Devoir maison 7 optionnel

(sur les tapis roulants)

Solution proposée. Remarquons tout de suite que, si n=1, alors γ et δ sont nuls, donc toutes leurs composées également. Cela explique la condition $n \geq 2$ imposée en début de problème.

- 1. Vue comme l'application $\begin{cases} \mathbf{R}^2 & \longrightarrow \mathbf{R}^2 \\ (a,b) & \longmapsto (b,0) \end{cases}$, l'application "partie imaginaire" est un "tapis roulant" vers la gauche. (De même, l'application $i \operatorname{Re} : (a,b) \mapsto (0,a)$ est un "tapis roulant" vers la droite.) Par ailleurs, la partie imaginaire d'un réel étant nulle, on a toujours $\operatorname{Im}(\operatorname{Im} z) = 0$ pour tout complexe z, ce qui montre que le carré cherché est l'endomorphisme nul.
- 2. Soit $(a_1, a_2, ..., a_n) \in \mathbf{K}^n$. On a

$$\gamma^{n}(a_{1}, a_{2}, ..., a_{n}) = \gamma^{n-1}(a_{2}, a_{3}, ..., a_{n}, 0) = \gamma^{n-2}(a_{3}, a_{2}, ..., a_{n}, 0, 0) = \cdots = (0, 0, ..., 0)$$
 et $\delta^{n}(a_{1}, a_{2}, ..., a_{n}) = \delta^{n-1}(0, a_{1}, a_{2}, ..., a_{n-1}) = \gamma^{n-2}(0, 0, a_{1}, a_{2}, ..., a_{n-2}) = \cdots = (0, 0, ..., 0)$

où les deux "···" remplacent une preuve par récurrence des énoncés

$$\forall k \in \{0, 1, ..., n\}, \begin{cases} \gamma^k (a_1, a_2, ..., a_n) = (a_{k+1}, a_{k+2}, ..., a_n, \underbrace{0, 0, ..., 0}_{k \text{ symboles } 0}) \\ \delta^k (a_1, a_2, ..., a_n) = (\underbrace{0, 0, ..., 0}_{k \text{ symboles } 0}, a_1, a_2, ..., a_{n-k},) \end{cases}$$

3. Soit $(a_1, a_2, ..., a_n) \in \mathbf{K}^n$. On a

ce qui montre que $\delta \gamma$ (resp. $\gamma \delta$) agit en annulant la première (resp. dernière) coordonnée. On en déduit que $\delta \gamma$ et $\gamma \delta$ valent chacun son carré, donc sont des projecteurs. Ils diffèrent car ils envoient $(a_1, a_2, ..., a_n)$ sur des images distinctes si $a_1 \neq 0$ ou si $a_n \neq 0$ (ce qui est permis puisque $n \geq 2$).

4. Soit $(a_1, a_2, ..., a_n) \in \mathbf{K}^n$. La question précédente permet de décrire

$$[\gamma\delta\gamma](a_1, a_2, ..., a_n) = \gamma(\delta\gamma(a_1, a_2, ..., a_n)) = \gamma(0, a_2, a_3, ..., a_n) = (a_2, a_3, ..., a_n, 0) = \gamma(a_1, a_2, ..., a_n) \text{ et}$$

$$[\delta\gamma\delta](a_1, a_2, ..., a_n) = \delta(\gamma\delta(a_1, a_2, ..., a_n)) = \delta(a_1, a_2, ..., a_{n-1}, 0) = (0, a_1, a_2, ..., a_{n-1}) = \delta(a_1, a_2, ..., a_n),$$

ce qui montre les égalités $\gamma \delta \gamma = \gamma$ et $\delta \gamma \delta = \gamma$.

5. Soit (a_p) une suite. On a

$$[\Delta\Gamma] (a_1, a_2, a_3, ...) = \Delta (\Gamma (a_1, a_2, a_3, ...)) = \Delta (a_2, a_3, ...) = (0, a_2, a_3, ...)$$
 et
$$[\Gamma\Delta] (a_1, a_2, a_3, ...) = \Gamma (\Delta (a_1, a_2, a_3, ...)) = \Gamma (0, a_1, a_2, ...) = (a_1, a_2, ...) ,$$

ce qui montrer $que\ \Gamma\Delta = \mathrm{Id} \neq \Delta\Gamma$. La composée $\Delta\Gamma$ agit (comme $\delta\gamma$) en annulant la première coordonnée, donc est un projecteur.

- 6. Vu que $\Gamma \Delta = \text{Id}$, il vient immédiatement $\Gamma \Delta \Gamma = \Gamma$ et $\Delta \Gamma \Delta = \Delta$.
- 7. Soit $(a_1, a_2, ..., a_n) \in \mathbf{K}^n$. On a les équivalences

$$(a_1, a_2, ..., a_n) \in \text{Ker } \gamma \iff \gamma (a_1, a_2, ..., a_n) = (0, 0, ..., 0)$$
 $\iff (a_2, a_3, ..., a_n, 0) = (0, 0, ..., 0)$
 $\iff \forall i \in \{2, 3, ..., n\}, \ a_i = 0$
 $\iff (a_1, a_2, ..., a_n) = (a_1, 0, 0, ..., 0)$
 $\iff (a_1, a_2, ..., a_n) \in \mathbf{K} (1, 0, 0, ..., 0),$

ce qui montre que le noyau de γ est la droite vectorielle dirigée par le vecteur (1,0,0,...,0). On a de même les équivalences

$$(a_1, a_2, ..., a_n) \in \operatorname{Ker} \delta \iff (0, a_1, a_2, ..., a_{n-1}) = (0, 0, ..., 0)$$

 $\iff (a_1, a_2, ..., a_n) = (0, 0, ..., 0, a_n)$
 $\iff (a_1, a_2, ..., a_n) \in \mathbf{K} (0, 0, ..., 0, 1),$

ce qui montre que le noyau de δ est la droite vectorielle dirigée par le vecteur (0,0,...,0,1). Soit (a_n) une suite. On a les équivalences

$$(a_p) \in \operatorname{Ker} \Gamma \iff \Gamma (a_0, a_1, a_2, ...) = (0, 0, ...)$$

$$\iff (a_1, a_2, a_3, ...) = (0, 0, ...)$$

$$\iff \forall i \in \mathbf{N}^*, \ a_i = 0$$

$$\iff (a_p) = (a_0, 0, 0, ...)$$

$$\iff (a_p) \in \mathbf{K} (1, 0, 0, ...),$$

ce qui montre le noyau de Γ est la droite vectorielle dirigée par le vecteur (1,0,0,..). On a de même les équivalences

$$(a_p) \in \operatorname{Ker} \Delta \iff (0, a_0, a_1, a_2, ...) = (0, 0, ...)$$

 $\iff (0 = 0 \text{ et } \forall i \in \mathbf{N}, \ a_i = 0)$
 $\iff (a_p) = 0,$

ce qui montre que le noyau de Δ est nul.

Ce qui précède montre que, parmi les endomorphismes γ , δ , Γ et Δ , seul Δ est injectif.

Par ailleurs, γ ne peut atteindre aucun vecteur dont la dernière coordonnée est non nulle (par exemple (0,0,...,0,1)), δ et Δ ne peuvent atteindre aucun vecteur dont la première coordonnée est non nulle (par exemple (1,0,0,...,0) et (1,0,0,...)) et tout suite (a_p) est l'image par Γ de la suite (a_{p+1}) , ce qui montre que, parmi les endomorphismes γ , δ , Γ et Δ , seul Γ est surjectif.

En conséquence, aucun des endomorphismes γ , δ , Γ et Δ n'est bijectif.

8.

- (a) L'énoncé proposé est faux en remplaçant (F, G) par (Γ, Δ) .
- (b) L'énoncé proposé est faux en remplaçant F par Γ .
- (c) L'énoncé proposé est faux en remplaçant F par Δ .
- (d) Supposons toujours $n \geq 2$. Alors l'énoncé proposé est faux en remplaçant f par γ et g par γ^{n-1} . Supposons à présent n = 1. Alors $L(\mathbf{K}^n) = L(\mathbf{K}) = \{\lambda \operatorname{Id} ; \lambda \in \mathbf{K}\}$; puisque l'on pour tous scalaires s et t l'égalité $(s\operatorname{Id})(t\operatorname{Id}) = (st)\operatorname{Id}$ et l'équivalence $s\operatorname{Id} = 0 \iff s = 0$, l'énoncé proposé devient $\forall (\lambda, \mu) \in \mathbf{K}^2$, $\lambda \mu = 0 \implies (\lambda = 0 \text{ ou } \mu = 0)$, ce qui est vrai.

Remarque. Si l'on remplace, dans les question 8a, 8b et 8c, l'espace $\mathbf{K}^{\mathbf{N}}$ par \mathbf{K}^{n} , alors les énoncés deviennent vrai. Ce sont des propriétés caractéristiques de la dimension finie.