trees
are grown and how the randomness Θ influences the tree construction. For in-
stance, tree construction can be independent of Dn (Biau, 2012), depend only
on the Xi’s (Biau et al., 2008) or depend on the whole training set (Cutler and
Zhao, 2001; Geurts et al., 2006; Zhu et al., 2012). Throughout the paper, we
use Breiman’s (2001) forests and uniform forests to exemplify our results. In
Breiman’s (2001) original procedure, splits depend on the whole sample and
are performed to minimize variance within the two resulting cells. The algo-
rithm stops when each cell contains less than a small pre-specified number of
points (typically, 5 in regression). On the other hand, uniform forests are a
simpler procedure since, at each node, a coordinate is uniformly selected among
{1, . . . , d} and a split position is uniformly chosen in the range of the cell, along
the pre-chosen coordinate. The algorithm stops when a full binary tree of level
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k is built, that is if each cell has been cut exactly k times, where k ∈ N is a
parameter of the algorithm.

In the rest of the paper, we will repeatedly use the random forest connection
function Kn, defined as

Kn : [0, 1]d × [0, 1]d → [0, 1]

(x, z) 7→ PΘ

[
x

Θ↔ z
]
,

where x
Θ↔ z is the event where x and z belong to the same cell in the tree

Tn(Θ) designed with Θ and Dn. Moreover, notation PΘ denotes the probability
with respect to Θ, conditionally on Dn. The same notational convention holds
for the expectation EΘ and the variance VΘ. Thus, if we fix the training set
Dn, we see that the connection Kn(x, z) is just the probability that x and z are
connected in the forest.

We say that a forest is discrete (resp. continuous) if, keeping Dn fixed, its
connection function Kn(•, •) is piecewise constant (resp. continuous). In fact,
most existing forest models fall in one of these two categories. For example, if,
at each cell, the number of possible splits is finite, then the forest is discrete.
This is the case of Breiman’s (2001) forests, where splits can only be performed
at the middle of two consecutive data points along any coordinate. However, if
splits are drawn according to some density along each coordinate, the resulting
forest is continuous. For instance, uniform forests are continuous.

3 Finite and infinite random forests

Contrary to finite forests which depend upon the particular Θj ’s used to design
trees, infinite forests do not and are therefore more amenable to mathematical
analysis. Besides, finite forests predictions can be difficult to interpret since they
depend on the random parameters Θj ’s. In addition, the Θj ’s are independent
of the data set and thus unrelated to the particular prediction problem.

In this section, we study the link between finite forests and infinite forests. More
specifically, assuming that the data set Dn is fixed, we examine the asymptotic
behavior of the finite forest estimate mM,n(•,Θ1, . . . ,ΘM ) as M tends to infin-
ity. This setting is consistent with practical problems, where the Dn is fixed,
and one can grow as many trees as possible.

Clearly, by the law of large numbers, we know that conditionally on Dn, for all
x ∈ [0, 1]d, almost surely,

mM,n(x,Θ1, . . . ,ΘM ) →
M→∞

m∞,n(x). (4)

The following theorem extend the pointwise convergence in (4) to the conver-
gence of the whole functional estimate mM,n(•,Θ1, . . . ,ΘM ), towards the func-
tional estimate m∞,n(•).
Theorem 3.1. Consider a continuous or discrete random forest. Then, condi-
tionally on Dn, almost surely, for all x ∈ [0, 1]d, we have

mM,n(x,Θ1, . . . ,ΘM ) →
M→∞

m∞,n(x).
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Remark 1. Since the set [0, 1]d is not countable, we cannot reverse the “almost
sure” and “for all x ∈ [0, 1]d” statements in (4). Thus, Theorem 3.1 is not a
consequence of (4).

Theorem 3.1 is a first step to prove that infinite forest estimates can be uni-
formly approximated by finite forest estimates. To pursue the analysis, a natural
question is to determine the rate of convergence in Theorem 3.1. The pointwise
rate of convergence is provided by the central limit theorem which says that,
conditionally on Dn, for all x ∈ [0, 1]d,

√
M
(
mM,n(x,Θ1, . . . ,ΘM )−m∞,n(x)

) L→
M→∞

N
(
0, σ̃2(x)

)
, (5)

where

σ̃2(x) = VΘ

(
1

Nn(x,Θ)

n∑
i=1

Yi1
x

Θ↔Xi

)
≤ 4 max

1≤i≤n
Y 2
i

(as before, VΘ denotes with respect to Θ, conditionally on Dn), and Nn(x,Θ) is
the number of data points falling into the cell of the tree Tn(Θ) which contains
x.

Equation (5) is not sufficient to determine the asymptotic distribution of the
functional estimate mM,n(•,Θ1, . . . ,ΘM ). To make it explicit, we need to intro-
duce the empirical process GM (see van der Vaart and Wellner, 1996) defined
by

GM =
√
M

(
1

M

M∑
m=1

δΘm − PΘ

)
,

where δΘm is the Dirac function at Θm. We also let F2 = {gx : θ 7→ mn(x, θ);x ∈
[0, 1]d} be the collection of all possible tree estimates in the forest. In order to
prove that a uniform central limit theorem holds for random forest estimates,
we need to show that there exists a Gaussian process G such that

sup
g∈F2

{∫
Θ

|g(θ)|dGM (θ)−
∫

Θ

|g(θ)|dG(θ)

}
→

M→∞
0, (6)

where the first part on the left side can be written as∫
Θ

|g(θ)|dGM (θ) =
√
M

(
1

M

M∑
m=1

|g(Θm)| − EΘ

[
|g(Θ)|

])
.

For more clarity, instead of (6), we will write

√
M

(
1

M

M∑
m=1

mn(•,Θm)− EΘ [mn(•,Θ)]

)
L→ Gg•. (7)

To establish identity (7), we first define, for all ε > 0, the random forest grid
step δ(ε) by

δ(ε) = sup

η ∈ R : sup
x1,x2∈[0,1]d

‖x1−x2‖∞≤η

∣∣1−Kn(x1,x2)
∣∣ ≤ ε2

8

 ,
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where Kn is the connection function of the forest. The function δ can be seen
as the modulus of continuity of Kn in the sense that it is the distance such that
Kn(x1,x2) does not vary of much that ε2/8 if ‖x1 − x2‖∞ ≤ δ(ε). We will also
need the following assumption.

(H1) One of the following properties is satisfied:

• The random forest is discrete,

• There exist C,A > 0, α < 2 such that, for all ε > 0,

δ(ε) ≥ C exp(−A/εα).

Observe that (H1) is mild since most forests are discrete and the only continuous
forest we have in mind, the uniform forest, satisfies (H1), as stated in Lemma
1 below.

Lemma 1. Let k ∈ N. Then, for all ε > 0, the grid step δ(ε) of uniform forests
of level k satisfies

δ(ε) ≥ exp

(
−Ak,d
ε2/3

)
,

where Ak,d = (8de(k + 2)!)1/3.

The following theorem states that a uniform central limit theorem is valid over
the class of random forest estimates, providing that (H1) is satisfied.

Theorem 3.2. Consider a random forest which satisfies (H1). Then, condi-
tionnally on Dn,

√
M (mM,n(•)−m∞,n(•)) L→ Gg•,

where G is a Gaussian process with mean zero and a covariate function

CovΘ(Ggx,Ggz) = CovΘ

(
n∑
i=1

Yi
1
x

Θ↔Xi

Nn(x,Θ)
,

n∑
i=1

Yi
1
z

Θ↔Xi

Nn(z,Θ)

)
.

According to the discussion above, Theorem 3.2 holds for uniform forests (by
Lemma 1) and Breiman’s (2001) forests (since they are discrete). Moreover,
according to this Theorem, the finite forest estimates tend uniformly to the
infinite forest estimates, with the standard rate of convergence

√
M . This result

contributes to bridge the gap between finite forests used in practice and infinite
theoretical forests.

The proximity between two estimates can also be measured in terms of their L2

risk. In this respect, Theorem 3.3 states that the risk of infinite forests is lower
than the one of finite forests and provides a bound on the difference between
these two risks. We first need an assumption on the regression model.

(H2) One has

Y = m(X) + ε,

where ε is a centered Gaussian noise with finite variance σ2, independent of X,
and ‖m‖∞ = sup

x∈[0,1]d
|m(x)| <∞.
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Theorem 3.3. Assume that (H2) is satisfied. Then, for all M,n ∈ N?,

R(mM,n) = R(m∞,n) +
1

M
EX,Dn

[
VΘ [mn(X,Θ)]

]
.

In particular,

0 ≤ R(mM,n)−R(m∞,n) ≤ 8

M
×
(
‖m‖2∞ + σ2(1 + 4 log n)

)
.

Theorem 3.3 reveals that the prediction accuracy of infinite forests is better than
that of finite forests. In practice however, there is no simple way to implement
infinite forests and, in fact, finite forests are nothing but Monte Carlo approxi-
mations of infinite forests. But, since the difference of risks between both types
of forests is bounded (by Theorem 3.3), the prediction accuracy of finite forests
is almost as good as that of infinite forests providing the number of trees is large
enough. More precisely, under (H2), for all ε > 0, if

M ≥ 8(‖m‖2∞ + σ2)

ε
+

32σ2 log n

ε
,

then R(mM,n)−R(m∞,n) ≤ ε.

Anoter interesting consequence of Theorem 3.3 is that, assuming that (H2)
holds and that M/ log n→∞ as n→∞, finite random forests are consistent as
soon as infinite random forests are. This alows to extend all previous consistency
results regarding infinite forests (see, e.g., Meinshausen, 2006; Biau et al., 2008)
to finite forests. It must be stressed that the “log n” term comes from the
Gaussian noise, since, if ε1, . . . , εn are independent and distributed as a Gaussian
noise ε ∼ N (0, σ2), we have,

E

[
max

1≤i≤n
ε2
i

]
≤ σ2(1 + 4 log n),

(see, e.g., Chapter 1 in Boucheron et al., 2013). Therefore, the required number
of trees depends on the noise in the regression model. For instance, if Y is
bounded, then the condition turns into M →∞.

4 Consistency of some random forest models

Section 3 was devoted to the connection between finite and infinite forests. In
particular, we proved in Theorem 3.3 that the consistency of infinite forests
implies that of finite forests, as soon as (H2) is satisfied and M/ log n → ∞.
Thus, it is natural to focus on the consistency of infinite forest estimates, which
can be written as

m∞,n(X) =

n∑
i=1

W∞ni (X)Yi, (8)

where

W∞ni (X) = EΘ

[
1
X

Θ↔Xi

Nn(X,Θ)

]
are the random forest weights.
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4.1 Totally non adaptive forests

Proving consistency of infinite random forests is in general a difficult task,
mainly because forest construction can depend on both the Xi’s and the Yi’s.
This feature makes the resulting estimate highly data-dependent, and therefore
difficult to analyze (this is particularly the case for Breiman’s (2001) forests). To
simplify the analysis, we investigate hereafter infinite random forest estimates
whose weights depends only on X,X1, . . . ,Xn which is called the X-property.
The good news is that when infinite forest estimates have the X-property, they
fall in the general class of local averaging estimates, whose consistency can be
addressed using Stone’s (1977) theorem.

Therefore, using Stone’s theorem as a starting point, we first prove the consis-
tency of random forests whose construction is independent of Dn, which is the
simplest case of random forests satisfying the X-property. For such forests, the
construction is based on the random parameter Θ only. As for now, we say that
a forest is totally non adaptive of level k (k ∈ N, with k possibly depending
on n) if each tree of the forest is built independently of the training set and if
each cell is cut exactly k times. The resulting cell containing X, designed with
randomness Θ, is denoted by An(X,Θ).

Theorem 4.1. Assume that X is distributed on [0, 1]d and consider a totally
non adaptive forest of level k. In addition, assume that for all ρ, ε > 0, there
exists N > 0 such that, with probability 1− ρ, for all n > N ,

diam(An(X,Θ)) ≤ ε.

Then, providing k →∞ and 2k/n→ 0, the infinite random forest is L2 consis-
tent, that is

R(m∞,n)→ 0 as n→∞.

Theorem 4.1 is a generalization of some consistency results in Biau et al. (2008)
for the case of totally non adaptive random forest. Together with Theorem 3.3,
we see that if (H2) is satisfied and M/ log n → ∞ as n → ∞, then the finite
random forest is L2 consistent.

According to Theorem 4.1, a totally non adaptive forest of level k is consistent
if the cell diameters tend to zero as n→∞ and if the level k is properly tuned.
This is in particular true for uniform random forests, as shown in the following
corollary.

Corollary 1. Assume that X is distributed on [0, 1]d and consider a uniform
forest of level k. Then, providing that k → ∞ and 2k/n → 0, the uniform
random forest is L2 consistent.

4.2 q quantile forests

For totally non adaptive forests, the main difficulty that consists in using the
data set to build the forest and to predict at the same time, vanishes. However,
because of their simplified construction, these forests are far from accurately
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modelling Breiman’s (2001) forest. To take one step further into the under-
standing of Breiman’s (2001) forest behavior, we study the q (q ∈ [1/2, 1))
quantile random forest, which satisfies the X-property. Indeed, their construc-
tion depends only on the Xi’s which is a good trade off between the complexity
of Breiman’s (2001) forests and the simplicity of totally non adaptive forests.
As an example of q quantile trees, the median tree (q = 1/2) has already been
studied by Devroye et al. (1996), such as the k-spacing tree (Devroye et al.,
1996) whose construction is based on quantiles.

In the spirit of Breiman’s (2001) algorithm, before growing each tree, data
are subsampled, that is an points (an < n) are selected without replacement.
Then, each split is performed on an empirical q′-quantile (where q′ ∈ [1 − q, q]
can be pre-specified by the user or randomly chosen) along a coordinate, chosen
uniformly at random among the d coordinates. Recall that the q′-quantile (q′ ∈
[1 − q, q]) of X1, . . . ,Xn is defined as the only X(`) satisfying Fn(X(`−1)) ≤
q′ < Fn(X(`)), where the X(i)’s are ordered increasingly. Note that data points
on which splits are performed are not sent down to the resulting cells. This is
done to ensure that data points are uniformly distributed on the resulting cells
(otherwise, there would be at least one data point on the edge of the resulting
cell, and thus the data point distribution would not be uniform on this cell).
Finally, the algorithm stops when each cell contains exactly one point. The full
procedure is described in Algorithm 1.

Algorithm 1: q quantile forest predicted value at x.

Input: Fix an ∈ {1, . . . , n}, and x ∈ [0, 1]d.
Data: A training set Dn.

1 for ` = 1, . . . ,M do
2 Select an points, without replacement, uniformly in Dn.

3 Set P = {[0, 1]d} the partition associated with the root of the tree.
4 while there exists A ∈ P which contains strictly more than two points do
5 Select uniformly one dimension j within {1, . . . , d}.
6 Let N be the number of data points in A and select q′ ∈ [1− q, q]∩

(1/N, 1− 1/N).
7 Cut the cell A at the position given by the q′ empirical quantile (see

definition above) along the j-th coordinate.
8 Call AL and AR the two resulting cell.
9 Set P ← (P\{A}) ∪AL ∪AR.

10 end
11 for each A ∈ P which contains exactly two points do
12 Select uniformly one dimension j within {1, . . . , d}.
13 Cut along the j-th direction, in the middle of the two points.
14 Call AL and AR the two resulting cell.
15 Set P ← (P\{A}) ∪AL ∪AR.

16 end
17 Compute the predicted value mn(x,Θ`) at x equal to the single Yi falling

in the cell of x, with respect to the partition P.
18 end
19 Compute the random forest estimate mM,n(x; Θ1, . . . ,ΘM ,Dn) at the query

point x according to equality (1).

9



Since the construction of q quantile forests depends on the Xi’s and is based
on subsampling, it is a more realistic modeling of Breiman’s (2001) forests than
totally non adaptive forests. It also provides a good understanding on why
random forests are still consistent even when there is exactly one data point
in each leaf. Theorem 4.2 states that with a proper subsampling rate of the
training set, the q quantile random forests are consistent.

(H3) One has

Y = m(X) + ε,

where ε is a centred noise such that V[ε|X = x] ≤ σ2, where σ2 < ∞ is a
constant. Moreover, X has a density on [0, 1]d and m is continuous.

Theorem 4.2. Assume that (H3) is satisfied. Then, providing an → ∞ et
an/n→∞, the infinite q quantile random forest is L2 consistent.

4.3 Discussion

Some remarks are in order. At first, observe that each tree in the q quantile
forest is inconsistent (see Problem 4.3 in Györfi et al., 2002), because each leaf
contains exactly one data point, a number which does not grow to infinity as
n→∞. Thus, Theorem 4.2 shows that q quantile forest combines inconsistent
trees to form a consistent estimate.

Secondly, many random forests can be seen as quantile forests if they satisfy the
X-property and if splits do not separate a small fraction of data points from the
rest of the sample (indeed, for each split in the q quantile forests, the resulting
cells contain at least a fraction q of the observations falling into the parent
node). The last assumption is true, for example, if X has a density on [0, 1]d

bounded from below and from above, and if some splitting rule forces splits
to be performed far away from the cell edges. This assumption is explicitly
made in the analysis of Meinshausen (2006) and Wager (2014) to ensure that
cell diameters tend to zero as n → ∞, which is a necessary condition to prove
the consistency of partitioning estimates (see Chapter 4 in Györfi et al., 2002).
Unfortunately, there are no results stating that splits in Breiman’s (2001) forests
are performed far from the edges (see Ishwaran, 2013, for an analysis of the
splitting criterion in Breiman’s forests).

In addition, we note that Theorem 4.2 does not cover the bootstrap case since
in that case, an = n data points are selected with replacement. However, the
condition on the subsampling rate can be replaced by the following one: for all
x,

max
i
PΘ

[
x

Θ↔ Xi

]
→ 0 as n→∞. (9)

Condition (9) can be interpreted by saying that a point x should not be con-
nected too often to the same data point in the forest, thus meaning that trees
have to be various enough to ensure the forest consistency. This idea of di-
versity among trees has already been suggested by Breiman (2001). In boot-
strap case, a single data point is selected in about 63% of trees. Thus, the
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term maxiPΘ

[
x

Θ↔ Xi

]
is roughly upper bounded by 0.63 which is not suf-

ficient to prove (9). It does not mean that random forests based on boot-
strap are inconsistent but that a more detailed analysis is required. A possible,
but probably difficult, route is an in-depth analysis of the connection function

Kn(x,Xi) = PΘ

[
x

Θ↔ Xi

]
.

Finally, a natural question is how to extend random forests to the case of func-
tional data (see, e.g., Ramsay and Silverman, 2005; Ferraty and Vieu, 2006;
Horváth and Kokoszka, 2012; Bongiorno et al., 2014, for an overview of func-
tional data analysis). A first attempt may be done by expanding each variable
in a particular truncated functional basis. Each curve is then represented by a
finite number of coefficient and any standard random forest procedure can be
applied (see, e.g., Poggi and Tuleau, 2006; Gregorutti et al., 2014, for prac-
tical applications). Since this method mainly consists in projecting functional
variables onto finite dimensional spaces, it suffers from several drawbacks (for
example, it depends on the basis and on the truncated procedure which are
arbitrarily chosen in most cases). Unfortunately, we are not aware of functional
random forest procedures that can directly handle functional data. Given the
good performance of random forests in high dimensional settings and the numer-
ous applications involving functional data, developing such functional forests is
certainly is an interesting research topic.

5 Proofs

5.1 Proof of Theorem 3.1

Note that the forest estimate mM,n can be written as

mM,n(x) =

n∑
i=1

WM
ni Yi,

where

WM
ni =

1

M

M∑
m=1

1
x

Θm↔Xi

Nn(x,Θm)
.

Similarly, one can write the infinite forest estimate m∞,n as

m∞,n(x) =

n∑
i=1

W∞ni Yi,

where

W∞ni = EΘ

[
1
x

Θ↔Xi

Nn(x,Θ)

]
.

We assume that Dn is fixed and prove Theorem 3.1 for d = 2. The general case
can be treated similarly. Throughout the proof, we write, for all θ, x, z ∈ [0, 1]2,

fx,z(θ) =
1
x
θ↔z

Nn(x, θ)
.
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Let us first consider a discrete random forest. By definition of such random
forests, there exists p ∈ N? and a partition {A` : 1 ≤ ` ≤ p} of [0, 1]2 such that
the connection function Kn is constant over the sets A`1×A`2 ’s (1 ≤ `1, `2 ≤ p).
For all 1 ≤ ` ≤ p, denote by a`, the center of the cell A`. Take x, z ∈ [0, 1]2.
There exist `1, `2 such that x ∈ A`1 , z ∈ A`2 . Thus, for all θ,∣∣∣∣∣ 1x θ↔z

Nn(x, θ)
−
1
a`1

θ↔a`2

Nn(a`1 , θ)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1x θ↔z

Nn(x, θ)
−

1
a`1

θ↔z

Nn(a`1 , θ)
+

1
a`1

θ↔z

Nn(a`1 , θ)
−
1
a`1

θ↔a`2

Nn(a`1 , θ)

∣∣∣∣∣
≤ 1

Nn(a`1 , θ)

∣∣∣∣1x θ↔z
− 1

a`1
θ↔z

∣∣∣∣
+

1

Nn(a`1 , θ)

∣∣∣∣1a`1 θ↔z
− 1

a`1
θ↔a`2

∣∣∣∣
≤ 1

Nn(a`1 , θ)
1
x
θ=a`1

+
1

Nn(a`1 , θ)
1
a`2

θ=z

≤ 0.

Thus, the set

H =
{
θ 7→ fx,z(θ) : x, z ∈ [0, 1]2

}
is finite. Therefore, by the strong law of large numbers, almost surely, for all
f ∈ H,

1

M

M∑
m=1

f(Θm) →
M→∞

EΘ

[
f(Θ)

]
.

Noticing that WM
ni (x) = 1

M

∑M
m=1 fx,Xi(Θm), we obtain that, almost surely, for

all x ∈ [0, 1]2,

WM
ni (x)→W∞ni (x), as M →∞.

Since Dn is fixed and random forest estimates are linear in the weights, the
proof of the discrete case is complete.

Let us now consider a continuous random forest. We define, for all x, z ∈ [0, 1]2,

WM
n (x, z) =

1

M

M∑
m=1

1
x

Θm↔ z

Nn(x,Θm)
,

and

W∞n (x, z) = EΘ

[
1
x

Θ↔z

Nn(x,Θ)

]
.

According to the strong law of large numbers, almost surely, for all x, z ∈
[0, 1]2 ∩Q2,

lim
M→∞

WM
n (x, z) = W∞n (x, z).

12



Set x, z ∈ [0, 1]2 where x = (x(1), x(2)) and z = (z(1), z(2)). Assume, without
loss of generality, that x(1) < z(1) and x(2) < z(2). Let

Ax = {u ∈ [0, 1]2, u(1) ≤ x(1) and u(2) ≤ x(2)},
and Az = {u ∈ [0, 1]2, u(1) ≥ z(1) and u(2) ≥ z(2)}.

Choose x1 ∈ Ax ∩ Q2 (resp. z2 ∈ Az ∩ Q2) and take x2 ∈ [0, 1]2 ∩ Q2 (resp.
z1 ∈ [0, 1]2 ∩ Q2) such that x1,x,x2 (resp. z2, z, z1) are aligned in this order
(see Figure 1).

Figure 1: Respective positions of x,x1,x2 and z, z1, z2

Thus, ∣∣WM
n (x, z)−W∞n (x, z)

∣∣ ≤ ∣∣WM
n (x, z)−WM

n (x1, z2)
∣∣

+
∣∣WM

n (x1, z2)−W∞n (x1, z2)
∣∣

+ |W∞n (x1, z2)−W∞n (x, z)| . (10)

Set ε > 0. Because of the continuity of Kn, we can choose x1,x2 close enough
to x and z2, z1 close enough to z such that,

|Kn(x2,x1)− 1| ≤ ε,
|Kn(z1, z2)− 1| ≤ ε,
|1−Kn(x1,x)| ≤ ε,
|1−Kn(z2, z)| ≤ ε.

Let us consider the second term in equation (10). Since x1, z2 belong to [0, 1]2∩
Q2, almost surely, there exists M1 > 0 such that, if M > M1,∣∣WM

n (x1, z2)−W∞n (x1, z2)
∣∣ ≤ ε.

Regarding the first term in (10), note that, according to the position of x1, z2,x,
for all θ, we have

1
x1

θ↔z2

Nn(x, θ)
=

1
x1

θ↔z2

Nn(x1, θ)
.

13



Therefore

∣∣WM
n (x, z)−WM

n (x1, z2)
∣∣ ≤ 1

M

M∑
m=1

∣∣∣∣∣ 1
x

Θm↔ z

Nn(x,Θm)
−

1
x1

Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣ .
Observe that, given the positions of x,x1, z, z2, the only case where∣∣∣∣∣ 1

x
Θm↔ z

Nn(x,Θm)
−

1
x1

Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣ 6= 0

occurs when x1
Θm= z2 and x

Θm↔ z. Thus,

1

M

M∑
m=1

∣∣∣∣∣ 1
x

Θm↔ z

Nn(x,Θm)
−

1
x1

Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣
=

1

M

M∑
m=1

∣∣∣∣∣ 1
x

Θm↔ z

Nn(x,Θm)
−

1
x1

Θm↔ z2

Nn(x,Θm)

∣∣∣∣∣1x1
Θm= z2

1
x

Θm↔ z

≤ 1

M

M∑
m=1

1
x

Θm↔ z
1
x1

Θm= z2

.

Again, given the relative positions of x,x1,x2, z, z2, z1, we obtain

1

M

M∑
m=1

1
x

Θm↔ z
1
x1

Θm= z2

≤ 1

M

M∑
m=1

(
1
x1

Θm= x
+ 1

z2
Θm= z

)
≤ 1

M

M∑
m=1

(
1
x1

Θm= x2

+ 1
z2

Θm= z1

)
≤ 1

M

M∑
m=1

1
x1

Θm= x2

+
1

M

M∑
m=1

1
z2

Θm= z1

.

Collecting the previous inequalities, we have

∣∣WM
n (x, z)−W∞n (x1, z2)

∣∣ ≤ 1

M

M∑
m=1

1
x1

Θm= x2

+
1

M

M∑
m=1

1
z2

Θm= z1

≤ 2− 1

M

M∑
m=1

1
x1

Θm↔ x2

− 1

M

M∑
m=1

1
z2

Θm↔ z1

.

Since x2, z1,x1, z2 ∈ [0, 1]2 ∩Q2, we deduce that there exists M2 such that, for
all M > M2,∣∣WM

n (x, z)−W∞n (x1, z2)
∣∣ ≤ 2−K∞(x2,x1)−K∞(z1, z2) + 2ε. (11)

Considering the third term in (10), using the same arguments as above, we see
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that

|W∞n (x1, z2)−W∞n (x, z)| ≤ EΘ

∣∣∣∣∣ 1x1
Θ↔z2

Nn(x1,Θ)
−

1
x

Θ↔z

Nn(x,Θ)

∣∣∣∣∣
≤ EΘ

[∣∣∣∣∣ 1x1
Θ↔z2

Nn(x1,Θ)
−

1
x

Θ↔z

Nn(x,Θ)

∣∣∣∣∣1x1
Θ=z2

1
x

Θ↔z

]
≤ EΘ

[
1
x1

Θ=z2
1
x

Θ↔z

]
≤ EΘ

[
1
x1

Θ=x2
+ 1

z2
Θ=z1

]
≤ 2−Kn(x1,x2)−Kn(z2, z1). (12)

Using inequalities (11) and (12) in (10), we finally conclude that, for all M >
max(M1,M2),∣∣WM

n (x, z)−W∞n (x, z)
∣∣ ≤ 4− 2Kn(x2,x1)− 2Kn(z1, z2) + 3ε

≤ 7ε.

This completes the proof of Theorem 3.1.

5.2 Proof of Lemma 1 and Theorem 3.2

Proof of Lemma 1. Set k ∈ N and ε > 0. We start by considering the case
where d = 1. Take x, z ∈ [0, 1] and let w = − log (|x− z|). The probability that
x and z are not connected in the uniform forest after k cuts is given by

1−Kk(x, z) ≤ 1−Kk(0, |z − x|)
(according to Technical Lemma 1, see the end of the section)

≤ e−w1k>0

k−1∑
i=0

wi

i!

(according to Technical Lemma 2, see the end of the section)

≤ (k + 2)!e

w3
,

for all w > 1. Now, consider the multivariate case, and let x, z ∈ [0, 1]d. Set,
for all 1 ≤ j ≤ d, wj = − log (|xj − zj |). By union bound, recalling that

1−Kk(x, z) = PΘ(x
Θ= z), we have

1−Kk(x, z) ≤
d∑
j=1

(1−Kk(xj , zj))

≤ d(k + 2)!e

min
1≤j≤d

w3
j

.

Thus, if, for all 1 ≤ j ≤ d,

|xj − zj | ≤ exp

(
− (Ak,d)

1/3

ε2/3

)
,
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then

1−Kk(x, z) ≤ ε2

8
,

where Ak,d = (8de(k + 2)!)1/3. Consequently,

δ(ε) ≥ exp

(
− (Ak,d)

1/3

ε2/3

)
.

Proof of Theorem 3.2. We start the proof by proving that the class

H =
{
θ 7→ fx,z(θ) : x, z ∈ R2

}
is PΘ-Donsker, that is, there exists a Gaussian process G such that

sup
f∈H

{
E|f | (dGM − dG)

}
→

M→∞
0.

At first, let us consider a finite random forest. As noticed in the proof of
Theorem 3.1, the set H is finite. Consequently, by the central limit theorem,
the set H is PΘ-Donsker.

Now, consider a random forest which satisfies the second statement in (H1).
Set ε > 0. Consider a regular grid of [0, 1]d with a step δ and let Gδ be the set
of nodes of this grid. We start by finding a condition on δ such that the set

G̃δ = {[fx1,z1
, fx2,z2

] : x1,x2, z1, z2 ∈ Gδ}

is a covering of ε-bracket of the set H, that is, for all f ∈ H, there exists
x1, z1,x2, z2 ∈ Gδ such that

fx1,z1
≤ f ≤ fx2,z2

and E1/2 [fx2,z2
(Θ)− fx1,z1

(Θ)]
2 ≤ ε. (13)

To this aim, set x, z ∈ [0, 1]d and choose x1,x2, z1, z2 ∈ Gδ (see Figure 2). Note
that, for all θ,

1
x1

θ↔z2

Nn(x1, θ)
≤

1
x
θ↔z

Nn(x, θ)
≤

1
x2

θ↔z1

Nn(x2, θ)
,

that is, fx1,z2
≤ fx,z ≤ fx2,z1

. To prove the second statement in (13), observe
that

E1/2
[
fx2,z2

(Θ)− fx1,z1
(Θ)
]2

= E
1/2
Θ

[
1
x1

Θ↔z2

Nn(x1,Θ)
−

1
x2

Θ↔z1

Nn(x2,Θ)

]2

= E
1/2
Θ

[( 1
x1

Θ↔z2

Nn(x1,Θ)
−

1
x2

Θ↔z1

Nn(x2,Θ)

)
× 1

x1
Θ=z2

1
x2

Θ↔z1

]2

≤ E1/2
Θ

[
1
x1

Θ=x2
+ 1

z1
Θ=z2

]2
≤ 2
√

1−Kn(x1,x2) + 1−Kn(z1, z2).
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Figure 2: Respective positions of x,x1,x2 and z, z1, z2 with d = 2.

Thus, we have to choose the grid step δ such that

sup
x1,x2∈[0,1]d

‖x1−x2‖∞≤δ

∣∣1−Kn(x1,x2)
∣∣ ≤ ε2

8
. (14)

By Assumption 1 and the definition of the random forest grid step, there exist
constants C,A > 0 and 0 < α < 2 such that, for all ε > 0, if

δ ≥ C exp(−A/εα), (15)

then (14) is satisfied. Hence, if δ satisfies (15), then G̃δ is a covering of ε-bracket
of H. In that case, the number N[ ](ε,F , L2(P )) of ε-bracket needed to cover
H satisfies

N[ ](ε,F , L2(P )) ≤ Card(G̃δ) ≤ Card(Gδ)4 ≤
(

1

δ

)4d

.

Consequently, √
logN[ ](ε,F , L2(P )) ≤

√
2Ad

εα
− 2d logC

where the last term is integrable near zero since α < 2. Thus, according to
Theorem 2.5.6 in van der Vaart and Wellner (1996) (and the remark at the
beginning of Section 2.5.2), the class H is PΘ-Donsker.

To conclude the proof, consider a random forest satisfying (H1). From above,
we see that the class H is PΘ-Donsker. Recall that F2 = {gx : θ 7→ mn(x, θ) :
x ∈ [0, 1]d}, where

mn(x,Θ) =

n∑
i=1

Yifx,Xi(Θ).
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Since the training set Dn is fixed, we have

sup
gx∈F2

{
E|gx| (dGM − dG)

}
= sup

x∈[0,1]d

{
E

∣∣∣ n∑
i=1

Yifx,Xi

∣∣∣ (dGM − dG)

}

≤
n∑
i=1

|Yi| sup
x∈[0,1]d

{
E|fx,Xi | (dGM − dG)

}
≤

(
n∑
i=1

|Yi|

)
sup

x,z∈[0,1]d

{
E|fx,z| (dGM − dG)

}
,

which tends to zero as M tends to infinity, since the class H is PΘ-Donsker.

Finally, note that Breiman’s (2001) random forests are discrete, thus satisfying
(H1). Uniform forests are continuous and satisfy (H1) according to Lemma 1.

5.3 Proof of Theorem 3.3

Observe that,(
mM,n(X,Θ1, . . . ,Θm)−m(X)

)2

=
(
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

)2

+
(
EΘ [mn(X,Θ)]−m(X)

)2

+ 2
(
EΘ [mn(X,Θ)]−m(X)

)(
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

)
.

Taking the expectation on both sides, we obtain

R(mM,n,m) = R(m∞,n,m) + E
[
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

]2
,

by noticing that

E

[(
mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]

)(
EΘ [mn(X,Θ)]−m(X)

)]
= EX,Dn

[(
EΘ [mn(X,Θ)]−m(X)

)
× EΘ1,...,ΘM

[
mM,n(X,Θ1, . . . ,Θm)− EΘ

[
mn(X,Θ)

]]]
= 0,

according to the definition of mM,n. Fixing X and Dn, note that random vari-
ables mn(X,Θ1), . . . ,mn(X,Θ1) are independent and identically distributed.
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Thus, we have

E [mM,n(X,Θ1, . . . ,Θm)− EΘ [mn(X,Θ)]]
2

= EX,DnEΘ1,...,ΘM

[
1

M

M∑
m=1

mn(X,Θm)− EΘ [mn(X,Θ)]

]2

=
1

M
× E

[
VΘ [mn (X,Θ)]

]
,

which conludes the first part of the proof. Now, note that the tree estimate
mn(X,Θ) can be written as

mn(X,Θ) =

n∑
i=1

Wni(X,Θ)Yi,

where

Wni(X,Θ) =
1
X

Θ↔Xi

Nn(X,Θ)
.

Therefore,

R(mM,n)−R(m∞,n) =
1

M
× E

[
VΘ [mn(X,Θ)]

]
=

1

M
× E

[
VΘ

[
n∑
i=1

Wni(X,Θ)(m(Xi) + εi)

]]

≤ 1

M
× E

[
EΘ

[
max

1≤i≤n
(m(Xi) + εi)− min

1≤j≤n
(m(Xj) + εj)

]2
]

≤ 1

M
× E

[
2EΘ

[
max

1≤i≤n
m(Xi)− min

1≤j≤n
m(Xj)

]2

+ 2EΘ

[
max

1≤i≤n
εi − min

1≤j≤n
εj

]2
]

≤ 1

M
×

[
8‖m‖2∞ + 2E

[
max

1≤i≤n
εi − min

1≤j≤n
εj

]2
]

≤ 1

M
×

[
8‖m‖2∞ + 8σ2E

[
max

1≤i≤n

εi
σ

]2
]
.

The term inside the brackets is the maximum of n χ2-squared distributed ran-
dom variables. Thus, for all n ∈ N?,

E

[
max

1≤i≤n

(εi
σ

)2
]
≤ 1 + 4 log n,

(see, e.g., Chapter 1 in Boucheron et al., 2013). Therefore,

R(mM,n)−R(m∞,n) ≤ 8

M
×
(
‖m‖2∞ + σ2(1 + 4 log n)

)
.
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5.4 Proof of Theorem 4.1 and Corollary 1

The proof of Theorem 4.1 is based on Stone’s theorem which is recalled here.

Stone’s theorem (1977). Assume that the following conditions are satisfied
for every distribution of X:

(i) There is a constant c such that for every non negative measurable function
f satisfying Ef(X) <∞ and any n,

E

(
n∑
i=1

Wni(X)f(Xi)

)
≤ c E (f(X)) .

(ii) There is a D > 1 such that, for all n,

P

(
n∑
i=1

Wni(X) < D

)
= 1.

(iii) For all a > 0,

lim
n→∞

E

(
n∑
i=1

Wni(X)1‖X−Xi‖>a

)
= 0.

(iv) The sum of weights satisfies

n∑
i=1

Wni(X) →
n→∞

1 in probability.

(v)

lim
n→∞

E

(
max

1≤i≤n
Wni(X)

)
= 0.

Then the corresponding regression function estimate mn is universally L2 con-
sistent, that is,

lim
n→∞

E [mn(X)−m(X)]
2

= 0,

for all distributions of (X, Y ) with EY 2 <∞.

Proof of Theorem 4.1. We check the assumptions of Stone’s theorem. For every
non negative measurable function f satisfying Ef(X) <∞ and for any n, almost
surely,

EX,Dn

(
n∑
i=1

Wni(X,Θ)f(Xi)

)
≤ EX (f(X)) ,
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where

Wni(X,Θ) =
1Xi∈An(X,Θ)

Nn(X,Θ)

are the weights of the random tree Tn(Θ) (see the proof of Theorem 4.2 in Györfi
et al., 2002). Taking expectation with respect to Θ from both sides, we have

EX,Dn

(
n∑
i=1

W∞ni (X)f(Xi)

)
≤ EX (f(X)) ,

which proves the first condition of Stone’s theorem.

According to the definition of random forest weights W∞ni , since
∑n
i=1Wni(X,Θ)

≤ 1 almost surely, we have

n∑
i=1

W∞ni (X) = EΘ

[
n∑
i=1

Wni(X,Θ)

]
≤ 1.

To check condition (iii), note that, for all a > 0,

E

[
n∑
i=1

W∞ni (X)1‖X−Xi‖∞>a

]
=E

[
n∑
i=1

1
X

Θ↔Xi

Nn(X,Θ)
1‖X−Xi‖∞>a

]

=E

[ n∑
i=1

1
X

Θ↔Xi

Nn(X,Θ)
1‖X−Xi‖∞>a

× 1diam(An(X,Θ))≥a/2

]
,

because 1‖X−Xi‖∞>a1diam(An(X,Θ))<a/2 = 0. Thus,

E

[ n∑
i=1

W∞ni (X)1‖X−Xi‖∞>a

]
≤ E

[
1diam(An(X,Θ))≥a/2

×
n∑
i=1

1
X

Θ↔Xi
1‖X−Xi‖∞>a

]
≤ P

[
diam(An(X,Θ)) ≥ a/2

]
,

which tends to zero, as n→∞, by assumption.

To prove assumption (iv), we follow the arguments developed by Biau et al.
(2008). For completeness, these arguments are recalled here. Let us consider the
partition associated with the random tree Tn(Θ). By definition, this partition
has 2k cells, denoted by A1, . . . , A2k . For 1 ≤ i ≤ 2k, let Ni be the number of
points among X,X1, . . . ,Xn falling into Ai. Finally, set S = {X,X1, . . . ,Xn}.
Since these points are independent and identically distributed, fixing the set S
(but not the order of the points) and Θ, the probability that X falls in the i-th
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cell is Ni/(n+ 1). Thus, for every fixed t > 0,

P
[
Nn(X,Θ) < t

]
= E

[
P
[
Nn(X,Θ) < t

∣∣∣S,Θ]]
= E

[ ∑
i:Ni<t+1

Ni
n+ 1

]

≤ 2k

n+ 1
t.

Thus, by assumption, Nn(X,Θ)→∞ in probability, as n→∞. Consequently,
observe that

n∑
i=1

W∞ni (X) = EΘ

[
n∑
i=1

Wni(X,Θ)

]
= EΘ

[
1Nn(X,Θ) 6=0

]
= PΘ [Nn(X,Θ) 6= 0]

→ 1 as n→∞.

At last, to prove (v), note that,

E

[
max

1≤i≤n
W∞ni (X)

]
≤ E

[
max

1≤i≤n

1Xi∈An(X,Θ)

Nn(X,Θ)

]
≤ E

[
1Nn(X,Θ)>0

Nn(X,Θ)

]
→ 0 as n→∞,

since Nn(X,Θ)→∞ in probability, as n→∞.

Proof of Corollary 1. We check conditions of Theorem 4.1. Let us denote by
Vnj(X,Θ) the length of the j-th side of the cell containing X and Knj(X,Θ)
the number of times the cell containing X is cut along the j-coordinate. Note
that, if U1, . . . , Un are independent uniform on [0, 1],

E [Vnj(X,Θ)] ≤ E

E
Knj(X,Θ)∏

l=1

max(Ui, 1− Ui)|Knj(X,Θ)


= E

[[
E
[

max(U1, 1− U1)
]]Knj(X,Θ)

]
= E

[(
3

4

)Knj(X,Θ)
]
.

Since Knj(X,Θ) is distributed as a binomial B(kn, 1/d), Knj(X,Θ) → +∞ in
probability, as n tends to infinity. Thus E [Vnj(X,Θ)]→ 0 as n→∞.
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5.5 Proof of Theorem 4.2

Consider a theoretical q quantile tree where cuts are made similarly as in the q
quantile tree (defined in Algorithm 2) but by selecting q′ ∈ [1−q, q] and by per-
forming the cut at the q′ theoretical quantile (instead of empirical one). The tree
is then stopped at level k, where k ∈ N is a parameter to be chosen later. Denote
by A?k(X,Θ) the cell of the theoretical q quantile tree of level k containing X

and built with the randomness Θ. Finally, we let d?k = (d̂?1(X,Θ), . . . , d̂?k(X,Θ))
be the k cuts used to construct the cell A?k(X,Θ).

To prove Theorem 4.2, we need the following lemma which states that the cell
diameter of a theoretical q quantile tree tends to zero.

Lemma 2. Assume that X has a density over [0, 1]d, with respect to the Lebesgue
measure. Thus, for all q ∈ [1/2, 1), the theoretical q quantile tree defined above
satisfies, for all γ,

P
[
diam(A?k(X,Θ)) > γ

]
→
k→∞

0.

Proof of Lemma 2. Set q ∈ [1/2, 1) and consider a theoretical q quantile tree.
For all A ⊂ [0, 1]d, let

µ(A) =

∫
A

fdν,

where ν is the Lebesgue measure, and f the density of X. Take z ∈ [0, 1],
` ∈ {1, . . . , d} and let ∆ be the hyperplane such that ∆ = {x : x(`) = z}. At
last, we denote by D = {A : A ∩ ∆ 6= ∅} the set of cells of the theoretical q
quantile tree that have a non-empty intersection with ∆.

If a cell A?k(X,Θ) belongs to D, then:

Case 1 Either the next split in A?k(X,Θ) is performed along the `-th coordinate
and, in that case, one of the two resulting cell has an empty intersection
with ∆. Note that the measure of this cell is, at least, (1−q)µ(A?k(X,Θ)).

Case 2 Or the next split is performed along the j-th coordinate (with j 6= `) and,
in that case, the two resulting cells have a non-empty intersection with ∆.

Since the splitting directions are chosen uniformly over {1, . . . , d}, for each cell
Case 1 occurs with probability 1/d and Case 2 with probability 1− 1/d. Let
jk(X,Θ) be the random variable equals to the coordinate along which the split
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in the cell A?k−1(X,Θ) is performed. Thus,

P
[
A?k+1(X,Θ) ∈ D

]
≤ E

[
P
[
A?k+1(X,Θ) ∈ D

] ∣∣∣jk+1(X,Θ)
]

≤ E
[
P [A?k(X,Θ) ∈ D] (1− q)1jk+1(X,Θ)=`

+ P [A?k(X,Θ) ∈ D]1jk+1(X,Θ) 6=`

]
≤ P [A?k(X,Θ) ∈ D]

×
(

(1− q)P [jk+1(X,Θ) = `] + P [jk+1(X,Θ) 6= `]
)

≤
(

1− q

d

)
P [A?k(X,Θ) ∈ D] .

Consequently, for all k,

P
[
A?k+1(X,Θ) ∈ D

]
≤
(

1− q

d

)k
P [A?k(X,Θ) ∈ D] , (16)

that is

P [A?k(X,Θ) ∈ D] →
k→∞

0. (17)

To finish the proof, take ε > 0 and consider a ε × . . . × ε grid. Within a grid
cell, all points are distant from, at most, εd1/2. Thus, if a cell A of the median
tree is contained in a grid cell, it satisfies

diam(A) ≤ εd1/2.

Consider the collection of hyperplane that correspond to the grid, that is all hy-
perplanes of the form {x : x(`) = jε} for ` ∈ {1, . . . , d} and j ∈ {0, . . . , b1/εc}.
Denote by ∆grid the collection of these hyperplanes. Since the number of hy-
perplanes is finite, according to (17), we have

P
[
diam(A?k(X,Θ)) ≥ εd1/2

]
≤ P [A?k(X,Θ) ∩∆grid 6= ∅] →

k→∞
0,

which concludes the proof.

Recall that An(X,Θ) is the cell of the q quantile tree containing X. Similarly,
Ak,n(X,Θ) is the cell of the q quantile tree containing X where only the first k
cuts (k ∈ N?) are performed . We denote by dk,n = (d1,n(X,Θ), . . . , dk,n(X,Θ))
the k cuts used to construct the cell Ak,n(X,Θ).

Lemma 3. Assume that X has a density over [0, 1]d, with respect to the Lebesgue
measure. Thus, for all k ∈ N, a.s.

‖dk,n − d?k‖∞ →
n→∞

0.

Proof of Lemma 3. To keep the argument simple, we fix X ∈ [0, 1]d and assume
that the first and second splits are performed at the empirical median along
the first (resp. second) coordinate. Since X and Θ are fixed, we omit the
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Figure 3: Respective positions of theoretical and empirical splits in a median
tree.

dependency in X and Θ in the rest of the proof. Let d1,n (resp. d2,n) be the
position of the first (resp. second) splits along the first (resp. second) axis. We
denote by d?1 (resp. d?2) the position of the theoretical median of the distribution
(see Figure 3).

Fix ε > 0. Since the Xi’s are i.i.d., the empirical median tends to the theoretical
median almost surely. With our notation, a.s., d1,n → d?1, as n tends to infinity.
Therefore, Lemma 3 holds for k = 1. We now prove Lemma 3 for k = 2. To
this end, we define, for all 0 ≤ a < b ≤ 1, the subset Ha,b of the cell A?1 by

Ha,b = [0, 1]× [a, b]× [0, 1]× . . .× [0, 1] ∩A?1.

Let α = min(µ(Hd?2−ε,d?2 ), µ(Hd?2 ,d
?
2+ε)). Denote by d2,n(d?1) the empirical me-

dian of data points falling into the cell A?1. Since X has a density on [0, 1]d, one
can find ε1 such that, for all n large enough, a.s.,{

|d2,n(d?1)− d?2| ≤ ε1

min(µ(Hd?2−ε1,d?2 ), µ(Hd?2 ,d
?
2+ε1)) ≤ α/100.

By the same argument, one can find ε2 such that, for all n large enough, a.s.,{
|d1,n − d?1| ≤ ε2

min(µ(Hd?1−ε2,d?1 ), µ(Hd?1 ,d
?
1+ε2)) ≤ α/100.

A direct consequence of the law of the iterated logarithm applied to cumulative
distribution function is that, for all n large enough, a.s.,

max
(
Nn(Hd?2−ε1,d?2 ), Nn(Hd?2 ,d

?
2+ε1)

)
≤ 0.02αn, (18)

max
(
Nn(Hd?1−ε2,d?1 ), Nn(Hd?1 ,d

?
1+ε2)

)
≤ 0.02αn, (19)

and min
(
Nn(Hd?2−ε,d?2−ε1), Nn(Hd?2+ε1,d?2+ε)

)
≥ 0.98αn. (20)

The empirical median in the cell A1,n is given by X
(2)
(bNn(A1,n)/2c), where the

Xi’s are sorted along the second coordinate. According to (19), the cell A
(?)
1
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contains at most Nn(A1,n) + 0.02αn. Therefore, the empirical median d2,n(d?1)

in the cell A?1 is at most X
(2)
(b(Nn(A1,n)+0.02αn)/2c). Thus, according to (18) and

(20),

d2,n ≤ X(2)
(b(Nn(A1,n)+0.02αn)/2c) ≤ d

?
2 + ε.

Similarly, one has

d2,n ≥ X(2)
(b(Nn(A1,n)−0.02αn)/2c) ≤ d

?
2 − ε.

Consequently, for all n large enough, a.s., |d2,n − d?2| ≤ ε. The extension for
arbitrary k is straightforward.

Lemma 4. Assume that X has a density over [0, 1]d, with respect to the Lebesgue
measure. Thus, for all q ∈ [1/2, 1), the theoretical q quantile tree defined above
satisfies, for all γ,

P
[
diam(An(X,Θ)) > γ

]
→

n→∞
0.

Proof. Now, consider the empirical q quantile tree as defined in Algorithm 1
but stopped at level k. Thus, for n large enough, at each step of the algorithm,
q′ is selected in [1 − q, q]. Set ε, γ > 0. By Lemma 2, there exists k0 ∈ N such
that, for all k ≥ k0,

P
[
diam(Ak(X,Θ)) > γ

]
≤ ε.

Thus, according to Lemma 3, for all n large enough, a.s.,

P
[
diam(Ak0,n(X,Θ)) > γ/2

]
≤ ε.

Since, for all n large enough, a.s.,

diam(Ak0,n(X,Θ)) ≥ diam(An(X,Θ)),

the proof is complete.

Proof of Theorem 4.2. We check the conditions of Stone’s theorem. Condi-
tion (i) is satisfied since the regression function is uniformly continuous and
Var[Y |X = x] ≤ σ2 (see remark after Stone theorem in Györfi et al., 2002).

Condition (ii) is always satisfied for random trees. Condition (iii) is verified
since

P [diam(An(X,Θ)) > γ] →
n→∞

0,

according to Lemma 4.

Since each cell contains exactly one data point,

n∑
i=1

Wni(x) =

n∑
i=1

EΘ

[
1Xi∈An(X,Θ)

Nn(X,Θ)

]

=EΘ

[
1

Nn(X,Θ)

n∑
i=1

1Xi∈An(X,Θ)

]
=1.
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Thus, conditions (iv) of Stone theorem is satisfied.

To check (v), observe that in the subsampling step, there are exactly
(
an−1
n−1

)
choices to pick a fixed observation Xi. Since x and Xi belong to the same cell
only if Xi is selected in the subsampling step, we see that

PΘ

[
X

Θ↔ Xi

]
≤
(
an−1
n−1

)(
an
n

) =
an
n
.

So,

E

[
max

1≤i≤n
Wni(X)

]
≤ E

[
max

1≤i≤n
PΘ

[
X

Θ↔ Xi

]]
≤ an

n
,

which tends to zero by assumption.

5.6 Proofs of Technical Lemmas 1 and 2

Technical Lemma 1. Take k ∈ N and consider a uniform random forest where
each tree is stopped at level k. For all x, z ∈ [0, 1]d, its connection function
satisfies

Kk(0, |x− z|) ≤ Kk(x, z),

where |x− z| = (|x1 − z1|, . . . , |xd − zd|).

Proof. Take x, z ∈ [0, 1]. Without loss of generality, one can assume that x < z
and let µ = z − x. Consider the following two configurations.

Figure 4: Scheme of configuration 1 (at the top) and 2 (at the bottom).

For any k ∈ N?, we let dk = (d1, . . . , dk) (resp. d′k = (d′1, . . . , d
′
k)) be k

consecutive cuts in configuration 1 (resp. in configuration 2). We denote by Ak
(resp. A′k) the set where dk (resp. d′k) belong.

We show that for all k ∈ N?, there exists a coupling between Ak and A′k
satisfying the following property: any k-tuple dk is associated with a k-tuple
d′k such that

1. if dk separates [x, z] then d′k separates [0, z − x],

2. if dk does not separate [x, z] and d′k does not separate [0, z − x], then the
length of the cell containing [x, z] built with dk is higher than the one
containing [0, z − x] built with d′k.
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We call Hk this property. We now proceed by induction. For k = 1, we use the
function g to map A1 into A′1 such that:

g1(u) =

{
u if u > z
z − u if u ≤ z

Thus, for any d1 ∈ A1, if d1 separates [x, z], then d′1 = g1(d1) separates [0, z−x].
Besides, the length of the cell containing [x, z] designed with the cut d1 is higher
than that of the cell containing [0, z−x] designed with the cut d′1. Consequently,
H1 is true.

Now, take k > 1 and assume that Hk is true. Consequently, if dk separates
[x, z] then gk(dk) separates [0, z − x]. In that case, dk+1 separates [x, z] and
gk+1(dk+1) separates [0, z − x]. Thus, in the rest of the proof, we assume that
dk does not separate [x, z] and gk(dk) does not separate [0, z − x]. Let [ak, bk]
be the cell containing [x, z] built with cuts dk. Since the problem is invariant by
translation, we assume, without loss of generality, that [ak, bk] = [0, δk], where
δk = bk − ak and [x, z] = [xk, xk + µ] (see Figure 5).

Figure 5: Configuration 1a (at the top) and 1b (at the bottom).

In addition, according to Hk, the length of the cell built with dk is higher than
the one built with d′k. Thus, one can find λ ∈ (0, 1) such that d′k = λδk. This
is summarized in Figure 6.

Figure 6: Configuration 1b (at the top) and 2b (at the bottom).

Thus, one can map [0, δk] into [0, λδk] with gk+1 defined as

gk+1(u) =

{
λu if u > xk + µ
λ(xk + µ− u) if u ≤ xk + µ

Note that, for all dk+1, the length of the cell containing [xk, xk+µ] designed with
the cut dk+1 (configuration 1b) is bigger than the length of the cell containing
[0, µ] designed with the cut d′k+1 = gk+1(dk+1) (configuration 2b). Besides, if
dk+1 ∈ [xk, xk + µ] then gk+1(dk+1) ∈ [0, µ]. Consequently, the set of functions
g1, . . . , gk+1 induce a mapping of Ak+1 into A′k+1 such that Hk+1 holds. Thus,
Technical Lemma 1 holds for d = 1.
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To address the case where d > 1, note that

Kk(x, z) =
∑

k1,...,kd∑d
j=1 kj=k

k!

k1! . . . kd!

(
1

d

)k d∏
m=1

Kkm(xm, zm)

≥
∑

k1,...,kd∑d
j=1 kj=k

k!

k1! . . . kd!

(
1

d

)k d∏
m=1

Kkm(0, |zm − xm|)

≥ Kk(0, |z− x|),

which concludes the proof.

Technical Lemma 2. Take k ∈ N and consider a uniform random forest where
each tree is stopped at level k. For all x ∈ [0, 1], its connection function Kk(0, x)
satisfies

Kk(0, x) = 1− x
k−1∑
j=0

(− lnx)j

j!
,

with the notational convention that the last sum is zero if k = 0.

Proof of Technical Lemma 2. The result is clear for k = 0. Thus, set k ∈ N?
and consider a uniform random forest where each tree is stopped at level k.
Since the result is clear for x = 0, take x ∈]0, 1] and let I = [0, x]. Thus

Kk(0, x) = P

[
0

Θ↔
k cuts

x

]
=

∫
z1 /∈I

∫
z2 /∈I

. . .

∫
zk /∈I

ν(dzk|zk−1)ν(dzk−1|zk−2) . . . ν(dz2|z1)ν(dz1),

where z1, . . . , zk are the positions of the k cuts (see Figure 7).

Figure 7: Positions of cuts z1, . . . , zk and x with d = 1

We prove by induction that, for every integer `,∫
zk−` /∈I

. . .

∫
zk /∈I

ν(dzk|zk−1) . . . ν(dzk−`|zk−`−1)

= 1− x

zk−`−1

∑̀
j=0

[ln(zk−`−1/x)]
j

j!

 .
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Denote by H` this property. Since, given zk−1, zk is uniformly distributed over
[0, zk−1], we have ∫

zk /∈I
ν(dzk|zk−1) = 1− x

zk−1
.

Thus H0 is true. Now, fix ` > 0 and assume that H` is true. Let u = zk−`−1/x.
Thus, integrating both sides of H`, we deduce,∫

zk−`−1 /∈I

∫
zk−` /∈I

. . .

∫
zk /∈I

ν(dzk|zk−1) . . . ν(dzk−`|zk−`−1)ν(dzk−`−1|zk−`−2)

=

∫
zk−`−1 /∈I

1− x

zk−`−1

∑̀
j=0

[ln(zk−`−1/x)]
j

j!

 ν(dzk−`−1|zk−`−2)

=

∫ zk−`−2

x

1− x

zk−`−1

∑̀
j=0

[ln(zk−`−1/x)]
j

j!

 dzk−`−1

zk−`−2

=
x

zk−`−2

∫ zk−`−2/x

1

1− 1

u

∑̀
j=0

[ln(u)]
j

j!

du.

Using integration by parts on the last term, we conclude that H`+1 is true.
Thus, for all ` > 0, H` is verified. Finally, using Hk−1 and the fact that z0 = 1,
we conclude the proof.
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L. Györfi, M. Kohler, A. Krzyżak, and H. Walk. A Distribution-Free Theory of
Nonparametric Regression. Springer, New York, 2002.

M. Hamza and D. Laroque. An empirical comparison of ensemble methods based
on classification trees. Journal of Statistical Computation and Simulation, 75:
629–643, 2005.

T. Ho. The random subspace method for constructing decision forests. Pattern
Analysis and Machine Intelligence, 20(8), 832-844, 1998.
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