Formulaire de trigonométrie

Lignes trigonométriques circulaires usuelles

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin \theta$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	$\pm \infty$

(retenir
$$\frac{\sqrt{n}}{2}$$
 pour $n = 0, 1, 2, 3, 4$)

Définitions et propriétés fondamentales, formules d'addition

$\cos a := \frac{e^{ia} + e^{-ia}}{2}$	$e^a e^b = e^{a+b}$	$\cos(a \pm b) = \cos a \cos b \mp \sin a \sin b$
$\sin a := \frac{e^{ia} - e^{-ia}}{2i}$	$\cos^2 a + \sin^2 a = 1$	$\sin(a \pm b) = \sin a \cos b \pm \cos a \sin b$
$\tan a := \frac{\sin a}{\cos a}$	$1 + \tan^2 a = \frac{1}{\cos^2 a}$	$\tan\left(a \pm b\right) = \frac{\tan a \pm \tan b}{1 \mp \tan a \tan b}$

$\lambda \cos \theta + \mu \sin \theta$	
$= r \cos(\theta - \varphi)$	
où $re^{i\varphi} := \lambda + \mu i$	

Formules de duplication et de linéarisation des carrés (triples et cubes en option)

$$\cos 2a = \begin{cases} \cos^2 a - \sin^2 a & \cos^2 a = \frac{1 + \cos 2a}{2} \\ 2\cos^2 a - 1 & \sin^2 a = \frac{1 - \cos 2a}{2} \\ \sin 2a = 2\sin a \cos a & \tan 2a = \frac{2\tan a}{1 - \tan^2 a} \end{cases}$$

$$\cos 3a = 4\cos^3 a - 3\cos a$$

$$\sin 3a = 3\sin a - 4\sin^3 a$$

$$\cos^3 a = \frac{3\cos a + \cos 3a}{4}$$

$$\sin^3 a = \frac{3\sin a - \sin 3a}{4}$$

Paramétrage par la tangente de l'arc moitié

$t := \tan \frac{a}{2}$	$\cos a = \frac{1 - t^2}{1 + t^2} \text{ (pair)}$
$t = \frac{\sin a}{1 + \cos a}$	$\sin a = \frac{2t}{1+t^2}$ (impair)
$t = \frac{1-\cos a}{\sin a}$	$\tan a = \frac{2t}{1-t^2}$ (impair)

Formules de linéarisation et de factorisation

$\cos a \cos b = \frac{1}{2} \left(\cos \left(a + b \right) + \cos \left(a - b \right) \right)$	$\cos a + \cos b = 2\cos\frac{a+b}{2}\cos\frac{a-b}{2}$
$\sin a \sin b = -\frac{1}{2} \left(\cos \left(a + b \right) - \cos \left(a - b \right) \right)$	$\cos a - \cos b = -2\sin\frac{a+b}{2}\sin\frac{a-b}{2}$
$\sin a \cos b = \frac{1}{2} \left(\sin \left(a + b \right) + \sin \left(a - b \right) \right)$	$\sin a + \sin b = 2\sin \frac{a+b}{2}\cos \frac{a-b}{2}$

Commencer toujours par écrire le a + b avant le a - b.

Quant on voit un autre signe "moins" ($\cos - \cos$), on en rajoute un autre devant.

Si $a + ib = z = re^{i\theta}$, alors $\theta = a \tan \frac{b}{a} \quad \text{si } a > 0$ $\theta = 2 \arctan \frac{b}{a+r} \quad \text{si } z \notin \mathbb{R}_-$ Argument et arc-tangente

Pour appliquer sin, cos ou tan en $\pm \theta \pm \pi$ (/2), dessiner un cercle trigo avec $\theta \simeq 0^+$. Symétries diverses

Pour appliquer sin, cos ou tan en $\operatorname{asn} x$, $\operatorname{acs} x$ ou $\operatorname{atn} x$, dessiner un triangle Composée et réciproques. rectangle, imposer deux côtés à 1 et x selon l'argument donné et trouver le troisième par Pythagore.

Mettre un i devant les fonctions impaires : remplacer partout $\begin{cases} \cos par & ch \\ \sin par & i sh \\ \tan par & i th \end{cases}$ Trigo hyperbolique

1