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Completeness and Soundness

Two important questions:

Are all theorems true? Soundness

Are all the true formulas provable? Completeness

What do we mean by "true"?

Soundness is easily proved by induction on the deduction rules.

Completeness is more complicated.
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Intuition of the proof

Actually, we will prove the contrapositive: if ` F is not provable,
then we can find a model of the language in which F is not
satisfied, that is F is not valid.

The proof scheme will actually be the following: we will design a
proof search procedure that will search for a proof of ` F . Since
there is no such proof, we cannot end up with an object which is a
proof: the resulting object will actually be a failure from which we
will build a counter-model for F by correctly choosing the truth
values for the predicates in order to falsify all formulas in the base
sequent.
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Derivation Trees

Improper Rules

�� ��Open

L; Γ; Φ
Open

L; Γ; Φ�� ��Root
Root

�� ��Failure
L; ∅; ∅ Failure

Classification Rules

l , L; Γ; Φ

L; l , Γ;Φ
Literal

L; Γ; Φ,∃xA
L;∃xA, Γ;Φ

Existential

Logical Rules

A,¬A, L; Γ; Φ
axiom L;>, Γ;Φ

>
L; A, Γ;Φ L; B, Γ;Φ

L; A ∧ B, Γ;Φ
∧

L; A, B, Γ,Φ

L; A ∨ B, Γ,Φ
∨

L; A[y/x ], Γ;Φ

L;∀xA, Γ;Φ
∀

L; A[t/x ]; Φ,∃xA
L; ∅;∃xA,Φ

∃
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Example: the Return of the Drinker

P(y1),¬P(y0),P(y0),¬P(t0) ; ∅ ; ∃x∀y(¬P(x) ∨ P(y))
axiom

¬P(y0),P(y0),¬P(t0) ; P(y1) ; ∃x∀y(¬P(x) ∨ P(y))
literal

P(y0),¬P(t0) ; ¬P(y0),P(y1) ; ∃x∀y(¬P(x) ∨ P(y))
literal

P(y0),¬P(x0) ; (¬P(y0) ∨ P(y1)) ; ∃x∀y(¬P(x) ∨ P(y))
∨

P(y0),¬P(x0) ; ∀y(¬P(y0) ∨ P(y)) ; ∃x∀y(¬P(x) ∨ P(y))
∀

P(y0),¬P(x0) ; ∅ ; ∃x∀y(¬P(x) ∨ P(y))
∃

¬P(x0) ; P(y0) ; ∃x∀y(¬P(x) ∨ P(y))
literal

∅ ; ¬P(x0),P(y0) ; ∃x∀y(¬P(x) ∨ P(y))
literal

∅ ; (¬P(x0) ∨ P(y0)) ; ∃x∀y(¬P(x) ∨ P(y))
∨

∅ ; ∀y(¬P(x0) ∨ P(y)) ; ∃x∀y(¬P(x) ∨ P(y))
∀

∅ ; ∅ ; ∃x∀y(¬P(x) ∨ P(y))
∃

∅ ; ∃x∀y(¬P(x) ∨ P(y)) ; ∅ existential
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Systematic Derivation Trees

Definition: Systematic Derivation Tree

Let us consider ε an enumeration of all terms in the language.
A systematic derivation tree for a sequent L; Γ; Φ is a derivation
tree such that:

the axiom rule is applied as soon as it is possible. That means
that in a branch of a systematic derivation tree, there cannot
be two opposite literals in the left component of the sequent
except in the upmost sequent which must be followed by an
axiom rule;

when the ∃ rule is used, the bound variable must be
instantiated with the first term (according to ε that has not
yet been used in the instantiation of this formula lower in the
derivation tree.
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Example II

¬P(tk), P(yk−1), . . . ,¬P(t1), P(y0),¬P(t0) ; P(yk) ; ∃x∀y(¬P(x) ∨ P(y))
axiom

P(yk−1), . . . ,¬P(t1), P(y0),¬P(t0) ; ¬P(tk), P(yk) ; ∃x∀y(¬P(x) ∨ P(y))
literal

...
P(y1),¬P(t1), P(y0),¬P(t0) ; ∅ ; ∃x∀y(¬P(x) ∨ P(y))

∃

¬P(t1), P(y0),¬P(t0) ; P(y1) ; ∃x∀y(¬P(x) ∨ P(y))
literal

P(y0),¬P(t0) ; ¬P(t1), P(y1) ; ∃x∀y(¬P(x) ∨ P(y))
literal

P(y0),¬P(t0) ; (¬P(t1) ∨ P(y1)) ; ∃x∀y(¬P(x) ∨ P(y))
∨

P(y0),¬P(t0) ; ∀y(¬P(t1) ∨ P(y)) ; ∃x∀y(¬P(x) ∨ P(y))
∀

P(y0),¬P(t0) ; ∅ ; ∃x∀y(¬P(x) ∨ P(y))
∃

¬P(t0) ; P(y0) ; ∃x∀y(¬P(x) ∨ P(y))
literal

∅ ; ¬P(t0), P(y0) ; ∃x∀y(¬P(x) ∨ P(y))
literal

∅ ; (¬P(t0) ∨ P(y0)) ; ∃x∀y(¬P(x) ∨ P(y))
∨

∅ ; ∀y(¬P(t0) ∨ P(y)) ; ∃x∀y(¬P(x) ∨ P(y))
∀

∅ ; ∅ ; ∃x∀y(¬P(x) ∨ P(y))
∃

∅ ; ∃x∀y(¬P(x) ∨ P(y)) ; ∅ existential
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Corollaries: Löwenheim-Skolem and Compactness Theorems

Löwenheim-Skolem Theorem
If a formula F has a model, it has a model which is finite or
denumerable.

Compactness Theorem

If a set S of formulas is such that all its finite subsets are satisfiable
then S itself is satisfiable.
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Strengthening the Completeness procedure: Infinite Theories

Up to now, we had only finite sequents and thus we could not
assert anything about infinite theories.
We will generalize the setting of the previous proof in order to
prove Completeness also for infinite theories so that as a corollary,
we will have the Compactness Theorem.

Definition: Systematic ω-Derivation Tree

We add the following rule:

L; Γ,¬F ; Φ

L; Γ; Φ
ω f or F ∈ S
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