Devoir maison 5

(à rendre pour le lundi 11 février 2013)

Exercice 1. On se place dans le plan \mathbb{R}^2 . On se donne un réel $\lambda > 0$ et un réel d. On note :

- 1. \mathcal{P} la partie $\{(u,v) \in \mathbf{R}^2 ; u^2 = \lambda v\};$
- 2. φ le point $(0, \frac{\lambda}{4})$;
- 3. γ la droite "verticale" d'abscisse d;
- 4. R l'élément de $\mathcal{P} \cap \gamma$;
- 5. \mathcal{T} la tangente à \mathcal{P} en R;
- 6. I l'élément de l'intersection de γ avec la parallèle à \mathcal{T} passant par φ .

Questions.

- 1. Représenter les six objets précédemment définis sur un même dessin.
- 2. Donner une équation de \mathcal{T} .
- 3. Trouver les coordonnées de I.
- 4. Montrer que $RI = R\varphi$.
- 5. En déduire que la normale à \mathcal{P} en R est la bissectrice de l'angle formé par les droites (φR) et γ . Interpréter.

Exercice 2. On considère dans le plan \mathbb{R}^2 une parabole (notée \mathcal{P}) dont l'axe focal est celui des ordonnées. On note F le foyer de \mathcal{P} . On fixe un réel λ et on appelle Δ la droite de pente λ qui passe par F. On note P et Q les points d'intersection de Δ avec \mathcal{P} (on impose $x_P < 0 < x_Q$).

- 1. Donner, dans le repère orthonormé de votre choix (que vous préciserez), une équation de Δ puis les coordonnées de P et Q.
- 2. Calculer FP et FQ. En déduire que $\frac{1}{FP} + \frac{1}{FQ}$ ne dépend pas de λ .
- $3.\ Montrer\ que\ les\ tangentes\ en\ P\ et\ Q\ sont\ orthogonales.$