Devoir maison 3 bis

(à rendre pour le lundi 3 décembre)

Solution proposée.

- 1. Soit $a \in \mathbb{C}$. Le complexe $\frac{3a+1}{a-2}$ fait sens ssi le dénominateur a-2 est non nul, i. e. ssi $a \neq 2$. L'ensemble de définition est donc $\mathbb{C} \setminus \{2\}$. Puisque h n'est pas définie sur tout \mathbb{C} , ce n'est pas une application.
- 2. Soit $a \in \mathbb{C} \setminus \{2\}$. On a les équivalences

$$a$$
 fixe par $h \iff h(a) = a$

$$\iff \frac{3a+1}{a-2} = a$$

$$\iff 3a+1 = a^2 - 2a$$

$$\iff a^2 - 5a - 1 = 0$$

$$\iff a \text{ racine du trinôme } X^2 - 5X - 1.$$

Le discriminant du trinôme ci-dessus valant $(-5)^2 - 4(-1) = 29$, ses racines sont $\frac{5\pm\sqrt{29}}{2}$, d'où les points fixes recherchés.

3. Soit $a \in \mathbb{C} \setminus \{2\}$. On peut écrire $h(a) = \frac{3a+1}{a-2} = \frac{3(a-2)+7}{a-2} = 3 + \frac{7}{a-2}$, ce qui permet de factoriser

$$h = (\operatorname{Id} + 3) \circ 7 \operatorname{Id} \circ \frac{1}{\operatorname{Id}} \circ (\operatorname{Id} - 2).$$

On part donc du graphe de $\frac{1}{\text{Id}}$, on le translate horizontalement de -(-2) = 2, on lui applique une affinité d'axe **R** et de rapport 7 puis on le translate verticalement de 3.

- 4. La factorisation ci-dessus montre que $h_{|\mathbf{R}}$ est la composée de trois fonctions croissantes par une fonction croissante (sur chacun des intervalles où elles sont définies), donc décroît sur $]-\infty, -2[$ et décroît sur $]-2, \infty[$.
- 5. Soient a et b deux complexes avec $a \neq 2$. On a les équivalences

$$h(a) = b \iff \frac{3a+1}{a-2} = b$$

$$\iff 3a+1 = ab-2b$$

$$\iff 1+2b = a(b-3)$$

$$\iff 1+2b = a(b-3) \text{ et } (b \neq 3 \text{ ou } b = 3)$$

$$\iff \begin{cases} 1+2b = a(b-3) & \text{ou } \begin{cases} 1+2b = a(b-3) \\ b \neq 3 \end{cases} & \text{ou } \begin{cases} 1+2b = a(b-3) \\ b = 3 \end{cases}$$

$$\iff \begin{cases} a = \frac{1+2b}{b-3} \\ b \neq 3 \end{cases} & \text{ou } \begin{cases} 5 = 0 \\ b = 3 \end{cases}$$

$$\iff \begin{cases} a = \frac{1+2b}{b-3} \\ b \neq 3 \end{cases} .$$

Puisque 3 ne peut être atteint, la fonction n'est pas surjective. L'unicité de la solution à l'équation h(a) = b d'inconnue a montre que h est injective et la résolution de cette équation que h^{-1} vaut $\frac{1+2\operatorname{Id}}{\operatorname{Id}-3}$.

6. Soit x un éléments du cercle de centre 2 et rayon 1. Il y a donc un élément u du cercle unité tel que x = 2 + 1u, d'où $h(x) = 3 + \frac{7}{(2+u)-2} = 3 + 7\overline{u}$; lorsque x décrit tout le cercle de centre 2 et rayon 1, le complexe u décrit tout le cercle unité, donc l'image $h(x) = 3 + 7\overline{u}$ décrit tout le cercle de centre 3 et rayon 7. Ainsi, si l'on note \mathbf{U} le cercle unité, on vient de montrer que

$$h\left(2+\mathbf{U}\right)=3+7\mathbf{U}.$$