Transformations géométriques

lundi 8, mardi 9, mercredi 10 & lundi 15 octobre 2012

Table des matières

1	Groupe et sous-groupes des transformations du plan	1
2	Transformations usuelles 2.1 Définitions: translation, réflexion, rotation, homothétie, réflexion glissée, similitude (in)directe 2.2 Actions sur les angles et les distances, classification des quasi-isométries 2.3 Digression ensembliste	2 2 4 5
3	Composition de transformations du plan 3.1 Le sous-groupe des rotations/translations	6 6 7 9
4	•	9 10 11
5	Principe de conjugaison	12
6	Classifications des transformations du plan complexe de la forme $\alpha\operatorname{Id}+\beta$ et $\alpha\overline{\operatorname{Id}}+\beta$	13
1	Définition. Une transformation du plan est une permutation du plan.	
	On abrégera (pour ce cours uniquement) $\mathfrak{S} := \mathfrak{S}_{\mathbf{R}^2}$ l'ensemble des transformations du plan \mathbf{R}^2 .	
	Proposition. L'ensemble S est un groupe pour la composition, au sens où 0. la composée de deux éléments de S reste dans S (on dit que S est stable par o, ou encore que o est u loi de composition interne de S);	ine
	1. la loi \circ est associative (comprendre $h \circ (g \circ f) = (h \circ g) \circ f$ pour toutes transformations $f, g, h \in \mathfrak{S}$);	
	2. la loi \circ admet un neutre dans \mathfrak{S} (comprendre une transformation 1 telle que $1 \circ \sigma = \sigma = \sigma \circ 1$ pour to $\sigma \in \mathfrak{S}$):	out
	3. tout élément de S admet un inverse dans S.	
	(les propriétés 1, 2 et 3 constituent les $axiomes$ d'un groupe)	
	Démonstration.	

- 0. Découle de ce que la composée de deux bijections est une bijection.
- 1. Déjà vu.
- 2. Prendre pour neutre l'identité du plan.
- 3. Découle de la formule $[g \circ f]^{-1} = f^{-1} \circ g^{-1}$ valide pour toutes bijections f et g (lorsque la composée fait sens).

Définition. Un sous-groupe de S est une partie de S qui est un groupe pour la composition.

Proposition (critère pour déterminer un sous-groupe).

Une partie G de $\mathfrak S$ est un sous-groupe (de $\mathfrak S$) si et seulement si les conditions suivantes sont vérifiées :

- 1. G contient l'identité (i. e. $Id \in G$);
- 2. G est stable par composition (i. e. $\forall g, g' \in G, g \circ g' \in G$);
- 3. G est stable par inversion (i. e. $\forall g \in G, g^{-1} \in G$).

Démonstration. L'énoncé est une équivalence ; on montre d'abord un sens puis l'autre.

Soit G un sous-groupe de \mathfrak{S} . Il contient un neutre 1 (axiome 2) : en composant l'égalité $1 \circ 1 = 1$ par l'inverse 1^{-1} (dans \mathfrak{S}), on obtient (par l'axiome 1) $1 = \mathrm{Id}$, ce qui montre la condition 1. La condition 2 est une reformulation de l'axiome 0. Enfin, si $g \in G$, il admet un inverse g' dans G (axiome 3), ce qui s'écrit $g \circ g' = 1 = g' \circ g$, i. e. $g \circ g' = \mathrm{Id} = g' \circ g$, d'où $g^{-1} = g' \in G$ et la condition 3.

Soit G une partie de \mathfrak{S} qui vérifie les trois conditions de l'énoncé. La condition 2 énonce précisément l'axiome 0. L'associativité portant sur toutes les transformations de \mathfrak{S} , elle est en particulier valide pour celles de G, d'où l'axiome 1. La condition 1 fournit un neutre, d'où l'axiome 2. Enfin, tout élément de G est inversible dans \mathfrak{S} et la condition 3 nous dit que son inverse reste dans G, d'où l'axiome 3.

2 Transformations usuelles

2.1 Définitions : translation, réflexion, rotation, homothétie, réflexion glissée, similitude (in)directe

[un dessin pour chaque transformation]

Définition (translation). Soit u un vecteur du plan. La **translation** de vecteur u est la transformation $A \mapsto \begin{cases} \text{le point } A' \text{ tel} \\ \text{que } \overrightarrow{AA'} = u \end{cases}$. Elle est notée t_u .

Remarque. [parallélogramme ABB'A' avec $\overrightarrow{AB} = u = \overrightarrow{A'B'}$] La définition de l'égalité vectorielle s'énonce $\overrightarrow{A'B'} = \overrightarrow{AB}$.

Propriété. Les translations forment un sous-groupe de S.

Démonstration. L'identité est la translation de vecteur nul (Id = t_0), la composée de deux translations t_u et t_v est la translation de vecteur u + v, l'inverse d'une translation t_u est la translation de vecteur -u ($t_u^{-1} = t_{-u}$).

Remarque. Deux translations commutent : $t_u \circ t_v = t_{u+v} = t_v \circ t_u$ (pour tous vecteurs u et v).

Définition (réflexion). Soit Δ une droite du plan. La **réflexion** d'axe Δ (ou par rapport à Δ) est la transformation $A \mapsto \begin{cases} \text{le point } A' \text{ tel que } \Delta \text{ soit} \\ \text{la médiatrice de } [AA'] \end{cases}$. On la notera ref^{Δ} . On l'appelle également **symétrie** axiale par rapport à Δ et on pourra la noter s_{Δ} .

Remarque. Une réflexion est une *involution*, au sens où ref^{Δ} \circ ref^{Δ} = Id (on pourra retenir s_{Δ}^2 = Id). Il en découle qu'une réflexion égale son propre inverse : $s_{\Delta}^{-1} = s_{\Delta}$.

Propriété. Pour toute droite Δ , les itérés de s_{Δ} forment un sous-groupe de \mathfrak{S} .

Démonstration. Vu que s_{Δ} est involutive, ses itérées se limitent à $s_{\Delta}^{0} = \operatorname{Id}$ et à $s_{\Delta}^{1} = s_{\Delta}$ (on a $s_{\Delta}^{2n} = \operatorname{Id}$ et $s_{\Delta}^{2n+1} = s_{\Delta}$ pour tout entier $n \geq 0$). Il est clair que Id est une itérée de s_{Δ} , que $\{\operatorname{Id}, s_{\Delta}\}$ est stable par

composition $(\begin{array}{c|cccc} & \operatorname{Id} & s_{\Delta} \\ & \operatorname{Id} & \operatorname{Id} & s_{\Delta} \\ & s_{\Delta} & s_{\Delta} & \operatorname{Id} \\ \end{array})$ et par inversion $(\begin{array}{c|cccc} f & \operatorname{Id} & s_{\Delta} \\ \hline f^{-1} & \operatorname{Id} & s_{\Delta} \\ \end{array})$

Définition (rotation). Soit O un point du plan et θ un réel. La **rotation** de centre O et d'angle θ est la transformation $A \mapsto \begin{cases} \text{le point } A' \text{ du cercle de centre } O \text{ et } \\ \text{de rayon } OA \text{ tel que } \stackrel{\frown}{AOA'} = \theta \end{cases}$. Elle est notée $\operatorname{rot}_O^\theta$ ou r_O^θ (voire r^θ si le centre est sous-entendu).

Propriété. Soit O un point du plan. Les rotations de centre O forment un sous-groupe de S.

Démonstration. L'identité est la rotation d'angle nul (Id = r^0), la composée de deux rotations r^{α} et r^{β} est la rotation d'angle $\alpha + \beta$, l'inverse d'une rotation r_{θ} est la rotation d'angle $-\theta$ (c'est-à-dire $[r^{\theta}]^{-1} = r^{-\theta}$). **Remarque.** Deux rotations de même centre commutent : $r^{\alpha} \circ r^{\beta} = r^{\alpha+\beta} = r^{\beta} \circ r^{\alpha}$ (pour tous réels α

Remarque. Deux rotations de même centre commutent : $r^{\alpha} \circ r^{\beta} = r^{\alpha+\beta} = r^{\beta} \circ r^{\alpha}$ (pour tous réels α et β).

Définition (homothétie). Soit O un point du plan et λ un réel NON NUL. L'homothétie de centre O et de rapport λ est la transformation $A \mapsto \begin{cases} \text{le point } A' \text{ tel} \\ \text{que } \overrightarrow{OA'} = \lambda \overrightarrow{OA} \end{cases}$. Elle est notée λ homO ou λ ho (voire λ h si le centre est sous-entendu).

Remarque. [dessin $(A'B)' \parallel (AB)$ avec un centre O] Le théorème de Thalès s'énonce $(A'B') \parallel (AB)$.

Propriété. Soit O un point du plan. Les homothéties de centre O forment un sous-groupe de S.

Démonstration. L'identité est l'homothétie de rapport 1 (Id = 1h), la composée de deux homothéties $^{\lambda}h$ et $^{\mu}h$ est l'homothétie de rapport $\lambda\mu$, l'inverse d'une homothétie $^{\lambda}h$ est l'homothétie de rapport $\frac{1}{\lambda}$ (c'est-à-dire $[^{\lambda}h]^{-1} = \frac{1}{\lambda}h$).

Remarque. Deux homothéties de même centre commutent : ${}^{\lambda}h \circ {}^{\mu}h = {}^{\lambda+\mu}h = {}^{\mu}h \circ {}^{\lambda}h$ (pour tous réels NON NULS λ et μ).

Définition (réflexion glissée). Soit Δ une droite du plan et u un vecteur DE DIRECTION Δ . La **réflexion** (ou **symétrie**) **glissée** d'axe Δ et de vecteur u est la composée commutative $\operatorname{ref}^{\Delta} \circ t_u = t_u \circ \operatorname{ref}^{\Delta}$. On la notera $\operatorname{ref}^{\Delta}_u$.

Remarque. La réflexion glissée $\operatorname{ref}_u^{\Delta}$ est une racine carrée (pour \circ) de t_{2u} :

$$\operatorname{ref}_{u}^{\Delta} \circ \operatorname{ref}_{u}^{\Delta} = \left(t_{u} \circ \operatorname{ref}^{\Delta}\right) \circ \left(\operatorname{ref}^{\Delta} \circ t_{u}\right) = t_{u} \circ \underbrace{\left(\operatorname{ref}^{\Delta} \circ \operatorname{ref}^{\Delta}\right)}_{=\operatorname{Id}} \circ t_{u} = t_{u} \circ t_{u} = t_{2u}.$$

Ainsi, même si l'ensemble des réflexions glissées est stable par inversion en vertu du calcul

$$\left[\operatorname{ref}_u^\Delta\right]^{-1} = \left[t_u \circ \operatorname{ref}^\Delta\right]^{-1} = \left[\operatorname{ref}^\Delta\right]^{-1} \circ \left[t_u\right]^{-1} = \operatorname{ref}^\Delta \circ t_{-u} = \operatorname{ref}_{-u}^\Delta\,,$$

il n'est pas (du tout) stable par composition : ce n'est pas un sous-groupe de S.

Définition (similitude directe). Soit O un point du plan, θ un réel et λ un réel NON NUL. La **similitude directe** de centre O, d'angle θ et de rapport λ est la composée commutative ${}^{\lambda} \hom_O \circ \operatorname{rot}_O^{\theta} = \operatorname{rot}_O^{\theta} \circ {}^{\lambda} \hom_O$. On la notera ${}^{\lambda} \operatorname{sim}_O^{\theta}$.

Propriété. Soit O un point du plan. Les similitudes directes de centre O forment un sous-groupe de S. **Démonstration.**

- 1) L'identité est une similitude directe : $Id = Id \circ Id = {}^{1}h \circ r^{0} = {}^{1}\sin_{O}^{0}$.
- 2) On peut calculer une composée

$${}^{\lambda} \operatorname{sim}_O^{\alpha} \circ {}^{\mu} \operatorname{sim}_O^{\beta} = \ \left({}^{\lambda} h \circ r^{\alpha}\right) \circ \left(r^{\beta} \circ {}^{\mu} h\right) \overset{\operatorname{tout}}{\underset{\operatorname{commute}}{=}} \ \left(r^{\alpha} \circ r^{\beta}\right) \circ \ \left({}^{\lambda} h \circ {}^{\mu} h\right) = \ r^{\alpha + \beta} \circ {}^{\lambda \mu} h = \ {}^{\lambda \mu} \operatorname{sim}_O^{\alpha + \beta} \, .$$

3) On peut calculer l'inverse

$$\left[{}^{\lambda}\sin^{\theta}_{O}\right]^{-1} = \left[{}^{\lambda}h\circ r^{\theta}\right]^{-1} = \left[r^{\theta}\right]^{-1}\circ \left[{}^{\lambda}h\right]^{-1} = r^{-\theta}\circ \ ^{\frac{1}{\lambda}}h = \ ^{\frac{1}{\lambda}}\sin^{-\theta}_{O}.$$

Remarque. Deux similitudes directes de même centre commutent (cf. plus haut).

Définition (similitude indirecte). Soit O un point du plan, Δ une droite PASSANT PAR O et λ un réel NON NUL. La **similitude indirecte** de centre O, d'axe Δ et de rapport λ est la composée commutative $\lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} = \operatorname{ref}^{\Delta} \circ \lambda \mapsto -1$ hom $O \circ \operatorname{ref}^{\Delta} \to -1$ hom $O \circ \cap \operatorname{ref}^{\Delta} \to -1$ hom $O \circ \cap \operatorname{ref}^{\Delta} \to -1$ hom $O \circ \cap \operatorname{$

Remarque. La similitude indirecte $^{\lambda} \sin_{O}^{\Delta}$ est une racine carrée (pour \circ) de $^{\lambda^{2}} hom_{O}$:

$${}^{\lambda} \operatorname{sim}_{O}^{\Delta} \circ {}^{\lambda} \operatorname{sim}_{O}^{\Delta} = \left({}^{\lambda} h \circ \operatorname{ref}^{\Delta}\right) \circ \left(\operatorname{ref}^{\Delta} \circ {}^{\lambda} h\right) = {}^{\lambda} h \circ \underbrace{\operatorname{ref}^{\Delta} \circ \operatorname{ref}^{\Delta}}_{=\operatorname{Id}} \circ {}^{\lambda} h = {}^{\lambda} h \circ {}^{\lambda} h = {}^{\lambda^{2}} h.$$

Ainsi, même si l'ensemble des similitudes indirectes est stable par inversion (on montrerait $\left[{}^{\lambda} \sin^{\Delta}_{O} \right]^{-1} = \frac{1}{\lambda} \sin^{\Delta}_{O}$), il n'est pas (du tout) stable par composition : ce n'est donc pas un sous-groupe de \mathfrak{S} .

 \bigstar Aucune des notations ci-dessus t_u , ref $^{\Delta}$, rot $^{\theta}_O$, $^{\lambda}$ hom $_O$, ref $^{\Delta}_u$, $^{\lambda}$ sim $^{\theta}_O$ ou $^{\lambda}$ sim $^{\Delta}_O$ n'est officielle. Penser au besoin à redéfinir vos notations.

2.2 Actions sur les angles et les distances, classification des quasi-isométries

Propriétés. (admises)

- 1. Toutes les transformations précédentes préservent les angles non-orientés (comprendre $\widehat{A'B'C'} = \widehat{ABC}$ pour tous points A, B, C), en particulier conservent l'alignement (on dit que ce sont des transformations affines).
- 2. Conservent les distances : les translation, rotations et réflexions glissées (on dit que ce sont des **isométries**).
- 3. Les similitudes (directes ou indirectes) multiplient toutes les distances par un même scalaire (la valeur absolue de leur rapport) (on dit que ce sont des quasi-isométries).

Prouvons ce point dans le cas d'une homothétie ${}^{\lambda}h_{O}$: pour tous points A et B, on a en effet

$${}^{\lambda}h_{O}(A) {}^{\lambda}h_{O}(B) = \left\| \overline{{}^{\lambda}h_{O}(A) {}^{\lambda}h_{O}(B)} \right\| = \left\| \overline{O} {}^{\lambda}h_{O}(B) - \overline{O} {}^{\lambda}h_{O}(A) \right\| = \left\| \lambda \overrightarrow{OB} - \lambda \overrightarrow{OA} \right\|$$
$$= \left\| \lambda \left(\overrightarrow{OB} - \overrightarrow{OA} \right) \right\| = \left\| \lambda \overrightarrow{AB} \right\| = |\lambda| \left\| \overrightarrow{AB} \right\| = |\lambda| AB.$$

- 4. Préservent l'orientation (i. e. les angles orientés, au sens où $A'B'C' = \stackrel{\frown}{ABC}$ pour tous points A, B, C): les translations et similitudes directes (on parler de transformations **directes** ou **positives**).
- 5. Inversent l'orientation (comprendre $A'B'C' = -\overrightarrow{ABC}$ pour tous points A, B, C) : les réflexions glissées et similitudes indirectes (on parle de transformations **indirectes**, **négatives** ou **rétrogrades**).
- 6. Possèdent (au moins) un point fixe¹ : les similitudes (lorsque le point fixe est unique, il s'agit du centre et on parle alors de transformations à centre).
- 7. N'ont pas de point fixe : les translations et réflexions glissées (de vecteur non nul).

Définition. Une isométrie directe est appelée **déplacement** (visualiser un feuille de papier glissant sur un bureau sans se retourner), une isométrie indirecte est appelée **anti-déplacement** (visualiser un déplacement avec un retournement).

★ la terminologie "quasi-isométrie" n'est pas standard, penser à la redéfinir si vous l'utilisez.

Théorème (classification des quasi-isométries). (admis)

Toute quasi-isométrie du plan est l'une des transformations ci-dessus et résumée ci-après :

[dessin : à droite les déplacements (de haut en bas : les translations, rotations (dont Id et les symétries centrales), homothéties et similitudes directes), à gauche les anti-déplacements (de haut en bas : les réflexions glissées, réflexions et similitudes indirectes), délimitation des isométries, des transfo sans point fixe, des transfo avec centre)]

Remarque. Les responsables de l'absence de point fixe sont les *translations*, les responsables de l'inversion de l'orientation sont les *réflexions*.

¹Un point fixe par une application f est un objet source a tel que f(a) = a.

2.3 Digression ensembliste

Comme le suggère le résumé ci-dessus, les quasi-isométries peuvent se "regrouper" de nombreuses façons. Introduisons le langage qui convient pour cela.

Définition. Soient A et B deux ensembles.

La **réunion** de A et B est l'ensemble des éléments qui appartiennent chacun à A ou à B. Elle est notée $A \cup B$ (lire "A union B").

L'intersection de A et B est l'ensemble des éléments qui appartiennent chacun à A et à B. Elle est notée $A \cap B$ (lire "A inter B").

La différence $A \setminus B$ (lire "A privé de B") est l'ensemble des éléments de A qui n'appartiennent pas à B.

Le complémentaire de A (dans un grand ensemble E sous-entendu) est la différence ${}^cA := E \setminus A$.

Le singleton {A} désigne l'unique ensemble possédant A comme seul élément.

La paire $\{A, B\}$ désigne l'unique ensemble possédant A et B comme seuls éléments.

L'ensemble vide \emptyset est l'unique ensemble qui ne contient aucun élément.

Lorsque $A \cap B = \emptyset$, on dit que A et B sont disjoints; leur réunion est alors notée $A \sqcup B$ ou $A \coprod B$ (lire "A union disjointe B").

Lorsque A est inclus dans B mais ne lui est pas égal, on note $A \subseteq B$ (lire "A strictement inclus dans B") (le symbole \subseteq est la fusion des symboles d'inclusion \subset et de différence \neq).

Donnons à présent nos notations pour décrire le résumé précédent (★ NE PAS RETENIR ces abréviations qui ne servent que pour cette section) :

TRL l'ensemble des translations;

ROT l'ensemble des rotations;

HOM l'ensemble des homothéties;

SYM l'ensemble des symétries centrales;

 SIM^+ l'ensemble des similitudes directes;

REF l'ensemble des réflexions;

RFG l'ensemble des réflexions glissées;

SIM⁻ l'ensemble des similitudes indirectes;

ISO l'ensemble des isométries;

DEP l'ensemble des déplacements ;

 DEP^- l'ensemble des anti-déplacements;

CEN l'ensemble des transformations à centre;

QISO l'ensemble des quasi-isométries;

 $QISO^+$ l'ensemble des quasi-isométries directes;

QISO⁻ l'ensemble des quasi-isométries indirectes.

On peut alors écrire :

 $QISO = QISO^+ \sqcup QISO^-$ (toute quasi-isométrie ou bien préserve ou bien inverse l'orientation)

 $ISO = DEP \sqcup DEP^-$ (toute isométrie ou bien préserve ou bien inverse l'orientation)

 $DEP^- = RFG$ (les anti-déplacements sont les réflexions glissées)

 $DEP = TRL \cup ROT$ (tout déplacement est une translation ou une rotation)

 $TRL \cap ROT = \{\text{Id}\}$ (la seule transformation qui soit à fois translation et rotation est l'identité)

 $SIM^- \supseteq REF$ (les similitudes indirectes contiennent les réflexions ainsi que d'autres transformations)

 $SIM^+ \supseteq HOM \cup ROT$ (les similitudes directes contiennent les homothéties et les rotations ainsi que d'autres transformations)

 $HOM \cap ROT = \{ \mathrm{Id} \} \sqcup SYM \supsetneq \{ \mathrm{Id}, -\mathrm{Id} \}$ (les seules transformations à être à la fois homothétie et rotation sont l'identité et les symétries centrales (dont fait partie $-\mathrm{Id}$))

 $QISO^+ = TRL \cup SIM^+$ (toute quasi-isométrie positive est une translation ou une similitude directe)

 $TRL \cap SIM^+ = \{ \text{Id} \}$ (la seule translation qui soit une similitude est l'identité)

 $QISO^- = RFG \cup SIM^-$ (toute quasi-isométrie négative est une réflexion glissée ou une similitude indirecte)

 $RFG \cap SIM^- = REF$ (les seules réflexions glissées qui soient des similitudes indirectes sont les réflexions)

 $CEN \cap QISO^- = SIM^- \setminus RFG$ (les quasi-isométries négatives à centre sont les similitudes indirectes qui ne sont pas des réflexions glissées)

 $CEN \cap QISO^+ = SIM^+ \setminus \{ \mathrm{Id} \} \supseteq (HOM \cup ROT) \setminus \{ \mathrm{Id} \}$ (les quasi-isométries positives à centre sont les similitudes directes à l'exception de l'identité : on y trouve (entre autres choses) les homothéties et rotations autres que l'identité)

 $^{c}CEN = RFG \sqcup TRL$ (les transformation pas à centre sont les réflexions glissées et les translations)

Question (retour au résumé).

Les flèches indiquent ce que l'on obtient par composition dans certaines situations particulières (vecteur dans la direction de l'axe, centre sur l'axe). Peut-on en général décrire la composée de deux quasi-isométries?

Convention. Il sera usuel par la suite de noter l'image d'un point par une transformation à l'aide d'un prime : $A \longmapsto A'$, $M \longmapsto M'$, $X \longmapsto X' \longmapsto X'' \dots$

3 Composition de transformations du plan

3.1 Le sous-groupe des rotations/translations

Proposition (composée de deux réflexions). La composée de deux réflexions est

- 1. ou bien une rotation de centre l'intersection des axes et d'angle le double de l'angle entre les axes (si les axes sont sécants en un seul point) [dessin : deux axes Δ et Δ' se coupant en O et d'angle θ];
- 2. ou bien une translation de vecteur le double du "vecteur distance" d'un axe à l'autre (si les axes sont parallèles) [dessin : deux axes Δ et Δ' parallèle, le vecteur distance de Δ vers Δ'].
- ★ Deux réflexions ne commutent donc pas en général!

Démonstration.

1. [dessin : $A' := s_{\Delta}(A)$, M milieu de [AA'], $A'' := s_{\Delta'}(A')$, M' milieu de [A'A'']] Soit un point A. On a OA'' = OA' (car $s_{\Delta'}$ est une isométrie) = OA (car s_{Δ} est une isométrie), donc A'' est sur le cercle de centre O et de rayon OA. De plus, on a l'égalité angulaire

$$\stackrel{\frown}{AOA''} = \underbrace{\stackrel{\frown}{AOM}}_{=MOA'} + \stackrel{\frown}{MOA'} + \stackrel{\frown}{A'OM'} + \underbrace{\stackrel{\frown}{MOA''}}_{=A'OM'} = 2\stackrel{\frown}{MOA'} + 2\stackrel{\frown}{A'OM'}$$

$$= 2\left(\stackrel{\frown}{MOA'} + \stackrel{\frown}{A'OM'}\right) = 2\stackrel{\frown}{MOM''} = 2\stackrel{\frown}{\Delta\Delta'}.$$

2. [dessin : A', A'', M', M'' comme avant, d le vecteur distance de Δ vers Δ'] Soit un point A. On a l'égalité vectorielle

$$\overrightarrow{AA''} = \underbrace{\overrightarrow{AM}}_{=\overrightarrow{MA'}} + \overrightarrow{MA'} + \overrightarrow{A'M'} + \underbrace{\overrightarrow{M'A''}}_{=\overrightarrow{A'M'}} = 2\overrightarrow{MA'} + 2\overrightarrow{A'M'}$$

$$= 2\left(\overrightarrow{MA'} + \overrightarrow{A'M'}\right) = 2\overrightarrow{MM'} = 2d.$$

Ceci montre que A'' est l'image de A par la translation de vecteur d, c. q. f. d..

Remarque. Vu la proposition précédente, échanger l'ordre de deux réflexions changera en son opposé l'angle ou le vecteur de leur composée, c'est-à-dire *inversera* cette dernière. On pouvait le voir directement en écrivant $s_{\Delta} \circ s_{\Delta'} = s_{\Delta}^{-1} \circ s_{\Delta'}^{-1} = [s_{\Delta'} \circ s_{\Delta}]^{-1}$.

Corollaire 1. Toute rotation est la composée de deux réflexions (dont on peut imposer la direction de l'un des axes).

Démonstration. Soit O le centre de la rotation considérée et θ son angle. On considère un axe Δ passant par O et qui possède la direction imposée. Soit Δ' la droite passant par O telle que $\Delta \Delta' = \frac{\theta}{2}$ (qui est bien inchangé si l'on rajoute 2π à θ fait sens car un angle de droites est considéré $modulo \pi$). Alors la proposition précédente montre que $s_{\Delta'} \circ s_{\Delta} = \text{rot}_O^{2\Delta \Delta'} = \text{rot}_O^{2\theta}$. (Si l'on voulait imposer la direction de Δ' , on choisirait d'abord Δ' puis on définirait l'axe Δ comme passant en O et vérifiant $\Delta \Delta' = \frac{\theta}{2}$.)

Sous-corollaire 1 (composée de deux rotations). La composée de deux rotations d'angles respectifs² θ et θ' est

[dessin : les centres O et O', la droite D := (OO'), les droites Δ et Δ' telles $\stackrel{\frown}{\Delta D} = \frac{\theta}{2}$ et $\stackrel{\frown}{D\Delta'} = \frac{\theta'}{2}$]

- 1. ou bien une rotation d'angle $\theta + \theta'$ et de centre l'intersection des droites Δ et Δ' (si $\theta + \theta' \neq 0$ [2 π]);
- 2. ou bien une translation selon le "vecteur distance" de la droite Δ vers la droite Δ' (si $\theta' = -\theta$ [2 π]).
- ★ Deux rotations ne commutent pas en général! (même si elles commutent lorsqu'elles ont même centre)

Démonstration. Une fois décomposées (par le corollaire 1) nos deux rotations à l'aide des axes D, Δ et Δ' , on peut calculer la composée

$$\operatorname{rot}_{O'}^{\theta'} \circ \operatorname{rot}_O^{\theta} = \left(s_{\Delta'} \circ s_D\right) \circ \left(s_D \circ s_\Delta\right) = s_{\Delta'} \circ \underbrace{\left(s_D \circ s_D\right)}_{=\operatorname{Id}} \circ s_\Delta = s_{\Delta'} \circ s_\Delta$$

et appliquer la proposition précédente.

Corollaire 2. Toute translation est composée de deux réflexions (dont on peut imposer un point d'un des axes).

Démonstration. Soit u le vecteur de la translation considérée. On définit un axe Δ passant le point imposée et de direction orthogonale à celle de u. On définit ensuite un axe Δ' parallèle à Δ et dont le "vecteur distance" depuis Δ vaut $\frac{1}{2}u$. Alors la proposition précédente montre que $s_{\Delta'} \circ s_{\Delta} = t_{2\left(\frac{1}{2}u\right)} = t_u$. (Si on voulait imposer un point sur l'axe de Δ' , on choisirait d'abord cet axe puis on définirait l'axe Δ comme étant parallèle à Δ' et dont le "vecteur distance" vers Δ' vaudrait $\frac{1}{2}u$.)

Sous-corollaire 2 (composée d'une rotation par une translation). La composée d'une rotation et d'une translation est

[dessin : O le centre de la rotation, θ son angle et u le vecteur de la translation, $\Delta \perp u$ en O, $\Delta' \parallel \Delta$ dont le vecteur distance depuis Δ vaut $\frac{1}{2}u$, un axe D en O et tel que $\stackrel{\frown}{D\Delta} = \frac{\theta}{2}$]

- 1. ou bien une rotation de même angle (si ce dernier est non nul modulo 2π);
- 2. ou bien une translation (si la rotation est triviale, i. e. si elle vaut l'identité).

Démonstration. Une fois décomposées (par le corollaire 1) notre rotation et (par le corollaire 2) notre translation à l'aide des axes D, Δ et Δ' , on peut calculer la composée

$$t_u \circ \mathrm{rot}_O^\theta = (s_{\Delta'} \circ s_D) \circ (s_D \circ s_\Delta) = s_{\Delta'} \circ \underbrace{(s_D \circ s_D)}_{=\mathrm{Id}} \circ s_\Delta = s_{\Delta'} \circ s_\Delta$$

et appliquer la proposition précédente. (On procèderait de manière analogue pour la composée $\operatorname{rot}_O^\theta \circ t_u$.)

Remarque (sous-groupe des rotations/translations). Ce qui précède montre que les rotations/translations sont stables par composition (on savait déjà que la composée de deux translations était une translation); puisqu'elles contiennent l'identité (= $t_0 = r^0$) et sont stables par inversion ($t_u^{-1} = t_{-u}$ et $(r^{\theta})^{-1} = r^{-\theta}$), elles constituent un sous-groupe de \mathfrak{S} .

3.2 Le sous-groupe des homothéties/translations

Proposition (composée de deux homothéties). La composée de deux homothéties de centres respectifs O et O' et de rapports respectifs³ λ et λ' est

- 1. ou bien une homothétie de rapport $\lambda \lambda'$ (si $\lambda \lambda' \neq 1$);
- 2. ou bien un translation de direction (OO') (si $\lambda \lambda' = 1$).

² on applique d'abord la rotation d'angle θ puis la rotation d'angle θ'

 $^{^3}$ on applique d'abord l'homothétie de centre O et de rapport λ puis l'homothétie de centre O' et de rapport λ'

★ Deux homothéties ne commutent pas en général! (même si elles commutent lorsqu'elles ont même centre)

Démonstration.

Supposons que la composée admette un point fixe Ω . Considérons un point A et montrons alors que $\overrightarrow{\Omega A''} = \lambda \lambda' \overrightarrow{\Omega A}$. En partant de l'égalité $\overrightarrow{\Omega A''} \stackrel{\text{Chasles}}{=} \overrightarrow{O'A''} - \overrightarrow{O'\Omega}$, on regarde d'une part le premier terme

d'autre part le second terme

$$\overrightarrow{O'\Omega} \overset{\Omega''=\Omega}{=} \overrightarrow{O'\Omega''} \overset{\text{definition}}{\underset{\text{de }^{\lambda'}h_{O'}}{=}} \lambda' \overrightarrow{O'\Omega'} \overset{\text{Chasles}}{=} \lambda' \left(\overrightarrow{O'O} + \overrightarrow{O\Omega'} \right) \overset{\text{definition}}{\underset{\text{de }^{\lambda}h_{O}}{=}} \lambda' \overrightarrow{O'O} + \lambda \lambda' \overrightarrow{O\Omega},$$

d'où la différence

$$\overrightarrow{\Omega A''} = \overrightarrow{O'A''} - \overrightarrow{O'\Omega} = \left(\lambda'\overrightarrow{O'O} + \lambda'\lambda\overrightarrow{OA}\right) - \left(\lambda'\overrightarrow{O'O} + \lambda\lambda'\overrightarrow{O\Omega}\right)$$
$$= \lambda\lambda'\left(\overrightarrow{OA} - \overrightarrow{O\Omega}\right) = \lambda\lambda\overrightarrow{\Omega A}, c. q. f. d..$$

Cherchons à présent un point fixe (pour la composée) sur la droite (OO') [micro-analyse : le point fixe cherché doit être (si $\lambda\lambda'\neq 1$) le centre d'une homothétie, donc doit appartenir à toute droite stable par cette homothétie, ce qui est le cas de la droite (OO') qui est stable par ${}^{\lambda}h_O$ et par ${}^{\lambda'}h_{O'}$]. Prenons comme repère $(O,\overrightarrow{OO'})$. Fixons un

point $\Omega(x)$, d'images $\Omega'(x')$ et $\Omega''(x'')$. Les égalités $\begin{cases} \overrightarrow{O\Omega'} = \lambda \overrightarrow{O\Omega} \\ \overrightarrow{O'\Omega''} = \lambda' \overrightarrow{O'\Omega'} \end{cases}$ (qui résultent des définitions de Ω' et

 Ω'') se récrivent $\begin{cases} x'-0=\lambda\,(x-0) \\ x''-1=\lambda'\,(x'-1) \end{cases}$, d'où $x''=\lambda\lambda'x+\left(1-\lambda'\right)$. Ainsi, lorsque $\lambda\lambda'\neq 1$, l'équation $\Omega''=\Omega$ (i. e. x''=x) admet une solution (unique), ce qui conclut le cas $\lambda\lambda'\neq 1$. Supposons à présent que $\lambda'=\frac{1}{\lambda}$ et fixons un point A. [dessin : triangle OO'A', une parallèle (AA'') à (OO')]

Supposons à présent que $\lambda' = \frac{1}{\lambda}$ et fixons un point A. [dessin : triangle OO'A', une parallèle (AA'') à (OO')] Le théorème de Thalès suggère que $\overrightarrow{AA''} = \mu \overrightarrow{OO'}$ avec $\mu := \frac{AA''}{OO'} = \frac{A'A}{A'O} = \frac{A'O-AO}{A'O} = 1 - \frac{1}{\lambda}$; essayons par conséquent de monter $\lambda \overrightarrow{AA''} \stackrel{?}{=} (\lambda - 1) \overrightarrow{OO'}$, ce qui prouvera que A'' est l'image de A par la translation de vecteur $(1 - \frac{1}{\lambda}) \overrightarrow{OO'}$. En vertu des égalités $\left\{ \overrightarrow{OA'} = \frac{1}{\lambda'} \overrightarrow{O'A''} = \lambda \overrightarrow{O'A''} \right\}$, on peut travailler le vecteur

$$\lambda \overrightarrow{AA''} \overset{\text{Chasles}}{=} \lambda \left(\overrightarrow{OO'} - \overrightarrow{OA} + \overrightarrow{O'A''} \right) = \lambda \overrightarrow{OO'} \underbrace{-\overrightarrow{OA'} + \overrightarrow{O'A}}_{=\overrightarrow{O'O}} = (\lambda - 1) \overrightarrow{OO'}, \ c. \ q. \ f. \ d..$$

(Sanity check : lorsque $\lambda = 1$, alors $\lambda' = 1$ et la composée vaut l'identité ; or le vecteur $\left(1 - \frac{1}{\lambda}\right) \overrightarrow{OO'}$ est nul, ce qui est cohérent)

Corollaire. Toute translation est composée de deux homothéties (dont on peut imposer l'une autre que l'identité).

Démonstration. Soit O et λ les centre et rapport de l'homothétie imposée (noter que $\lambda \neq 1$ puisqu'on n'impose pas l'identité) et u le vecteur de la translation considérée. On définit un point O' par l'égalité $\lambda u = (\lambda - 1) \overrightarrow{OO'}$ (possible car $\lambda - 1 \neq 0$). Alors la proposition précédente montre que $\frac{1}{\lambda} h_{O'} \circ {}^{\lambda} h_{O}$ est la translation de vecteur $(1 - \frac{1}{\lambda}) \overrightarrow{OO'} = u$, c. q. f. d.. (On raisonnerait de manière analogue si l'on voulait imposer l'autre homothétie.)

Sous-corollaire (composée d'une homothétie par une translation). La composée d'une homothétie et d'une translation est

- 1. ou bien une homothétie de même rapport (si ce dernier est diffèrent de 1):
- 2. ou bien une translation (si l'homothétie est triviale, i. e. si elle vaut l'identité).

Démonstration. Soient t_u et ${}^{\lambda}h_O$ les homothéties et translation données. Si $\lambda=1$, alors ${}^{\lambda}h_O=\mathrm{Id}$ et sa composée par t_u vaut trivialement t_u . Sinon, en décomposant (par le sous-corollaire) $t_u={}^{\lambda}h_{O'}\circ{}^{\frac{1}{\lambda}}h_O$ (on impose le centre O et le rapport $\frac{1}{\lambda}\neq 1$), on peut calculer la composée

$$t_u \circ {}^{\lambda}h_O = \left({}^{\lambda}h_{O'} \circ {}^{\frac{\lambda}{\lambda}}h_O\right) \circ {}^{\lambda}h_O = {}^{\lambda}h_{O'} \circ \underbrace{\left({}^{\frac{\lambda}{\lambda}}h_O \circ {}^{\lambda}h_O\right)}_{-\frac{1}{\lambda}{}^{\lambda}h_O - {}^{1}h_O - {}^{1}d} = {}^{\lambda}h_{O'}, \text{ ce qui conclut.}$$

(On procèderait de manière analogue pour la composée ${}^{\lambda}h_{O}\circ t_{u}$.)

Remarque (sous-groupe des homothéties/translations). Ce qui précède montre que les homothéties/translations sont stables par composition (on savait déjà que la composée de deux translations était une translation); puisqu'elles contiennent l'identité (= $t_0 = {}^1h$) et sont stables par inversion ($t_u^{-1} = t_{-u}$ et $({}^{\lambda}h)^{-1} = {}^{\frac{1}{\lambda}}h$), elles constituent un sous-groupe de \mathfrak{S} .

3.3 Résumé des composées des quasi-isométries

On ne va pas tout passer en revue. On admettra le tableau suivant, connu pour le cas particulier où l'on compose des transformations de $m\hat{e}me$ centre :

0 1	translation	rotation	homothétie	réflexion
translation	translation	rotation /	homothétie	réflexion
		translation	/ translation	glissée
rotation	rotation /	rotation /	similitude	réflexion
	translation	translation	directe	glissée
homothétie	homothétie	similitude	homothétie	similitude
пошотнене	/ translation	directe	/ translation	indirecte
réflexion	réflexion	réflexion	similitude	rotation /
renexion	glissée	glissée	indirecte	translation

On y lit plusieurs sous-groupes de \mathfrak{S} :

- 1. les translations;
- 2. les rotations/translations;
- 3. les homothéties/translations;
- 4. les rotations/translations/réflexions (ce sont les isométries);
- 5. les similitudes directes & translations (ce sont les quasi-isométries directes);

On va pouvoir montrer tout cela bien plus aisément à l'aide des nombres complexes.

4 Traduction complexe des transformations usuelles

On se place dans le plan \mathbb{R}^2 identifié à \mathbb{C} . On identifiera par ailleurs points et vecteurs via l'origine O du plan.

4.1 Dictionnaire géométrie-complexes

On a le dictionnaire suivant :

OBJETS	
origine O	complexe 0
point A ou vecteur \overrightarrow{OA}	$ complexe a := A \\ (aussi notée z_A : son affixe) $
$\operatorname{vecteur} \overrightarrow{AB}$	complexe $\overrightarrow{ab} := b - a$
vecteur u	complexe $z_u := u \text{ (son } \mathbf{affixe)}$
droite $A + \mathbf{R}u$	ensemble $a + \mathbf{R}u$
angle orienté \widehat{uv}	argument de $\frac{v}{u}$ modulo 2π
angle orienté $\stackrel{\curvearrowright}{ABC} = \overrightarrow{BA}, \overrightarrow{BC}$	$\arg\frac{\overrightarrow{bc}}{\overrightarrow{ba}} = \arg\frac{c-b}{a-b} \ [2\pi]$
angle non orienté \widehat{ABC}	$\arg \frac{c-b}{a-b} \ [\pi]$
distance $AB = \ \overrightarrow{AB}\ $	$\text{module } \left \overrightarrow{ab} \right = b - a $
produit scalaire $u \cdot v$	$\operatorname{Re} \overline{u}v = \operatorname{Re} u\overline{v}$
déterminant $[u, v]$	Im $\overline{u}v \neq \text{Im } u\overline{v} \bigstar \text{ signe !}$ faire un test $[1,i]=+1$

PROPRIÉTÉS		
le point M est le milieu de $[AB]$	$m = \frac{a+b}{2}$	
le point G est le barycentre des points pon-	λ , μ , ν	
dérés $\binom{A}{\lambda}$, $\binom{B}{\mu}$ et $\binom{C}{\nu}$ où $\lambda + \mu + \nu \neq 0$	$g = \frac{\lambda}{\lambda + \mu + \nu} a + \frac{\mu}{\lambda + \mu + \nu} b + \frac{\nu}{\lambda + \mu + \nu} c$	
le point A est sur le cercle	$ a - \omega = r$	
de centre Ω et de rayon r	$ a-\omega =r$	
le point A est dans le disque	$ a - \omega \le r$	
de centre Ω et de rayon r	$ a-\omega \leq r$	
le point A est dans le disque	$ a - \omega < r$	
ouvert de centre Ω et de rayon r	$ a-\omega < r$	
inégalité triangulaire $AC \leq AB + BC$	$ a-c \le a-b + b-c $	
les points A, B, C sont alignés	$\arg \frac{\overrightarrow{ac}}{\overrightarrow{ab}} = 0 \ [\pi] \text{ ou } \operatorname{Im} \frac{\overrightarrow{ac}}{\overrightarrow{ab}} = 0 \text{ ou}$	
1 , , , , .	$(\text{si } a \neq b) \ \exists \lambda \in \mathbf{R}, \ \overrightarrow{ac} = \lambda \overrightarrow{ab}$	
les vecteurs u et v sont colinéaires	$\arg \frac{v}{u} = 0 \ [\pi] \text{ ou } \operatorname{Im} \frac{v}{u} = 0 \text{ ou}$	
les vecteurs a et o sont conneanes	$(\operatorname{si} u \neq 0) \; \exists \lambda \in \mathbf{R}, \; v = \lambda u$	
les vecteurs u et v sont orthogonaux	(si $u \neq 0$) arg $\frac{v}{u} = \frac{\pi}{2} [\pi]$ ou Re $\frac{v}{u} = 0$	
les vecteurs a et v sont orthogonaux	ou $\operatorname{Re} \overline{u}v = 0$ ou $\operatorname{Re} u\overline{v} = 0$	

TRANSFORMATIONS		
translation de vecteur u	$\operatorname{Id} + u \text{ (additionner } u)$	
rotation d'angle θ (centrée en O)	$e^{i\theta}$ Id (multiplier par $e^{i\theta}$)	
homothétie de rapport λ (centrée en O)	$\lambda \operatorname{Id} \text{ (multiplier par } \lambda)$	
similitude directe d'angle θ et	$\lambda e^{i\theta} \operatorname{Id} (\operatorname{multiplier par} \lambda e^{i\theta})$	
de rapport λ (centrée en O)	(composée de $e^{i\theta}$ Id et λ Id)	
réflexion par rapport à ${f R}$	$\overline{\mathrm{Id}}$ (conjugaison)	
réflexion par rapport à $i\mathbf{R}$	$-\overline{\operatorname{Id}}$	
réflexion par rapport	$i\overline{\operatorname{Id}}$ (échange les coordonnées :	
à la première bissectrice	$x + iy \mapsto i(x - iy) = y + ix$	
similitude indirecte d'axe ${f R}$ et	$\lambda \overline{\mathrm{Id}}$ (composée de $\lambda \mathrm{Id}$ et $\overline{\mathrm{Id}}$)	
de rapport λ (centrée en O)	Md (composee de Md et ld)	
affinité d'axe ${\bf R}$ et de rapport λ	$\operatorname{Re} + \lambda i \operatorname{Im} : {x \choose y} \mapsto {x \choose \lambda y}$	
affinité d'axe $i\mathbf{R}$ et de rapport λ	$\lambda \operatorname{Re} + i \operatorname{Im} : {x \choose y} \mapsto {\lambda x \choose y}$	

Exemple. Soient A, B, C trois points du plan. Montrer que le triangle ABC est équilatéral direct ssi $a+bj+cj^2=0$ où $j:=e^{\frac{2\pi i}{3}}$. [dessin : racines sixièmes de l'unité]

L'équilatéralité directe de ABC équivaut à $A = \operatorname{rot}_{B}^{\frac{\pi}{3}}(C)$, ou encore à $\overrightarrow{BA} = \operatorname{rot}_{0}^{\frac{\pi}{3}}(\overrightarrow{BC})$, ce qui se réécrit successivement

$$a - b = \underbrace{e^{i\frac{\pi}{3}}}_{=-j^2} (c - b) = -j^2 c + j^2 b \iff a + \underbrace{\left(-1 - j^2\right)}_{=j} b + j^2 c = 0.$$

4.2 Recentrage des transformations à centre

Toutes les transformations à centre (similitudes directes et indirectes, Id abusivement incluse) peuvent être centrées en d'autres points que l'origine. Soient Ω une telle autre origine et M un point du plan d'affixe z.

Dans le cas d'une similitude centrée en Ω , d'angle θ et de rapport λ , [dessin] on aura $M' = {}^{\lambda} \sin^{\theta}_{\Omega}(M)$: en introduisant deux points $\begin{cases} N := \overrightarrow{\Omega M} = M - \Omega \\ N' := \overrightarrow{\Omega M'} = M' - \Omega \end{cases}$, l'égalité $M' = {}^{\lambda} \sin^{\theta}_{\Omega}(M)$ se "translate" du centre Ω vers l'origine O et devient $M' = {}^{\lambda} \sin^{\theta}_{\Omega}(N)$, ce qui s'écrit aussi $\overrightarrow{\Omega M'} = {}^{\lambda} \sin^{\theta}_{\Omega}(\overrightarrow{\Omega M})$, i. e. $z' - \omega = \lambda e^{i\theta} (z - \omega)$, ou encore

ou encore

$$z' = \underbrace{\begin{array}{c} \underbrace{\lambda e^{i\theta}} \\ \text{coefficient argument} \\ \text{multiplicateur} \end{array}}_{\text{forme si centre}} \underbrace{\begin{array}{c} z \\ \text{complémentaire} \\ \text{à 1 du "poids" } \lambda e^{i\theta} \end{array}}_{\text{centre}} \underbrace{\begin{array}{c} \text{($\grave{\text{a}}$ penser comme} \\ \text{un barycentre}) \end{array}}_{\text{un barycentre}}.$$

Considérons à présent une similitude indirecte de centre Ω , de rapport λ et dont l'axe définit un angle $\frac{1}{2}$ avec \mathbf{R} .

[dessin: l'axe et \mathbf{R} se coupant en C, le centre Ω , un point M et son image M', les trois points W, N, N' sont les rotatés de Ω, M, M' par $r^{-\frac{\theta}{2}}$].

On a alors $\overrightarrow{WN'} = \lambda \operatorname{ref}^{\mathbf{R}}\left(\overrightarrow{WN}\right)$, $i.\ e.\ \operatorname{rot}_{C}^{-\frac{\theta}{2}}\left(\overrightarrow{\Omega M'}\right) = \lambda \operatorname{ref}^{\mathbf{R}}\left(\operatorname{rot}_{C}^{-\frac{\theta}{2}}\left(\overrightarrow{\Omega M}\right)\right)$, $i.\ e.\ e^{-i\frac{\theta}{2}}\left(z' - \omega\right) = \lambda \operatorname{ref}^{\mathbf{R}}\left(\operatorname{rot}_{C}^{-\frac{\theta}{2}}\left(\overrightarrow{\Omega M}\right)\right)$ $\lambda \overline{e^{-i\frac{\theta}{2}}(z-\omega)}$, i. e. $z'-\omega=e^{i\frac{\theta}{2}}\lambda e^{i\frac{\theta}{2}}(\overline{z}-\overline{\omega})$, i. e.

$$z' = \lambda e^{i\theta} \overline{z} + \omega - \lambda e^{i\theta} \overline{\omega}. \tag{1}$$

(★ ne pas calquer sur la forme directe : d'une part l'argument z est conjugué, d'autre part son image z' ne vaut ni $\lambda e^{i\theta} \overline{z} + (1 - \lambda e^{i\theta}) \overline{\omega}$ ni $\lambda e^{i\theta} \overline{z} + (1 - \lambda e^{i\theta}) \omega$ sauf si $\omega = \overline{\omega}$, i. e. si le centre ω est sur l'axe des réels)

Corollaire.

Toutes les similitudes directes et translations ont une expression complexe de la forme $\alpha \operatorname{Id} + \beta$ où $\alpha \neq 0$ et $\beta \ sont \ des \ complexes. \ Par \ exemple, \left\{ \begin{array}{l} pour \ une \ translation, \ on \ aura \ \alpha=1. \\ pour \ une \ rotation, \ on \ aura \ |\alpha|=1 \ et \ (\alpha=1\Longrightarrow \beta=0) \ . \end{array} \right.$ pour une homothétie, on aura $\alpha \in \mathbf{R}$.

Toutes les similitudes indirectes et translations ont une expression complexe de la forme $\alpha \overline{\mathrm{Id}} + \beta$ où $\alpha \neq 0$ et β sont des complexes Pour une réflexion glissée, on aura $|\alpha|=1$.

Remarque. Pour toutes les isométries, le complexe α est de module 1. Plus généralement, on verra que le module $|\alpha|$ associé à une quasi-isométrie est son facteur de multiplication des distances.

Démonstration. On vient de le voir pour les similitudes. Il reste les translations et les réflexions glissées. $[\operatorname{dessin} \overrightarrow{zz'} = u]$

Pour les translations, on a $\overrightarrow{zz'} = u$, i. e. z' - z = u, ou encore z' = z + u qui est de la forme voulue. [dessin : les deux axes se coupant en C, un point M et son image M', le translaté P = M + u, les trois points N, N', Q sont les rotatés de M, M', P par $r^{-\frac{\theta}{2}}$

⁴on rappelle que l'on identifie les points aux vecteurs en annulant l'origine de ces derniers

Pour les réflexions glissées, on a $\overrightarrow{MP} = u$, i. e. p = z + u; de plus, on a successivement $N' = \operatorname{ref}^{\mathbf{R}}(Q)$

$$\iff \operatorname{rot}_{C}^{-\frac{\theta}{2}}(M') = \operatorname{ref}^{\mathbf{R}}\left(\operatorname{rot}_{C}^{-\frac{\theta}{2}}(P)\right)$$

$$\iff e^{-i\frac{\theta}{2}}z' + \left(1 - e^{-i\frac{\theta}{2}}\right)c = e^{-i\frac{\theta}{2}}p + \left(1 - e^{-i\frac{\theta}{2}}\right)c$$

$$\iff z' + \left(e^{i\frac{\theta}{2}} - 1\right)c = e^{i\theta}\left(\overline{z} + \overline{u}\right) + \left(e^{i\frac{\theta}{2}} - e^{i\theta}\right)\overline{c}$$

$$\iff z' = e^{i\theta}\overline{z} + \underbrace{(\cdots)}_{\text{indépendant de }z}, \text{ qui est de la forme recherchée.}$$

Un théorème à venir va montrer la réciproque : toute transformation de la forme $\alpha \operatorname{Id} + \beta$ ou $\alpha \operatorname{Id} + \beta$ sera une quasi-isométrie du plan.

Avant cela, une longue digression.

5 Principe de conjugaison

Réécrivons l'égalité décrivant l'image par une similitude directe :

$$z' = \lambda e^{i\theta} \left(z - \omega \right) + \omega = \lambda e^{i\theta} \left(t_{-\omega} \left(z \right) \right) + \omega = \lambda \sin_O^\theta \left(t_{-\omega} \left(z \right) \right) + \omega = t_\omega \left(\lambda \sin_O^\theta \left(t_{-\omega} \left(z \right) \right) \right),$$

 $i.\ e.\ ^{\lambda}\sin_{O}^{\theta}(z)=\left[t_{\omega}\circ\ ^{\lambda}\sin_{O}^{\theta}\circ t_{-\omega}\right](z).$ Ceci tenant pour tout complexe z, on a l'égalité des applications

$$t_{\omega} \circ {}^{\lambda} \sin^{\theta}_{O} \circ [t_{\omega}]^{-1} = {}^{\lambda} \sin^{\theta}_{\omega}.$$

En général, lorsque f est une application et φ une bijection, l'application $\varphi \circ f \circ \varphi^{-1}$ es appelée **conjuguée** de f par φ . L'égalité précédente exprime que conjuguer une similitude directe par une translation revient à appliquer cette translation sur le centre de la similitude, *l'action* de cette similitude (rotation & homothétie autour du centre) demeurant inchangée une fois le centre déplacé.

Ce principe de conjugaison est très général et pourrait s'énoncer ainsi :

$$conjuguer \ revient \ \grave{a} \ \left\{ \begin{array}{c} changer \ de \ point \ de \ vue \ tout \\ en \ conservant \ la \ m\^{e}me \ action \end{array} \right.$$

(dans le cas ci-dessus, le "point de vue" était le centre de la similitude).

Voyons deux exemples : la conjugaison des similitudes (directes ou indirectes) par des quasi-isométries positives (rappel : ces dernières sont les translations & similitudes directes).

Proposition. Pour toute quasi-isométrie positive φ , on a l'égalité (avec λ et θ des réels et Ω un point)

$$\varphi \circ {}^{\lambda} \sin^{\theta}_{\Omega} \circ \varphi^{-1} = {}^{\lambda} \sin^{\theta}_{\varphi(\Omega)}$$

(remarque : le cas où φ est une translation a déjà été traité plus haut)

Démonstration. On veut $\varphi \circ {}^{\lambda} \sin^{\theta}_{\Omega} = {}^{\lambda} \sin^{\theta}_{\varphi(\Omega)} \circ \varphi$ (plus commode d'avoir au plus deux facteurs et pas d'inverse). On sait que φ agit sur \mathbf{C} comme une fonction affine $\alpha \operatorname{Id} + \beta$. Fixons un complexe z et abrégeons $\sigma := \lambda e^{i\theta}$. On a alors

$$z \stackrel{\varphi}{\longmapsto} \varphi(z) = \alpha z + \beta \stackrel{\lambda \sin^{\theta}_{\varphi(\Omega)}}{\longmapsto} \sigma(\alpha z + \beta) + (1 - \sigma) \underbrace{\varphi(\omega)}_{=\alpha \omega + \beta} = \sigma \alpha z \underline{+\beta \sigma} + (1 - \sigma) \alpha \omega + (1 \underline{-\sigma}) \beta,$$

et
$$z \stackrel{\lambda \sin^{\theta}_{\Omega}}{\longmapsto} \sigma z + (1 - \sigma) \omega \stackrel{\varphi}{\longmapsto} \alpha (\sigma z + (1 - \sigma) \omega) + \beta = \alpha \sigma z + \alpha (1 - \sigma) \omega + \beta$$
,

ce qui montre l'égalité voulue des composées en z, a fortiori en tout complexe puisque z a été invoqué.

Illustrons à nouveau le principe de conjugaison, cette fois sur les réflexions glissées.

En reprenant l'égalité (2) avec c = 0, on peut la réécrire [dessin : $R \parallel v$ et $r(\mathbf{R}) \parallel r(v)$]

$$z' = e^{i\frac{\theta}{2}} e^{-i\frac{\theta}{2}} (z+u)^{v:=e^{-i\frac{\theta}{2}}u} e^{i\frac{\theta}{2}} e^{-i\frac{\theta}{2}z+v} \stackrel{r:=\operatorname{rot}_{0}^{\frac{\theta}{2}}}{=} e^{i\frac{\theta}{2}} \overline{r^{-1}(z)+v} = e^{i\frac{\theta}{2}} \overline{t_{v}(r^{-1}(z))}$$

$$= e^{i\frac{\theta}{2}} \operatorname{ref}^{\mathbf{R}} \left(t_{v} \left(r^{-1}(z) \right) \right) = r \left(\operatorname{ref}^{\mathbf{R}} \left(t_{v} \left(r^{-1}(z) \right) \right) \right) = \left[r \circ \underbrace{\left(\operatorname{ref}^{\mathbf{R}} \circ t_{v} \right)}_{=\operatorname{ref}_{v}^{\mathbf{R}}} \circ r^{-1} \right] (z) ;$$

ceci tenant pour tout complexe z, on a l'égalité des applications

$$r \circ \operatorname{ref}_{v}^{\mathbf{R}} \circ r^{-1} = \operatorname{ref}_{r(v)}^{r(\mathbf{R})}.$$

Ainsi, conjuguer (dans ce cas) une réflexion glissée par une rotation revient à tourner l'axe et le vecteur selon cette rotation, l'action de la réflexion glissée (réflexion et translation selon un vecteur colinéaire à l'axe) demeurant inchangée.

Voyons ensuite le cas général des similitudes indirectes.

Proposition. Pour toute quasi-isométrie positive φ , on a l'égalité (avec λ un réel, Δ un axe et Ω un point de Δ)

$$\varphi \circ {}^{\lambda} \sin^{\Delta}_{\Omega} \circ \varphi^{-1} = {}^{\lambda} \sin^{\varphi(\Delta)}_{\varphi(\Omega)}$$

Remarque ensembliste. L'écriture $\varphi(\Delta)$ NE DÉSIGNE PAS l'image de Δ par φ (cela n'aurait pas de sens car Δ n'est pas un objet de la source de φ). Elle dénote l'ensemble des images par φ des éléments de Δ et est notée

$$\varphi(\Delta) := \{ \varphi(\delta) \; ; \; \delta \in \Delta \} \text{ ou } \{ \varphi(\delta) \}_{\delta \in \Delta} \text{ ou } \{ \varphi(\delta) \}^{\delta \in \Delta}$$

(prononcer "ensemble des $\varphi(\delta)$ pour δ parcourant Δ ").

Démonstration.

Nous affirmons qu'il suffit de montrer le résultat pour $\omega = 0$ (ce qui allégera susbéquemment les calculs complexes à venir) : expliquons cela.

Supposons le résultat pour toute quasi-isométrie positive φ et pour toute similitude indirecte de centre nul. Soit alors φ une quasi-isométrie positive et ω un point : on a

$$\varphi \circ {}^{\lambda} \operatorname{sim}_{\Omega}^{\Delta} \circ \varphi^{-1} \stackrel{D:=\Delta-\omega}{=} \varphi \circ {}^{\lambda} \operatorname{sim}_{t_{\omega}(0)}^{t_{\omega}(D)} \circ \varphi^{-1} \stackrel{\operatorname{hypothèse}}{=} \varphi \circ \left(t_{\omega} \circ {}^{\lambda} \operatorname{sim}_{0}^{D} \circ t_{\omega}^{-1}\right) \circ \varphi^{-1}$$

$$= (\varphi \circ t_{\omega}) \circ {}^{\lambda} \operatorname{sim}_{0}^{D} \circ \left(t_{\omega}^{-1} \circ \varphi^{-1}\right) = [\varphi \circ t_{\omega}] \circ {}^{\lambda} \operatorname{sim}_{0}^{D} \circ [\varphi \circ t_{\omega}]^{-1}$$

$$\stackrel{\operatorname{hypothèse}}{=} {}^{\lambda} \operatorname{sim}_{[\varphi \circ t_{\omega}](0)}^{[\varphi \circ t_{\omega}](D)} = {}^{\lambda} \operatorname{sim}_{\varphi(t_{\omega}(D))}^{\varphi(t_{\omega}(D))} = {}^{\lambda} \operatorname{sim}_{\varphi(\omega)}^{\varphi(\Delta)}, c. q. f. d..$$

Montrons à présent le résultat lorsque $\omega=0.$

On veut montrer que $\varphi \circ {}^{\lambda} \operatorname{sim}_{\Omega}^{\varphi} = {}^{\lambda} \operatorname{sim}_{\varphi(\Omega)}^{\varphi(\Delta)} \circ \lambda$. On sait que φ agit sur \mathbf{C} comme une fonction affine $\alpha \operatorname{Id} + \beta$; notons r le module et t l'angle de α . L'axe $\varphi(\Delta)$ fait alors un angle t avec Δ , lequel définit un angle $\frac{\theta}{2}$ avec \mathbf{R} , de sorte que l'axe $\varphi(\Delta)$ fait un angle $\frac{2t+\theta}{2}$ avec \mathbf{R} (ce qui permet d'expliciter la formule (1)) Fixons un complexe z. Il est envoyé

d'une part suivant
$$z \stackrel{\lambda \sin \Delta}{\longmapsto} \lambda e^{i\theta} \overline{z} \stackrel{\varphi}{\longmapsto} r e^{it} \left(\lambda e^{i\theta} \overline{z} \right) + \beta = r \lambda e^{i(t+\theta)} \overline{z} + \beta,$$

d'autre part suivant $z \stackrel{\varphi}{\longmapsto} r e^{it} z + \beta \stackrel{\lambda \sin \varphi(\Delta)}{\longmapsto} \lambda e^{i(\theta+2t)} \overline{r e^{it} z + \beta} + \beta - \lambda e^{i(\theta+2t)} \overline{\beta},$

ce qui montre l'égalité voulue des composées en z (a fortiori en tout complexe puisque z a été invoqué).

6 Classifications des transformations du plan complexe de la forme $\alpha \operatorname{Id} + \beta$ et $\alpha \overline{\operatorname{Id}} + \beta$

Théorème. Soient α et β deux complexes avec $\alpha \neq 0$.

- 1. $(description \ de \ \alpha \operatorname{Id} + \beta)$
 - (a) $Si \ \alpha = 1$, alors $\alpha \operatorname{Id} + \beta$ est une translation (de vecteur β).
 - (b) Si $\alpha \neq 1$, alors $\alpha \operatorname{Id} + \beta$ est une similitude directe de rapport $|\alpha|$ et d'angle $\arg \alpha$.
- 2. $(description \ de \ \alpha \overline{\mathrm{Id}} + \beta)$
 - (a) $si \ |\alpha| = 1$, $alors \ \alpha \overline{\mathrm{Id}} + \beta$ est une symétrie glissée par rapport à un axe faisant avec \mathbf{R} un angle $\frac{\arg \alpha}{2}$.
 - (b) $si |\alpha| \neq 1$, alors $\alpha \overline{\mathrm{Id}} + \beta$ est une similitude indirecte de rapport $|\alpha|$ et d'axe faisant avec \mathbf{R} un angle $\frac{\arg \alpha}{2}$.

Démonstration.

- 1. Notons $f := \alpha \operatorname{Id} + \beta$.
 - (a) Si $\alpha = 1$, il est clair que $f = \operatorname{Id} + \beta$ est une translation de vecteur β .
 - (b) Supposons à présent $\alpha \neq 1$. Alors l'équation f(z) = z d'inconnue z (qui se réécrit $\alpha z + \beta = z$) admet une unique solution, que l'on appellera ω , d'où pour tout z complexe

$$f(z) - \omega = f(z) - f(\omega) = (\alpha z + \beta) - (\alpha \omega + \beta) = \alpha (z - \omega),$$

ce qui montre que f est la similitude de centre ω , rapport $|\alpha|$ et angle arg α .

2. Notons $f := \alpha \overline{\mathrm{Id}} + \beta$. Écrivons α sous la forme $\lambda e^{2\theta i}$ (avec $\lambda > 0$ et $|\theta| \leq \frac{\pi}{2}$), notons $r := \mathrm{rot}_0^{\theta}$ et posons $\widetilde{f} := r^{-1} \circ f \circ r$. Alors un complexe z est envoyé par \widetilde{f} sur

$$\widetilde{f}(z) = r^{-1} \left(f\left(r\left(z\right)\right) \right) = e^{-i\theta} \left(\lambda e^{2\theta i} \overline{e^{i\theta} z} + \beta \right) = \lambda \overline{z} + \beta e^{-i\theta}.$$

- (a) On a ainsi ramené l'étude de f à celle de \widetilde{f} qui est une fonction affine comme f mais dont la pente λ est un réel strictement positif l'étude en sera simplifiée. [dessin : axe \mathbf{R} et un axe Δ tel que $\mathbf{R} \widetilde{\Delta} = \theta$]
- (b) Supposons $\lambda = 1$. [dessin : axe **R**, vecteur u plus vecteur 2bi] On découpe $\beta e^{-i\theta} = u + 2bi$ (avec u et b réels) et on pose $\Delta := \mathbf{R} + b$. On peut alors calculer

$$\widetilde{f} = \overline{\operatorname{Id}} + u + 2bi = t_u \circ t_{2bi} \circ \operatorname{ref}^{\mathbf{R}} = t_u \circ \left(\operatorname{ref}^{\Delta} \circ \operatorname{ref}^{\mathbf{R}}\right) \circ \operatorname{ref}^{\mathbf{R}}$$

$$= \underbrace{t_u \circ \operatorname{ref}^{\Delta}}_{=\operatorname{ref}^{\Delta}_u} \circ \underbrace{\operatorname{ref}^{\mathbf{R}} \circ \operatorname{ref}^{\mathbf{R}}}_{=\operatorname{Id}} = \operatorname{ref}^{\Delta}_u,$$

d'où l'on tire

$$f = (r \circ r^{-1}) \circ f \circ (r \circ r^{-1}) = r \circ (r^{-1} \circ f \circ r) \circ r^{-1}$$
$$= r \circ \widetilde{f} \circ r^{-1} = r \circ \operatorname{ref}_{u}^{\Delta} \circ r^{-1} = \operatorname{ref}_{r(u)}^{r(\Delta)}$$

où la dernière égalité résulte du principe de conjugaison (cf. une proposition précédente).

(c) Supposons $\lambda \neq 1$. Alors l'équation $\widetilde{f}(z) = z$ en l'inconnue $z = \binom{x}{y} \in \mathbf{R}^2$ se réécrit $\left\{ \begin{array}{l} \lambda x + \operatorname{Re}\left(\beta e^{-i\theta}\right) = x \\ -\lambda y + \operatorname{Im}\left(\beta e^{-i\theta}\right) = y \end{array} \right.$, donc admet une unique solution (le coefficient λ en x à est $\neq 1$ car $\lambda \neq 1$ et celui $-\lambda$ en y est $\neq 1$ car $\lambda \geq 0$). En notant ω cette solution, on peut peut écrire pour tout z complexe

$$\widetilde{f}(z) - \omega = \widetilde{f}(z) - \widetilde{f}(\omega) = \lambda \overline{(z - \omega)},$$

ce qui montre que \tilde{f} est la similitude de centre ω , rapport λ et axe \mathbf{R} . On conclut grâce au principe de conjugaison :

$$f = r \circ \widetilde{f} \circ r^{-1} = r \circ {}^{\lambda} \operatorname{sim}_{\omega}^{\mathbf{R}} \circ r^{-1} = {}^{\lambda} \operatorname{sim}_{r(\omega)}^{r(\mathbf{R})}$$

À RETENIR (de cette démonstration) :

1. pour se débarasser des *constantes* dans les équations affines, on cherche des *points fixes* par la fonction affine considérée;

14

2. le principe de conjugaison est très utile!

Résumé. [un tableau comme pour les quasi-isométries : à gauche $\alpha \overline{\mathrm{Id}} + \beta$, à droite $\alpha \mathrm{Id} + \beta$, en haut les isométries (à gauche $|\alpha| = 1$ pour les réflexions glissées, à droite $\alpha = 1$ pour les translations, $|\alpha| = 1 \land (\alpha = 1 \Longrightarrow \beta \neq 0)$ pour les rotations $\neq \mathrm{Id}$ et $\alpha \in \mathbf{R}$ pour les homothéties), en bas les autres]

"Résumé" du chapitre.
$$\left\{ \begin{array}{ll} \mathbf{C}^* \times \mathbf{C} \times \{\pm 1\} & \widetilde{\longrightarrow} & \left[\begin{array}{c} \text{ensemble des quasiisométries du plan} \\ \text{isométries du plan} \end{array} \right] \\ (\alpha,\beta,\varepsilon) & \longmapsto & \left\{ \begin{array}{c} \alpha \operatorname{Id} + \beta \operatorname{si} \varepsilon = 1 \\ \alpha \operatorname{\overline{Id}} + \beta \operatorname{si} \varepsilon = -1 \end{array} \right. \end{array} \right. (\textit{cf. TD}).$$

Remarque.

Considérons trois complexes $\alpha = \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$, β et $z = \begin{pmatrix} x \\ y \end{pmatrix}$. Alors on peut écrire

$$\alpha z + \beta = (\lambda + i\mu)(x + iy) + \beta = (\lambda x - \mu y) + i(\mu x + \lambda y) + \beta$$
$$= \begin{pmatrix} \lambda x - \mu y \\ \mu x + \lambda y \end{pmatrix} + \beta = \begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + Cste$$

où la matrice $\begin{pmatrix} \lambda & -\mu \\ \mu & \lambda \end{pmatrix}$ est de déterminant $\lambda^2 + \mu^2 = |\alpha|^2$ positif (tout comme $\alpha \operatorname{Id} + \beta$ est une quasi-isométrie positive).

On écrirait de même

$$\alpha \overline{z} + \beta = \begin{pmatrix} \lambda & \mu \\ \mu & -\lambda \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + Cste$$

où la matrice $\begin{pmatrix} \lambda & \mu \\ \mu & -\lambda \end{pmatrix}$ est de déterminant $-\lambda^2 - \mu^2 = -|\alpha|^2$ négatif (tout comme $\alpha \overline{\mathrm{Id}} + \beta$ est une quasi-isométrie négative).

On retiendra donc que

le signe du déterminant de la matrice associée à une quasi-isométrie détermine si cette dernière préserve ou inverse l'orientation.