Devoir surveillé 1

La calculatrice est interdite.

Définitions. Donner les définitions des objets ou actions suivants D'APRÈS LE COURS¹:

- 1. une flèche;
- 2. e^{it} où t est un réel;
- 3. les sinus et cosinus d'un angle aigu non orienté;
- 4. les sinus et cosinus d'un angle orienté;
- 5. orienter un plan;
- 6. orienter l'espace;
- 7. l'addition de deux vecteurs;
- 8. la multiplication d'un vecteur par un scalaire;
- 9. le produit scalaire de deux vecteurs;
- 10. le produit vectoriel de deux vecteurs;
- 11. le produit mixte et le déterminant de deux vecteurs dans le plan;
- 12. le produit mixte et le déterminant de trois vecteurs dans l'espace;
- 13. l'équation d'un lieu géométrique;
- 14. la distance entre deux lieux géométriques.

Propriétés. Les questions 1 à 13 suivantes n'exigent pas de démonstration.

- 1. Donner les sinus, cosinus et tangentes des angles de mesures respectives $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ et $\frac{\pi}{2}$.
- 2. Soit k un réel : simplifier $\sin\left(k+\frac{\pi}{2}\right)$, $\sin\left(\pi-k\right)$, $\cos\left(k-\frac{\pi}{2}\right)$, $\cos\left(k+\pi\right)$ et $\tan\left(k+\pi\right)$.
- 3. Caractériser géométriquement la nullité
 - (a) d'un produit scalaire;
 - (b) d'un produit vectoriel;
 - (c) d'un produit mixte de deux vecteurs;
 - (d) d'un déterminant de trois vecteurs.
- 4. Donner les quatre propriétés de l'addition vectorielle (bonus : nom?).
- 5. Lister les quatre propriétés de la multiplication d'un vecteur par un scalaire (bonus : nom?).
- 6. Formuler les trois propriétés de la norme.
- 7. Énoncer les deux comparaisons de Buniakowski-Cauchy-Schwarz avec les cas d'égalité correspondants.
- 8. Exprimer le produit scalaire de deux vecteurs en fonctions de leurs coordonnées (on précisera les propriétés de la base utilisée).
- 9. Le produit scalaire est-il associatif? commutatif? bilinéaire?
- 10. Le produit vectoriel est-il associatif? commutatif? bilinéaire?
- 11. Le déterminant (de deux vecteurs) est-il associatif? commutatif? bilinéaire?
- 12. Soient a, b et c trois vecteurs (deux à deux distincts). Exprimer, pour toute permutation σ de l'ensemble $\{a, b, c\}$, le produit mixte $[\sigma(a), \sigma(b), \sigma(c)]$ en fonction du déterminant Det(a, b, c).
- 13. Donner trois équations (une dans chacun des trois systèmes de coordonnées usuels) d'un cône d'axe celui des cotes dont on note φ_0 l'angle fait par tout vecteur d'origine nulle avec cet axe.

Démonstrations. Énoncer et démontrer les théorèmes suivants :

- 1. la loi des sinus;
- 2. la relation d'Al-Kashi;
- 3. l'équivalence $u \parallel v \iff (u = 0 \text{ ou } \exists \lambda \in \mathbf{R}, \ v = \lambda u) \text{ où } u \text{ et } v \text{ sont deux vecteurs donnés};$

¹c'est-à-dire : pas d'après vos souvenirs d'avant-bac

- 4. les formules d'additions de sinus, cosinus et tangente;
- 5. l'expression de la distance d'un point à un plan donné par une équation;
- 6. l'expression des coordonnées du produit vectoriel de deux vecteurs en fonction des coordonnées de chacun d'entre eux (on précisera les propriétés de la base utilisée);
- 7. l'existence d'une perpendiculaire commune à deux droites dans l'espace;
- 8. le fait que, si A et B sont des points appartenant respectivement à une droite α et à une droite β de sorte que la droite (AB) soit orthogonale à α et β , alors la distance entre les droites α et β vaut AB;

Exercices.

- 1. (démonstrations générales)
 - (a) Démontrer la propriété 8 ci-dessus.
 - (b) Démontrer les formules du cours (données en TDs) exprimant les produits vectoriels de trois vecteurs.
 - (c) Soient A et B deux points du plan. Déterminer le lieu des points M tels que 3AM = 2BM.
 - (d) Soient A et B deux points de l'espace. Déterminer le lieu des points M tels que $\overrightarrow{AM} \cdot \overrightarrow{BM} = 3$.
 - (e) On fixe deux points A et B de l'espace. Montrer que la quantité $AM^2 + 2BM^2$ atteint sa plus petite valeur (lorsque M décrit les points de l'espace) en un unique point que l'on décrira.
- 2. (calculs de mesures)
 - (a) Calculer l'aire du quadrilatère formé par les quatre points -2-i, 1+i, 1-2i et 3.
 - (b) Évaluer le sinus de l'angle fait par les vecteurs $(-\sqrt{2}, \sqrt{6}, -1)$ et $(-\sqrt{2}, -\sqrt{6}, -1)$.
 - (c) Trouver l'aire du tétraèdre délimité par les points (0,0,1), (0,1,2), (-1,3,4) et (-2,-5,3).
- 3. Donner une équation :
 - (a) du lieu des points M tels que 4AM = 7BM où A := (2, -1) et B := (-5, 3);
 - (b) du lieu des points M tels que $\overrightarrow{AM} \cdot \overrightarrow{BM} = 3$ avec A := (2, -1) et B := (-5, 3);
 - (c) de la droite passant par les points (5,7) et (-3,1);
 - (d) de la droite passant par les points (5,7,1) et (-3,1,2) et donner des équations de deux plans dont elle est l'intersection;
 - (e) de la droite de vecteur normal (1,2) et passant par le point (-7,10);
 - (f) de la droite orthogonale au plan d'équation 8x z = 2 et passant par le point (-7, 10, 2);
 - (g) du plan de vecteur normal (0,5,-2) et passant par le point (1,1,1);
 - (h) du plan contenant le point (2,0,4) et dirigé par les vecteurs (1,-1,2) et (7,0,0);
 - (i) du plan contenant les trois points (2,0,4), (-1,1,1) et (1,6,-1).
- 4. (autour des complexes)
 - (a) Soit θ un réel hors de $\pi \mathbf{Z}$. Exprimer ses sinus, cosinus et tangente en fonction de tan $\frac{\theta}{2}$.
 - (b) Soit δ un réel. Exprimer $\cos 2\delta$, $\cos 4\delta$, $\cos 6\delta$ et $\cos 8\delta$ en fonction de $\cos \delta$.
 - (c) Évaluer la quantité $\sin^6 t + \cos^6 t + 3\left(\sin^2 t\right)\cos^2 t$ lorsque t vaut respectivement $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ et $\frac{\pi}{2}$. Formuler alors une conjecture que l'on démontrera.
 - (d) Calculer les tangente, cosinus et sinus de $\frac{\pi}{8}$ et en déduire $\left(\sqrt{2+\sqrt{2}}+i\sqrt{2-\sqrt{2}}\right)^8$.
 - (e) Caractériser tous les réels dont le cosinus du triple vaut le sinus du quintuple.
 - (f) Déterminer les réels σ tels que $(1+\sqrt{2})\cos\sigma + \sin\sigma = 1$.
 - (g) Trouver tous les réels ζ tels que $\cos \zeta + 2\cos 2\zeta + \cos 3\zeta = 0$.
 - (h) Montrer que tan arg $(1 + \tau i) = \tau$ pour tout réel τ . En déduire la somme de trois nombres réels chacun tombant dans l'intervalle $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ et dont les tangentes sont respectivement 2, 5 et 8.
 - (i) Déterminer sous forme rectangulaire les racines carrées de 119+120 (on donne au besoin l'encadrement $27000<165^2<170^2<29000$) ainsi que ses racines quatrièmes³.
- 5. (bonus uniquement si tout est fini) On appelle **maille** tout point du plan à coordonnées entières. On considère un polygone P dont les sommets sont des mailles. On note i et b le nombre de mailles qui sont respectivement intérieures à P et sur le bord de P. Montrer que l'aire de P vaut $i + \frac{b}{2} 1$.

 $^{^2\,}i.$ e. non multiple entier de π

³Une racine quatrième d'un complexe z est un complexe r tel que $r^4 = z$.