Dénombrement

(T. G. 11)

Solution proposée.

- 1. Notons n le cardinal de E.
 - (a) La condition étant toujours vérifiée, on demande de dénombrer $\mathfrak{P}(E)^2$, qui est de cardinal $(\operatorname{Card}\mathfrak{P}(E))^2=2^{2n}=4^n$.
 - (b) Choisir un tel couple, c'est choisir une partie de E (à un tel couple associer n'importe quelle coordonnées, à une partie $X \subset E$ associer le couple (X,X)), donc le cardinal cherché est celui de $\mathfrak{P}(E)$, à savoir 2^n .
 - (c) Les conditions $\begin{cases} A \cap B = \emptyset \\ A \cup B = E. \end{cases}$ signifient exactement que A et B sont complémentaires dans E, donc choisir un tel couple revient à choisir l'une des coordonnées (l'autre étant le complémentaire de la coordonnée choisie), ce qui se fait en $\operatorname{Card} \mathfrak{P}(E) = 2^n$ choix.
 - (d) Fixons une partie B. Choisir ensuite un couple (A, B) tel que $A \subset B$ revient à choisir une partie A telle que $A \subset B$, i. e. une partie de B, ce qui se fait en $2^{\operatorname{Card} B}$ choix. Pour trouver le cardinal voulu, on somme en faisant varier la partie B fixée au départ. Pour cela, on fixe d'abord le cardinal k de la partie B (entre 0 et n) puis on choisit la partie B (ce qui ce fait en $\binom{n}{k}$ choix) et on somme le tout, ce qui donne

Card
$$\{(A, B) \in \mathfrak{P}(E)^2 ; A \subset B = E\} = \sum_{k=0}^{n} {n \choose k} 2^k = (2+1)^n = 3^n.$$

De manière plus détaillée, on écrirait (avec des dessins pour expliquer les partitions)

$$\operatorname{Card}\left\{(A,B)\in\mathfrak{P}\left(E\right)^{2}\;;A\subset B\right\} = \operatorname{Card}\prod_{B\subset E}\left\{(A,B)\in\mathfrak{P}\left(E\right)^{2}\;;A\subset B\right\}$$

$$= \sum_{B\subset E}\operatorname{Card}\left\{(A,B)\in\mathfrak{P}\left(E\right)^{2}\;;A\subset B\right\}$$

$$= \sum_{B\subset E}\operatorname{Card}\left\{A\in\mathfrak{P}\left(E\right)\;;A\subset B\right\}$$

$$= \sum_{B\subset E}\operatorname{Card}\mathfrak{P}\left(B\right)$$

$$= \sum_{B\subset E}2^{\operatorname{Card}B}$$

$$= \sum_{k=0}^{n}\sum_{\operatorname{Card}B=k}2^{\operatorname{Card}B} \quad \operatorname{car}\mathfrak{P}\left(E\right) = \prod_{k=0}^{n}\left\{B\in\mathfrak{P}\left(E\right)\;;\operatorname{Card}B=k\right\}$$

$$= \sum_{k=0}^{n}2^{k}\sum_{\operatorname{Card}B=k}1$$

$$= \sum_{k=0}^{n}2^{k}\operatorname{Card}\left\{B\in\mathfrak{P}\left(E\right)\;;\operatorname{Card}B=k\right\}$$

$$= \sum_{k=0}^{n}2^{k}\operatorname{Card}\left\{B\in\mathfrak{P}\left(E\right)\;;\operatorname{Card}B=k\right\}$$

$$= \sum_{k=0}^{n}2^{k}\left(\prod_{k}\right)$$

$$= \sum_{k=0}^{n}\left(\prod_{k}2^{k}1^{n-k}\right)$$

$$= (2+1)^{n}$$

 3^n

- (e) L'ensemble dont on cherche le cardinal est la différence ensembliste de celui de la question (1d) et de celui de la question (1b); puisque celui-là est inclus dans celui-ci, le cardinal cherché vaut la différence $3^n 2^n$.
- (f) Les ensembles $\mathcal{I} := \{(A, B) \in \mathfrak{P}(E)^2 : A \subset B\}$ et $\mathcal{J} := \{(A, B) \in \mathfrak{P}(E)^2 : B \subset A\}$ sont en bijection (échanger les deux coordonnées), donc ils sont tous deux même cardinal 3^n (cf. question (1d)). Or la question demande de dénombrer les couples de $\mathfrak{P}(E)^2$ qui ne sont ni dans \mathcal{I} ni dans \mathcal{J} , à savoir le complémentaire de la réunion $\mathcal{I} \cup \mathcal{J}$, lequel est de cardinal

$$\operatorname{Card}\left(\mathfrak{P}\left(E\right)^{2}\right)-\operatorname{Card}\left(\mathcal{I}\cup\mathcal{J}\right)=2^{2n}-\left(\operatorname{Card}\mathcal{I}+\operatorname{Card}\mathcal{J}-\operatorname{Card}\left(\mathcal{I}\cap\mathcal{J}\right)\right).$$

Or $\mathcal{I} \cap \mathcal{J}$ est l'ensemble étudié à la question (1b) : il possède 2^n éléments. Finalement, le cardinal cherché vaut

$$2^{2n} - (3^n + 3^n - 2^n) = 4^n - 2 \cdot 3^n + 2^n.$$

(g) Uen fois remarquée l'équivalence $A \cap B = \emptyset \iff A \subset E \setminus B$ (pour toutes parties A et B de E), on raisonne comme à la question (1d) : pour choisir un couple (A, B) tel que $A \subset E \setminus B$, on commence par choisir le cardinal k de B puis la partie $B \subset E$ (ce qui se fait en $\binom{n}{k}$ choix) puis la partie $A \subset E \setminus B$ (ce qui se fait en 2^{n-k} choix), d'où le cardinal recherché :

$$\sum_{k=0}^{n} \binom{n}{k} 2^{n-k} = \sum_{k=0}^{n} \binom{n}{k} 1^{k} 2^{n-k} = (1+2)^{n} = 3^{n}.$$

Le cardinal est le même qu'à la question (1d), on a dû rater un argument combinatoire. En effet, l'équivalence remarquée au début dit exactement que les ensembles $\left\{(A,B)\in\mathfrak{P}\left(E\right)^2\;;\;A\cap B=\emptyset\right\}$ et $\left\{(A,B)\in\mathfrak{P}\left(E\right)^2\;;\;A\subset B\right\}$ sont en bijection via l'application $(A,B)\mapsto (A,E\setminus B)$.

2. Le cours permet d'écrire $X = \{x_1, x_2, ..., x_p\}$ avec $x_1 < x_2 < \cdots < x_p$. Alors connaître une application f strictement croissante de X vers Y revient à connaître son image : en effet, en écrivant cette dernière sous la forme $\{i_1, i_2, ..., i_p\}$ avec $i_1 < i_2 < \cdots < i_p$, la stricte croissance impose $f(x_k) = i_k$ pour tout entier $k \in [1, p]$. Il y a donc autant d'applications strictement croissantes de X vers Y que de parties de Y à |X| éléments, c'est-à-dire $\binom{\operatorname{Card} Y}{\operatorname{Card} X}$.

Sanity check. Soit $f: X \longrightarrow Y$ strictement croissante. Alors f est injective, d'où $\operatorname{Card} X \leq \operatorname{Card} Y$ et $\operatorname{Card} Y \setminus X = 0$.

- 3. Montrons que M possède un neutre. Soit $m \in M$. L'application $m \operatorname{Id} m$ est injective (car m est régulier), donc bijective (par la propriété précédente), donc atteint m, mettons en un $e \in M$, ce qui s'écrit $mem = m^2$, d'où l'on tire (en simplifiant par m d'une part à droite, d'autre part à gauche) me = m = em. On en déduit pour tout $x \in M$ les égalités $\begin{cases} mex = mx \\ xem = xm \end{cases}$, d'où l'on tire (en simplifiant par m) $\begin{cases} ex = x \\ xe = x \end{cases}$, ce qui montre que e est neutre.
- 4. Écrivons $A = \{a_1, a_2, ..., a_p\}$ et $B = \{b_1, b_2, ..., b_q\}$ où $(p, q) := (\operatorname{Card} A, \operatorname{Card} B)$.
 - (a) Puisque $p \le q$, l'application qui pour tout entier $i \in [1, p]$ envoie a_i sur b_i est bien définie de A vers B et est injective car tous les b_i sont distincts.
 - (b) Puisque $p \ge q$, l'application qui pour tout entier $i \in [1, q]$ envoie a_i sur b_i et qui envoie les autres éléments de A sur n'importe quel élément de B (par exemple b_1 , ce qui suppose que B soit non vide) est bien définie et est surjective par construction.

Lorsque B est vide (le cas pathologique demandé), il n'y a pas d'application de A vers B (sauf si A est aussi vide, ce qui est exclu), a fortiori aucune surjection de A sur B.

(c) Soit par l'absurde une injection $A^B \hookrightarrow A$. On doit alors avoir Card $(A^B) \leq \text{Card } A$, ce qui s'écrit $p^q \leq p$, i. e. (puisque $p \neq 0$) $p^{q-1} \leq 1$, ou encore $q-1 \leq 0$, ce qui contredit l'hypothèse $q \geq 2$.

Si B est un singleton, l'ensemble A^B est en bijection avec A (puisqu'il a pour cardinal (Card A) Card B = (Card A), a fortiori s'y injecte.

- 5. Notons n le cardinal de E.
 - (a) Soit par l'absurde une injection $\mathfrak{P}(E) \hookrightarrow E$. On doit alors avoir $\operatorname{Card} \mathfrak{P}(E) \leq \operatorname{Card} E$, i. e. $2^n \leq n$, ce qui est faux (on peut montrer que $2^n \geq n+1$ par récurrence sur n ou bien voir que le graphe de $x \mapsto 2^x$ est au-dessus de sa tangente en 0 qui est le graphe de $x \mapsto x+1$).

(b) Une proposition du cours et une question précédente montrent que \mathfrak{S}_E s'injecte dans $\mathfrak{P}(E)$ ssi Card $\mathfrak{S}_E \leq \operatorname{Card} \mathfrak{P}(E)$, *i. e.* ssi $n! \leq 2^n$. Dressons une petite table pour jauger de la vérité de cette comparaison :

k	0	1	2	3	4	5	6
k!	1	1	2	6	24	120	720
2^k	1	2	4	8	16	32	64

Si, pour tout entier a, on note C_a la comparaison $a! \geq 2^a$, la table précédente incite à montrer C_m pour tout entier $m \geq 4$; allons-y par récurrence. La table montre déjà C_4 . Soit $m \geq 4$ tel que C_m . On a alors $(m+1)! = m! (m+1) \geq 2^m 2$ d'après C_m et car $m \geq 1$, d'où C_{m+1} .

On en déduit C_n si $n \ge 4$; puisque par ailleurs C_1 , C_2 et C_3 sont fausses et C_0 est vraie, on peut conclure que \mathfrak{S}_E s'injecte dans $\mathfrak{P}(E)$ ssi Card $E \in \{1, 2, 3\}$.

(c) Montrons que $\varphi \circ \chi = \mathrm{Id}_{\mathfrak{P}(E)}$. Soit $P \subset E$: montrons que les ensembles P et $\varphi(\chi(E))$ ont mêmes éléments, ce qui conclura à l'égalité $\varphi(\chi(P)) = P$. Soit $e \in E$: on a les équivalences

$$e \in \varphi(\chi(P)) \iff \chi(P)(e) = 1$$
 par définition de $\varphi(\chi(P))$
 $\iff e \in P$ par définition de $\chi(P)$, c. q. f. d..

Montrons que $\chi \circ \varphi = \mathrm{Id}_{\{0,1\}^E}$. Soit $f \in \{0,1\}^E$: montrons que les applications f et $\chi(\varphi(f))$ coïncident en tout élément de E, ce qui montrera qu'elles sont égales. Soit $e \in E$: on a les équivalences

$$\chi\left(\varphi\left(f\right)\right)\left(e\right) = 1 \Longleftrightarrow e \in \varphi\left(f\right) \Longleftrightarrow e \in \left\{x \in E \; ; \; f\left(x\right) = 1\right\} \Longleftrightarrow f\left(e\right) = 1 \\ \chi\left(\varphi\left(f\right)\right)\left(e\right) = 0 \Longleftrightarrow e \notin \varphi\left(f\right) \Longleftrightarrow e \notin \left\{x \in E \; ; \; f\left(x\right) = 1\right\} \Longleftrightarrow f\left(e\right) \neq 1 \end{cases};$$

or la dernière différence équivaut à f(e) = 0 puisque f est à valeurs dans $\{0, 1\}$, ce qui conclut.

Finalement, l'ensemble $\mathfrak{P}(E)$ est en bijection avec $\{0,1\}^E$, donc a pour cardinal Card $(\{0,1\}^E)$ = Card $\{0,1\}^{\operatorname{Card} E} = 2^{\operatorname{Card} E}$, c. q. f. d..