Devoir maison 3

Solution proposée.

Lemme préliminaire. (3pts)

Soit t un réel. La fonction tangente a pour image \mathbf{R} , plus précisément la restriction de tan à $\left]-\frac{\pi}{2}, \frac{\pi}{2}\right[$ est d'image \mathbf{R} ; on peut donc écrire t comme la tangente d'un angle θ tel que $|\theta| < \frac{\pi}{2}$. On en déduit

$$\frac{1+ti}{t+i} = \frac{1+i\tan\theta}{i(1-\tan\theta)} = \frac{1}{i}\frac{\cos\theta+i\sin\theta}{\cos\theta-i\sin\theta} = -i\frac{e^{i\theta}}{e^{-i\theta}} = e^{i(2\theta-\frac{\pi}{2})}.$$

Lorsque t décrit \mathbf{R} , l'angle θ décrit $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, donc l'argument $2\theta - \frac{\pi}{2}$ décrit $\left] -\frac{3\pi}{2}, \frac{\pi}{2} \right[$, donc $\frac{1+ti}{t+i} = e^{i\left(2\theta - \frac{\pi}{2}\right)}$ décrit tout \mathbf{U} à l'exception de $e^{i\frac{\pi}{2}} = i$, c. q. f. d..

La fonction h. (13pts)

- 1. (1pt) Soit $z \in \mathbb{C}$. Le complexe h(z) est bien défini si et seulement si le dénominateur z i est non nul, ce qui montre que la fonction h est définie sur $\mathbb{C} \setminus \{i\}$ et y prend des valeurs complexes. Puisque h n'est pas définie en i, ce n'est pas une application de \mathbb{C} vers \mathbb{C} .
- (3pt) La relation h (a) = b n'ayant pas de sens pour a = i, on supposera a ≠ i par la suite. La relation h (a) = b s'écrit alors b = 1/(a-i), i. e. (si b ≠ 0) a i = 1/b, i. e. a = i + 1/b. On déduit que l'image de h vaut C \{0} (donc h n'est pas surjective sur tout C) et que h est injective de réciproque i + 1/Id.
- 3. (1pt) Soit $a \in \mathbb{C} \setminus \{i\}$. On a les équivalences $h(a) = a \iff \frac{1}{a-i} = a \iff 1 = a^2 ia \iff a^2 ia 1 = 0$. Le discriminant du trinôme $X^2 iX 1$ vaut $(i)^2 + 4 = 3$, donc l'égalité précédente en a équivaut à $a = \frac{i \pm \sqrt{3}}{2}$, i. e. à $a \in \{e^{i\frac{\pi}{6}}, e^{5i\frac{\pi}{6}}\}$.
- 4. (2pts) Soit θ un réel. On a

$$h\left(i+e^{i\theta}\right) = \frac{1}{(i+e^{i\theta})-i} = \frac{1}{e^{i\theta}} = e^{-i\theta}.$$

Ainsi, lorsque θ décrit \mathbf{R} , l'argument $-\theta$ décrit lui aussi tout \mathbf{R} , donc $h\left(i+e^{i\theta}\right)$ décrit le cercle de centre 0 et de rayon 1. L'image cherchée $h\left(i+\mathbf{U}\right)$ est donc le cercle unité \mathbf{U} .

5. (2pts) Soit t un réel non nul. On a

$$h(t+i) = \frac{1}{(t+i)-i} = \frac{1}{t}.$$

Lorsque t parcourt \mathbf{R}^* , l'image $h(t+i) = \frac{1}{t}$ parcourt \mathbf{R}^* . L'image cherchée $h(\mathbf{R}^* + i)$ est donc la droite épointée \mathbf{R}^* .

6. (2pts) Soit $u \in \mathbf{U} \setminus \{i\}$. Le lemme préliminaire nous dit que u s'écrit $\frac{1+ti}{t+i}$ pour un réel t, d'où

$$h(u) = \frac{1}{\frac{1+ti}{t+1} - i} = \frac{t+i}{(1+ti) - i(t+i)} = \frac{t+i}{2} = \frac{t}{2} + \frac{i}{2}.$$

Lorsque u décrit tout $\mathbf{U}\setminus\{i\}$, le réel t décrit tout \mathbf{R} , donc l'image $h(u)=\frac{t}{2}+\frac{i}{2}$ décrit toute la droite passant par $\frac{i}{2}$ et dirigée par le vecteur $\frac{1}{2}$. L'image cherchée $h(\mathbf{U}\setminus\{i\})$ est donc $\mathbf{R}+\frac{i}{2}$.

7. (2pts) [une jolie figure] (observer que les deux points fixes sont à l'intersection du cercle $\mathbf{U}+i$ et de son image \mathbf{U} , ainsi qu'à l'intersection du "cercle" $\mathbf{C}\setminus\{i\}$ et son image $\mathbf{R}+\frac{i}{2}$)

La fonction H. (13pts)

1. (1pt) Soit $z \in \mathbb{C}$. Le complexe H(z) est bien défini si et seulement si le dénominateur z - i est non nul, ce qui montre que la fonction H est définie sur $\mathbb{C} \setminus \{i\}$ et y prend des valeurs complexes. Puisque H n'est pas définie en i, ce n'est pas une application de \mathbb{C} vers \mathbb{C} .

1

- 2. (3pt) La relation H(a) = b n'ayant pas de sens pour a = i, on supposera $a \neq i$ par la suite. La relation h(a) = b s'écrit alors $b = \frac{5+2a}{a-i} = 2 + \frac{5+2i}{a-i}$, i. e. $b-2 = \frac{5+2i}{a-i}$, i. e. (si $b \neq 2$) $a-i = \frac{5+2i}{b-2}$, i. e. $a = \frac{5+2i}{b-2} + i = \frac{5+ib}{b-2}$. On déduit que l'image de H vaut $\mathbb{C} \setminus \{2\}$ (donc H n'est pas surjective sur tout \mathbb{C}) et que H est injective de réciproque $\frac{5+i1d}{1d-2}$.
- 3. (1pt) Soit $a \in \mathbb{C} \setminus \{i\}$. On a les équivalences $H(a) = a \iff \frac{5+2a}{a-i} = a \iff 5+2a = a^2-ia \iff a^2-(2+i)a-5=0$. Le discriminant du trinôme $X^2-(2+i)X-5$ vaut $(2+i)^2+4\cdot 5=23+4i$, donc l'égalité précédente en a équivaut à $a=\frac{2+i\pm\sqrt{23+4i}}{2}$.
- 4. (2pts) Soit θ un réel. On a

$$H\left(i + e^{i\theta}\right) = \frac{5 + 2\left(i + e^{i\theta}\right)}{(i + e^{i\theta}) - i} = \frac{5 + 2i + 2e^{i\theta}}{e^{i\theta}} \stackrel{\alpha := \arg(5 + 2\iota)}{=} 2 + \frac{\sqrt{5^2 + 2^2}e^{i\alpha}}{e^{i\theta}} = 2 + \sqrt{29}e^{i(\alpha - \theta)}.$$

Ainsi, lorsque θ décrit \mathbf{R} , l'argument $\alpha - \theta$ décrit lui aussi tout \mathbf{R} , donc $H\left(i + e^{i\theta}\right)$ décrit le cercle $\sqrt{29}\mathbf{U} + 2$ de centre 2 et de rayon $\sqrt{29}$.

5. (2pts) Soit t un réel non nul. On a

$$H(t+i) = \frac{5+2(t+i)}{(t+i)-i} = \frac{5+2t+2i}{t} = 2 + \frac{5+2i}{t}.$$

Lorsque t parcourt \mathbf{R}^* , l'image $2 + \frac{5+2i}{t}$ parcourt $2 + \mathbf{R}^*$ (5+2i), qui est la droite passant par 2 et dirigée par le vecteur 5+2i dont on a "coupé" le point 2. L'image cherchée $H\left(\mathbf{R}^*+i\right)$ est donc la droite épointée $2 + \mathbf{R}^*$ (5+2i).

6. (2pts) Soit $u \in \mathbf{U} \setminus \{i\}$. Le lemme préliminaire nous dit que u s'écrit $\frac{1+ti}{t+i}$ pour un réel t, d'où

$$H\left(u\right) = \frac{5 + 2\frac{1+ti}{t+i}}{\frac{1+ti}{t+i} - i} = \frac{5\left(t+i\right) + 2\left(1+it\right)}{\left(1+ti\right) - i\left(t+i\right)} = \frac{\left(2+5i\right) + t\left(5+2i\right)}{2} = \left(1 + \frac{5i}{2}\right) + t\left(\frac{5}{2} + i\right).$$

Lorsque u décrit tout $\mathbf{U}\setminus\{i\}$, le réel t décrit tout \mathbf{R} , donc l'image $\left(1+\frac{5i}{2}\right)+t\left(\frac{5}{2}+i\right)$ décrit toute la droite passant par $1+\frac{5i}{2}$ et dirigée par le vecteur $\frac{5}{2}+i$. L'image cherchée $H\left(\mathbf{U}\setminus\{i\}\right)$ est donc la droite $\mathbf{R}\left(5+2i\right)+1+\frac{5i}{2}$.

7. (2pts) [une jolie figure] (observer que les deux points fixes sont à l'intersection du cercle $\mathbf{U}+i$ et de son image $\sqrt{29}\mathbf{U}+2$, ainsi qu'à l'intersection du "cercle" $\mathbf{C}\setminus\{i\}$ et son image $\mathbf{R}(5+2i)+1+\frac{5i}{2}$)

Les matrices. (15pts)

1. **(1pt)** Soit $F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ une matrice. On a par définition

$$F * \widetilde{F} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} * \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} ad - bc & a(-b) + ba \\ cd + d(-c) & c(-b) + da \end{pmatrix} = |F| \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$\widetilde{F} * F = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} * \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} da + (-b)c & db + (-b)d \\ (-c)a + ac & (-c)b + ad \end{pmatrix} = |F| \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

2. (2pts) Soient $F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ et $\Phi = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ deux matrices. Par définition, on a

$$|F * \Phi| = \begin{vmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{vmatrix}$$

$$= (a\alpha + b\gamma)(c\beta + d\delta) - (a\beta + b\delta)(c\alpha + d\gamma)$$

$$= \underline{ac\alpha\beta} + ad\alpha\delta + bc\beta\gamma + \underline{bd\gamma\delta} - \underline{ac\alpha\beta} - ad\beta\gamma - bc\alpha\delta - \underline{bd\gamma\delta}$$

$$= \underline{ad\alpha\delta} + bc\beta\gamma - \underline{ad\beta\gamma} - bc\alpha\delta$$

$$= (ad - bc)(\alpha\delta - \beta\gamma)$$

$$= |F||\Phi|.$$

En échangeant les rôles de F et Φ et en utilisant la commutativité du produit dans \mathbb{C} , on en déduit $|\Phi * F| = |\Phi| |F| = |F| |\Phi| = |F * \Phi|$.

3. (2pts) Soient
$$F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
, $\Phi = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$ et $\mathcal{F} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$ trois matrices. On a par définition
$$F * (\Phi * \mathcal{F}) = \begin{pmatrix} a & b \\ c & d \end{pmatrix} * \begin{pmatrix} \alpha A + \beta C & \alpha B + \beta D \\ \gamma A + \delta C & \gamma B + \delta D \end{pmatrix}$$

$$= \begin{pmatrix} a(\alpha A + \beta C) + b(\gamma A + \delta C) & a(\alpha B + \beta D) + b(\gamma B + \delta D) \\ c(\alpha A + \beta C) + d(\gamma A + \delta C) & c(\alpha B + \beta D) + d(\gamma B + \delta D) \end{pmatrix}$$

$$= \begin{pmatrix} a\alpha A + a\beta C + b\gamma A + b\delta C & a\alpha B + a\beta D + b\gamma B + b\delta D \\ c\alpha A + c\beta C + d\gamma A + d\delta C & c\alpha B + c\beta D + d\gamma B + d\delta D \end{pmatrix} \text{ et}$$

$$(F * \Phi) * \mathcal{F} = \begin{pmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{pmatrix} * \begin{pmatrix} A & B \\ C & D \end{pmatrix}$$

$$= \begin{pmatrix} (a\alpha + b\gamma) A + (a\beta + b\delta) C & (a\alpha + b\gamma) B + (a\beta + b\delta) D \\ (c\alpha + d\gamma) A + (c\beta + d\delta) C & (c\alpha + d\gamma) B + (c\beta + d\delta) D \end{pmatrix}$$

$$= \begin{pmatrix} a\alpha A + b\gamma A + a\beta C + b\delta C & a\alpha B + b\gamma B + a\beta D + b\delta D \\ c\alpha A + d\gamma A + c\beta C + d\delta C & c\alpha B + d\gamma B + c\beta D + d\delta D \end{pmatrix},$$

d'où l'égalité $F * (\Phi * \mathcal{F}) = (F * \Phi) * \mathcal{F}$ en réordonnant les deuxième et troisième termes (soulignés) de chaque coordonnée.

Quelques essais suggèrent que la matrice $I:=\begin{pmatrix}1&0\\0&1\end{pmatrix}$ est neutre pour *, comme on le vérifie aisément :

$$\begin{split} F*I &= \begin{pmatrix} a & b \\ c & d \end{pmatrix} * \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} a1+b0 & a0+b1 \\ c1+d0 & c0+d1 \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = F, \\ I*F &= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1a+0c & 1b+0d \\ 0a+1c & 0b+1d \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = F. \end{split}$$

4. **(2pts)** Il y a cinq matrices à considérer, appelons-les $\searrow := \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$, $\searrow := \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, $\nearrow := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $\swarrow := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ et $o := \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. On obtient après calculs la table de composition suivante :

* 🖰	o	\	/	7	/
0	0	0	0	0	0
	0	_	0	7	0
	0	0	>	0	/
7	0	0	7	0	_
	0	/	0	>	0

On constate que le tableau n'est pas symétrique par rapport à sa diagonale principale (par exemple $\nearrow * \searrow = o \neq \nearrow = \searrow * \nearrow$), ce qui traduit la non-commutativité de *, d'où (a). Le tableau contient par ailleurs d'autres o que sur les premières ligne et colonne (par exemple $\searrow * \searrow = 0$), d'où (b). On voit enfin que les matrices \searrow et \searrow sont chacune égale à leur carré, d'où (c).

5. (3pts) Soit z un complexe. Dès lors que les quotients suivants font sens, on a

$$[h_{\Phi} \circ h_{F}](z) = h_{\Phi} (h_{F}(z))$$

$$= h_{\Phi} \left(\frac{az+b}{cz+d}\right)$$

$$= \frac{\alpha \frac{az+b}{cz+d} + \beta}{\gamma \frac{az+b}{cz+d} + \delta}$$

$$= \frac{\alpha (az+b) + \beta (cz+d)}{\gamma (az+b) + \delta (cz+d)}$$

$$= \frac{(\alpha a + \beta c) z + (\alpha b + \beta d)}{(\gamma a + \delta c) z + (\gamma b + \delta d)}$$

$$= h_{\Phi*F}(z),$$

$$(z)$$

d'où l'égalité voulue.

Soit
$$\lambda \in \mathbf{C}$$
: on a $h_{\lambda I} = h_{\begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix}} = \frac{\lambda \operatorname{Id}_{\mathbf{C}} + 0}{0 \operatorname{Id}_{\mathbf{C}} + \lambda} = \operatorname{Id}_{\mathbf{C}}$. Soit F une matrice. Lorsque $|F| \neq 0$, la

question 1 permet ainsi d'écrire $h_{\widetilde{F}} \circ h_F = h_{\widetilde{F}*F} = h_{|F|I} = \text{Id}$ et de même $h_F \circ h_{\widetilde{F}} = \text{Id}$, ce qui montre que h_F est inversible d'inverse $h_{\widetilde{F}}$.

6. **(2pts)** On a par exemple
$$h = h$$
 $\begin{pmatrix} 2 & 5 \\ 1 & -i \end{pmatrix} = h$ $\begin{pmatrix} 4 & 10 \\ 2 & -2i \end{pmatrix}$. En posant $F := \begin{pmatrix} 2 & 5 \\ 1 & -i \end{pmatrix}$, on obtient $\widetilde{F} = \begin{pmatrix} -i & -5 \\ -1 & 2 \end{pmatrix}$, d'où

$$h^{-1} = h_F^{-1} = h_{-\widetilde{F}} = h_{\left(\begin{array}{cc} i & 5\\ 1 & -2 \end{array}\right)} = \frac{i\operatorname{Id} + 5}{\operatorname{Id} - 2}$$

(sanity check : c'est bien ce qu'on avait trouvé plus haut).

7. (3pts) (On n'écrira plus les * pour alléger). Le calcul donne PQ = I = QP et $P\Delta Q = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$, d'où l'on déduit

$$\left[\frac{\operatorname{Id}+1}{1-\operatorname{Id}}\right]^{\circ 18} = \begin{bmatrix} h & & \\ 1 & 1 \\ -1 & 1 \end{bmatrix}^{\circ 18} = \left[h_{P\Delta Q}\right]^{\circ 18} \stackrel{\text{question 5}}{=} h_{(P\Delta Q)^{18}}.$$

Or les puissances de $P\Delta Q$ sont aisées à intuiter : en regardant le carré, on trouve

$$(P\Delta Q)^2 = (P\Delta Q)(P\Delta Q) = P\Delta\underbrace{(QP)}_{=I}\Delta Q = P\Delta\Delta Q = P\Delta^2 Q$$

et l'on montrerait, grâce à la simplification QP = I, par récurrence que $(P\Delta Q)^n = P\Delta^n Q$ pour tout entier $n \geq 0$. On en déduit

$$\begin{split} (P\Delta Q)^{18} &= P\Delta^{18}Q \\ &= P\left(\begin{array}{ccc} \sqrt{2}e^{-i\frac{\pi}{4}} & 0 & \\ 0 & \sqrt{2}e^{i\frac{\pi}{4}} \end{array}\right)^{18}Q \\ &= P\left(\begin{array}{ccc} \left(\sqrt{2}e^{-i\frac{\pi}{4}}\right)^{18} & 0 & \\ 0 & \left(\sqrt{2}e^{i\frac{\pi}{4}}\right)^{18} \end{array}\right)Q \\ &= P\left(\begin{array}{ccc} 2^{9}e^{-i\frac{9\pi}{2}} & 0 & \\ 0 & 2^{9}e^{i\frac{9\pi}{2}} \end{array}\right)Q \\ &= \left(\begin{array}{ccc} i & -i \\ 1 & 1 \end{array}\right) \left(\begin{array}{ccc} 2^{9}e^{-i\frac{\pi}{2}} & 0 & \\ 0 & 2^{9}e^{i\frac{\pi}{2}} \end{array}\right)\frac{1}{2}\left(\begin{array}{ccc} -i & 1 \\ i & 1 \end{array}\right) \\ &= 2^{8}i\left(\begin{array}{ccc} i & -i \\ 1 & 1 \end{array}\right) \left(\begin{array}{ccc} -1 & 0 \\ 0 & 1 \end{array}\right) \left(\begin{array}{ccc} -i & 1 \\ i & 1 \end{array}\right) \\ &= 2^{8}i\left(\begin{array}{ccc} -i & -i \\ -1 & 1 \end{array}\right) \left(\begin{array}{ccc} -i & 1 \\ i & 1 \end{array}\right) \\ &= 2^{8}i\left(\begin{array}{ccc} 0 & -2i \\ 2i & 0 \end{array}\right). \end{split}$$

Finalement, on trouve
$$h_{(P\Delta Q)^{18}} = h_{(2^8i)(2i)} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = h_{\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}} = \frac{0 \operatorname{Id} - 1}{\operatorname{Id} + 0} = \frac{-1}{\operatorname{Id}}, \text{ d'où}$$

$$\left[\frac{\operatorname{Id} + 1}{1 - \operatorname{Id}} \right]^{\circ 18} (42) = -\frac{1}{42}.$$