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Abstract. We interpret one-part Hurwitz numbers as structure coefficients of the subalgebra of invariants of an al-
gebra ofsplit permutations, which is built on the model of the Ivanov-Kerov algebra of partial permutations. The
computation of Hurwitz numbers is then reduced to the diagonalization of a matrix whose entries are indexed by
multipartitionsand whose eigenvalues are known. The described algorithm has almost genus-free complexity.

Résuḿe. Nous interprétons les nombres de Hurwitz simples comme constantes de structure de la sous-algèbre des
invariants d’une algèbre depermutations scindées, qui est construite sur le modèle de l’algèbre d’Ivanov-Kerov des
permutations partielles. Nous ramenons ainsi le calcul desnombres de Hurwitz à la diagonalisation d’une matrice
dont les entrées sont indexées par lesmultipartitions, et dont l’ensemble des valeurs propres est connu. L’algorithme
obtenu est de complexité indépendante du genre.

Keywords: Hurwitz numbers, multipartitions, symmetric group.

In the end of the nineteenth century, Hurwitz asked the following: given a permutationσ ∈ Sn, in how
many ways can one factoriseσ in a product of a given number of transpositions that generate a transitive
subgroup ofSn? Whenσ is a cycle and the number of transpositions is minimal, the answer has been
known since Hurwitz himself ([Hur02]). However, whenσ lies in a more complex conjugacy class, the
computation of these Hurwitz numbers whenn is large remains an open problem, which has known a
renewal of interest in the late contexts of the study of moduli space of curves (see [ELSV01], [FP00],
[OP01], [OP02]) and of the 2-dimensional gravity models (see [Wit91] and [Zvo05]). Abstract formulas
stemming from the Gromov-Witten theory, in particular the ELSV formula, provide explicit expressions
for the spheric and toric genus. One also has recurrence formulas ([OP01, p. 100-101]) that theoretically
give all Hurwitz numbers, but are computationally cumbersome. On the other hand, the asymptotics of
simple Hurwitz numbers whenn goes to∞ is almost completly known, see [Zvo04]. However, as far as
we know, no closed and efficient formula has yet been found forgeneral Hurwitz numbers.

We describe in this paper a natural way to compute Hurwitz numbers of one partition as structure
coefficients of an algebra ofsplit permutations(see section 2) reminding that of Ivanov and Kerov’spartial
permutations, cf. [IK99]. More precisely, the simple Hurwitz numbers are certain coefficients involved
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in the powers of the class ofsplit transpositions, see Proposition 1. In the subalgebra of invariants,
the multiplication by this class of transpositions turns out to be diagonalisable with known eigenvalues,
namely, the contents of the multipartitions of sizen (section 4). These results allow an easy computation
of the simple Hurwitz numbers, and our algorithm has complexity O(Cn) for some constantC; this is far

better than the
(
n
2

)2n
corresponding to the raw computation of the products of all lists of2n transpositions

in Sn — 2n being the typical number involved in the computation of Hurwitz numbersHg
n(λ).

If one omits the transitivity condition in the enumeration of factorisations in transpositions, one obtains
thedisconnectedHurwitz numbers, and they are merely a specialization of theFrobenius formula, which
relates

- the number of factorisations of the unit element in a finite group whose factors lie in prescribed
conjugacy classes,

- and the values of the irreducible characters of the group onthese conjugacy classes,

see Appendix in [LZ04]. Then, if one studies the orbits of thesubgroup generated by the transpositions
of a factorisation of the identity inSn, an inclusion-exclusion principle on set partitions yields a explicit
formula forconnectedHurwitz numbers. This formula involves many character values, and consequently
can’t be used for efficient computations; however, we found out that computing the structure coefficients
of the powers of the class of split transpositions eventually yields the same formula, and with all symme-
tries being very naturally handled thanks to the invariant algebra, see Theorem 8.

To conclude this introduction, let us mention a very comfortable aspect of our algorithm: the diagonal-
izing of the class ofn-sized split tranpositions (for a givenn) gives a straightforward andsimultaneous
access toall one-part Hurwitz numbers of degreen — i.e., for any partitionλ and for any genusg. For
example, it becomes easy to compute all digits ofH100

10 ((3, 3)):

78209797946099221469380408333253658389335110778578102493417366937278419420971892637983710

75560582522421501772573340373051838027863257564920539419318289349146733779503133393782164

00502995632992349968406352652755255329660159383909006457131068007080172851654851060277221

485502282528772332192003548685671573635386956399466111869724001404563147200000

and the computation of the other Hurwitz numbers of ordern = 10 is then almost instantaneous.

1 Combinatorial background
Let us describe the basic combinatorial objects that will beused throughout this paper, and fix some

notations. The cardinality of a setS will be denoted by|S|, #S or cardS.

1.1 Partitions, Young diagrams, contents
A partition of a positive integern is a finite non-increasing sequenceλ = (λ1 ≥ λ2 ≥ · · · ≥ λl) of

integersλi (thepartsof the partition) whose sum equalsn (thesizeof the partition, also denoted|λ|). The
numberl of parts is called thelengthof λ and is denoted byℓ(λ). If k is an integer in[[1, n]] := {1, . . . , n},
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the multiplicity of k in λ is the number of partsλi equallingk, and will be denotedmk(λ). Then, a
partitionλ can be written multiplicatively asλ = 1m1(λ)2m2(λ) · · · sms(λ), with |λ| =

∑
k≥1 kmk(λ).

A partitionλ is usually represented by itsYoung diagram, which consists inℓ(λ) lines of piled squares
with λj squares in thej-th line. So for instance, the Young diagram of the partition(5, 4, 2) is:

Thecontentof a case(x, y) in a Young diagram is the integerx− y, and thecontentc(λ) of a partition is
the sum of the contents of all the cases of the associated Young diagram. Thus, the content of(5, 4, 2) is
4 + 3+ 2 + 1+ 0 + 2+ 1 + 0− 1− 1− 2 = 9. A n-sizedstandard tableauis an-sized Young diagram
whose cases are filled each with an integer of[[1, n]], so that the corresponding sequences on each line and
on each column increase.

In the following,λ ⊢ n means thatλ is a partition ofn, andYn is the set ofn-sized Young diagrams.
One can totally order the set of all partitionsY =

⊔∞
n=0 Yn by settingλ ≤ µ if and only if |λ| < |µ|, or

|λ| = |µ| andλ ≤lexico µ. It is well-known that the number ofn-sized partitions satisfies the asymptotic
formula of Hardy and Ramanujan

cardYn
∼= eπ

√
2n/3

4
√
3n

, (1)

see [FS09, VIII. 6]. In particuliar,#Yn is always smaller thanA
√
n for some constantA > 0.

It is well-known that the partitions of sizen parametrize the conjugacy classes ofSn. So, thetypet(σ)
of a permutationσ is the partition obtained by ordering the lengths of its cycles (including singletons),
and two permutations are conjugated if and only if they have same type. Whenλ ⊢ n, we shall denote by
Cλ both the set of permutations ofSn whose type isλ, and the sum

∑
t(σ)=λ σ of such elements in the

group algebraQ[Sn]. We also set̃Cλ := Cλ/cardCλ for thenormalizedconjugacy class of typeλ, and
zλ = n!/|Cλ| =

∏
i≥1 i

mi(λ)mi(λ)!.

Finally, if λ is a partition, thecompletedpartition (with respect to a given positive integern ≥ |λ|)
is λ := 1n−|λ|+m1(λ)2m2(λ) · · · sms(λ); hence, one has added parts of size1 so that|λ| = n. On the
other hand, theramificationof a partitionλ is the integerr(λ) := |λ| − ℓ(λ) =

∑
i≥1(λi − 1), and its

signatureis ε(λ) := (−1)r(λ), which equalsε(σ) for anyσ ∈ Cλ. These two quantities are conserved
when completing the partitionλ.

1.2 Set partitions, Young subgroups, irreducible modules of Q[Sn]

A set partitionπ = π1 ⊔ · · · ⊔ πp of a setS is the set of the parts of a partition ofS (the parts are
thereforeunordered). For instance, the cycles of a permutationσ ∈ Sn gives a set partitionorbσ of
[[1, n]]. Theprofile of a set partitionπ = π1 ⊔ · · · ⊔ πp is the partition obtained by ordering the sizes|πi|
of the parts ofπ.
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The refinement orderon the setPn of set partitions of[[1, n]] is defined by settingπ ≤ π′ if and
only if each partπi is included in a partπ′

j ; equivalently, eachπ′
j is a union ofπi. Thus, [[1, n]] is

the greatest (coarsest) element ofPn and {1} ⊔ {2} ⊔ · · · ⊔ {n} is the smallest (finest) one. Since
(Pn,≤) is a finite distributive lattice, there is a Möbius functionµ : Pn ×Pn → Z satisfying the Rota
inversion formula ([Rot64]): for any functionf onPn taking values in an abelian group, if one defines
f∗(π) :=

∑
π′≥π f(π

′) for all π ∈ Pn, thenf(π) =
∑

π′≥π µ(π, π
′) f∗(π′).

TheYoung subgroupof a set partitionπ ∈ Pn is defined bySπ :=
∏
iSπi

. Then, for anyn-sized
standard tableauT , theYoung idempotenteT is defined by the product inQ[Sn] of two factors: the sum
of all elements in the Young subgroup associated to the rows of T and the alternating sum of all elements
in the Young subgroup associated to the colums ofT . TheSn-modulesQ[Sn] eT are irreducible and, for
same-shaped tableauxT , are all isomorphic one to another, whereas two different-shaped tableaux lead
to non-isomorphic modules ([JK81]). For any partitionλ ⊢ n, theSpecht moduleof typeλ is any of the
Q[Sn] eT ’s whereT is aλ-shaped tableau. It is denotedVλ, and the character of the representationVλ
will be denotedχλ. If one setseλ :=

∑
shape(T )=λ eT , then theeλ’s are central idempotents (up to some

scalars) that sum up to1, whence a decomposition in blocksQ[Sn] =
⊕

λ⊢n Eλ, whereEλ := eλQ[Sn].
The projection on the blockEλ will be denotedprλ.

1.3 Multipartitions and their symmetries
A multipartition is a setΛ = {λi} of partitionsλi, or equivalently an ordered listΛ = [λ1 ≥ λ2 ≥ · · · ]

of partitions. Thesizeof a multipartitionΛ = {λi} is the sum
∑ |λi|, and the number of partitionsλi

equalling a given partitionλ will be denotedmλ(Λ). In order to harmonize the definitions to be seen, a
n-sized multipartition (wheren ≥ 1 is an integer) will also be called asplit partition of n. Their set will
be denotedYs

n, and we shall writeΛ |= n to say thatΛ is an-sized split partition.

Theprofileof a split partitionΛ = [λ1 ≥ · · · ≥ λp] is the partition|Λ| := (|λ1| ≥ · · · ≥ |λp|). If λ is a
partition of an integerk ≤ n, one defines themaximally split partitionof λ by the split partition

λs :=
[
(λ1) ≥ (λ2) ≥ · · · ≥ (λℓ(λ)) ≥ (1) ≥ (1) ≥ · · · ≥ (1)

]
. (2)

So for instance,(3, 2, 2, 1)s = [(3), (2), (2), (1)n−7] for anyn ≥ 8. For a givenn ≥ 1, setp (n) and
sp (n) for the numbers ofn-sized partitions and split partitions respectively. The sequence ofsp (n) goes
like

1, 3, 6, 14, 27, 58, 111, 223, 424, 817 . . . (3)

Clusteringn-sized partitions according to their profile gives the majoration

sp(n) ≤
∑

λ⊢n

∏

i

p(λi) ≤
∑

λ⊢n

∏

i

A
√
λi ≤

∑

λ⊢n

∏

i

Aλi = An
∑

λ⊢n
1 ≤ An+

√
n. (4)

Therefore, the number ofn-sized split partitions is smaller thanBn for somen-free constantB > 0.

A symmetry(or automorphism) of a split partitionΛ = [λ1 ≥ λ2 ≥ · · · ≥ λp] is an element of the
set of words{[τ(λ1)τ(λ2) . . . τ(λp)]}τ that are permutations of the word[λ1λ2 . . . λp], and such that
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|τ(λ1)| ≥ |τ(λ2)| ≥ · · · ≥ |τ(λp)|. The set of such symmetries will be denotedAutΛ. For instance, the

split partitionΛ = , , , has three symmetries corresponding to the reorderings of the three
2-sized parts. More generally, choosing a symmetry ofΛ amounts to choosing for each sizek ≥ 1 a
permutation of thek-sized partitionsλi modulo the permutations of the sameλi’s, whence the formula

|AutΛ| =
∏

k≥1

(
mk(|Λ|)

{mλ(Λ)}|λ|=k

)
=

∏
k≥1mk(|Λ|) !∏
λ⊢nmλ(Λ)!

. (5)

1.4 Hurwitz numbers
Let n andk be positive integers. Aconstellation([LZ04, Chapter 1]) of degreen and lengthk is a

family of k permutations inSn generating a group which acts transitively on[[1, n]], and whose product
is the identity. Thetypeof a constellation{σi}i is the family of the types of theσi, and itsgenusis
the integerg := g′ + 1 defined by the Riemann-Hurwitz formula2g′ + 2n =

∑
i r(σi). By using a

monodromy argument, one can show that constellations correspond to marked ramified coverings of the
sphere; then, the genus of the constellation defined as aboveequals the genus of the ramified covering,
whence the terminology.

Let n, g, k ≥ 0 be integers andλ1, . . . , λk be partitions of sizes less thann. We denote byt the
integer such that2g′ + 2n =

∑
i r
(
λi
)
+ t; in other words, one addst transpositions in order to obtain a

constellation of genusg. The Hurwitz numbers are defined by(i):

Hg
n(λ

1, . . . , λk) :=
1

n!
card

{
constellations(σ1, . . . , σk, τ1, . . . , τt) ∈ (Sn)

k+t
∣∣ t(σi)=λi

t(τj)=2

}
(6)

As previously mentioned, these numbers also count (up to topological equivalence) some marked ra-
mified coverings of the sphere. If one forgets the transitivity condition, finding the disconnected Hur-
witz numberHg

n
•(λ1, . . . , λk) amounts to computing the coefficient of the unit element in the product

Cλ1 · · ·Cλk (C2)
t in the algebraQ[Sn]. We will add some structure to the latter algebra to take into

account the orbits of the generated group, and more precisely to ensure its being transitive.

2 The algebra of split permutations and its invariant subalgebra
2.1 The algebra of split permutations Bn

A split permutationof ordern is a couple(σ, π) that consists in a set partitionπ ∈ Pn together with a
permutationσ lying in Sπ, which amounts to sayingorbσ ≤ π for the refinement order. The setSs

n of
split permutations of ordern has cardinality

cardSs
n =

∑

π∈Pn

∏

i

|πi|! =
∑

σ∈Sn

B#cycles ofσ =
∑

λ⊢n
|Cλ|Bℓ(λ) (7)

(i) In the litterature, one may find a normalising factor to remember the parts of size1 that were needed to complete each partition

λi. This factor equals the product of the binomials
(

n−|λi|+m1(λ
i)

m1(λi)

)

.
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whereBk is thek-th Bell number and corresponds to merging some cycles ofσ to getπ. The sequence
of |Ss

n| with n ≥ 1 goes like

1, 3, 13, 73, 501, 4051, 37633, 394353, 4596553, 58941091 . . . (8)

The setsSn andPn being monoids for (respectively) the composition and the supremum∨, the set of
split permutations has a natural monoid structure given by(σ, π)(σ′, π′) := (σσ′, π∨π′). So, for instance,
if s = ((1, 2)(3, 4), {1, 2, 6} ⊔ {3, 4} ⊔ {5}) andt = ((2, 1, 6), {1, 2, 6} ⊔ {4, 5} ⊔ {3}), then

s · t = ((1, 6)(3, 4), {1, 2, 6} ⊔ {3, 4, 5}) ∈ Ss
6. (9)

To check whySs
n is indeed a submonoid ofSn × Pn, one need to check whyπ ∨ π′ is coarser than

orbσσ′ whenorbσ ≤ π andorbσ′ ≤ π′. Fork = σ(j) andj = σ′(i), one knows thatk andj (resp.j
andi) are both in a part ofπ (resp.π′), hencek andi are both in a part ofπ ∨ π′, q.e.d.

One can therefore consider the algebraBn := Q[Ss
n] of the monoidSs

n. Notice that our construction
is essentially the same as the one of [IK99], except that the distributive lattice that fibersSn is the lattice
of set partitions, instead of the hypercube lattice of subsets(ii) . The letterB suggests that we will rather
consider an algebraAn; indeed, we will defineAn as being the invariant subalgebra ofBn under a group
action.

2.2 The subalgebra of invariants An

The symmetric groupSn acts onSn by conjugation and onPn by taking the images of the parts. One
has therefore a product action onSn ×Pn given by

ρ · (σ, π) :=
(
ρ σ ρ−1, ρ(π)

)
, (10)

which stabilizesSs
n and is distributive with respect to the law of the monoidSs

n. Two split permutations
(σ, π) and(σ′, π′) are conjugate under this action if and only ifπ andπ′ have same profile and if there
is a size-preserving correspondanceπi ↔ π′

i between the parts ofπ and those ofπ′ such thatσ|πi
and

σ′
|π′

i
have same type for alli. Therefore, conjugacy classes inSs

n are labelled byn-sized split partitions.
The conjugacy class corresponding to a split permutationΛ will be denotedCΛ, with the same abuse of
notation as for theCλ’s. Thus,

An := Q [Ss
n]

Sn =
⊕

Λ|=n
QCΛ. (11)

The projectionprAn
onAn sends an element ofBn to the mean of its conjugates: if anx in Ss

n has type

Λ, thenprAn
(x) equals the normalised class̃CΛ := CΛ/|CΛ|. Since the action onSs

n is distributive, the
projectionprAn

is a morphism ofAn-modules.

Remark. Recall that the invariant subalgebra inQ[Sn] is exactly the center ofQ[Sn]. Similarly, its
counterpartAn (in the algeberaBn) can be shown to be a commutative subalgebra ofBn.

(ii) In a recent work, the first author succeeded in fiberingSn and its Hecke algebra by the lattice of compositions, and obtained
q-analogs of some results of Faharat and Higman. It seems thatsuch constructions —i.e., fibering a (semi)-group by a (semi)-
distributive lattice — can be made quite general, and in somecases, they allow to construct projective limits of objectsthat have
natural direct limits, but no natural projections.
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2.3 Structure constants in An and Hurwitz numbers
Once constructed, the algebra of split permutations allowsone to gather the announced statement.

Theorem 1 With the same notations as in the previous sections, the Hurwitz numberHg
n

(
λ1, . . . , λk

)

equals
1

n!
[C[1n]]

{
C(λ1)s · · ·C(λk)s

(
C(2)s

)t}
(12)

in the subalgebra of invariantsAn.

Proof: The elements inCλs are exactly the(σ, orbσ) for σ running overCλ. Therefore, the coefficient
of C[1n] = (id, [[1, n]]) in a product

∏
iC(λi)s is the number of factorisations

∏
σi = id of type(λi)i for

which
∨
i orbσi = [[1, n]]. So, there only remains to establish for any given setE the equivalence between

the transitivity of the group generated by a (finite) family(σi)i∈I ∈ SI
E , and the equality

∨
i∈I orbσi =

E. But this is obvious once noticed that the supremum
∨
i∈I orbσi is the very set partition given by the

transitive components of the genereted subgroup〈σi〉i∈I . 2

Corollary 2 The one-part Hurwitz numberHg
n(λ) equals 1

n! [C̃λ]
{
(C(2)s)

t
}
= 1

zλ
[C[λ]]

{
(C(2)s)

t
}

.

Proof: For just one partitionλ, the identityστ1 · · · τt = id can be rewritten asσ = τt · · · τ1. Conse-
quently, the generated subgroup〈σ, τ1, . . . , τt〉 equals〈τ1, . . . , τt〉, and therefore is transitive if and only
if
∨
orb τi = [[1, n]]. Son!Hg

n(λ) equals the number of terms in(C(2)s)
t equalling a(σ, [[1, n]]) with

σ ∈ Cλ. By using the projectionprAn
, if one performs the computations inAn, then

n!Hg
n(λ) = [C̃[λ]]

{
(C(2)s)

t
}
= |Cλ| × [C[λ]]

{
(C(2)s)

t
}
, (13)

the coefficients being taken with respect to the basisC̃ in the second member, and with respect to the basis
C in the third member of this identity. 2

3 Structure of Bn

Our algorithm in section 4 describes a computation ofHg
n(λ) relying on the algebra ofBn. In order to

make all computations clear, we now carry on with the description of the structure ofBn.

3.1 The isomorphism Bn
∼=
⊕

π∈Pn
Q[Sπ]

As the following proposition shows, the understanding ofBn amounts to that of theQ[Sπ]’s for all set
partitionsπ. Forπ ∈ Pn, theforgetful morphismϕπ : Q[Ss

n] → Q[Sπ] is the uniqueQ-linear map such
that

ϕπ((σ, ψ)) =

{
σ ∈ Q[Sπ] if π ≥ ψ,

0 otherwise,
(14)

for any split permutation(σ, ψ). It is a morphism of algebras as one can easily see. Let us denoteϕ the
sum

∑
π∈Pn

ϕπ taking values in
⊕

π∈Pn
Q[Sπ].
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Proposition 3 The morphismϕ is an isomorphism of algebras betweenBn and
⊕

π∈Pn
Q[Sπ].

Proof: The dimension ofBn is the cardinal ofSs
n, which we have computed as being

∑
π∈Pn

∏
i |πi|!

obviously equal to the dimension of
⊕

π∈Pn
Q[Sπ]. Therefore, it is sufficient to show thatϕ is surjective.

Settingσπ := σ ∈ Q[Sπ] for any(σ, π) ∈ Ss
n (theσπ ’s form a basis of

⊕
π∈Pn

Q[Sπ]), one has

ϕ (σ, ψ) =
∑

π≥ψ
σπ (15)

for all ψ ∈ Pn, whence by the Rota inversion formula the wanted preimages of theσπ byϕ. 2

Notice that our Proposition 3 is the very analog of [IK99, Corollary 3.2], and holds in fact for general
“fibrations” of a finite group by a finite lattice.

3.2 The indecomposable blocks of Bn

Because of Proposition 3, the algebraBn is isomorphic to an essentially unique direct sum of matrix
algebras (the so-calledindecomposable blocksof the algebra); indeed,Q is known to be a splitting field for
the symmetric groups, so this is true for the symmetric groupalgebrasQ[Sn], for their tensor products
Q[Sπ] ∼=

⊗
iQ[Sπi

] and for any direct sum of such algebras. In this paragraph, weshall detail the
decomposition ofBn into indecomposable blocks.

Remind notationseλ, Eλ andprλ from section 1.2. Since we will deal with the symmetric groups
on subsets of[[1, n]] (the partsπi), we will recall the corresponding sets by an exponent, writing eπi

λ ,
Eπi

λ := Q[Sπi
] eπi

λ andprπi

λ .

Fix a set partitionπ ∈ Pn and a family of partitions
−→
λ = (λi)i ∈

∏
iY|πi|. We defineeπ

λ
:=
⊗

i e
πi

λi ;

this is a central idempotent of
⊗

Q[Sπi
] ∼= Q[Sπ]. Then, the

Eπ−→
λ
:=
⊗

i

Eπi

λi =
⊗

i

(
eπi

λi Q[Sπi
]
)
=

(
⊗

i

eπi

λi

)(
⊗

i

Q[Sπi
]

)
= eπ−→

λ
Q[Sπ] (16)

are tensor products of indecomposable blocks of the algebrasQ[Sπi
], so they are indecomposable blocks

of Q[Sπ]. Consequently:

Proposition 4 The isomorphismϕ yields the decompositionBn
∼=
⊕

π,
−→
λ
Eπ−→
λ

, whereπ ∈ Pn, and
−→
λ

is then choosed in
∏
iY|πi|.

Proof: This is obvious:Bn
∼=
⊕

π∈Pn
Q[Sπ], and

Q[Sπ] ∼=
⊗

i

Q[Sπi
] =

⊗

i




⊕

λi⊢|πi|
Eπi

λi



 ∼=
⊕

−→
λ∈∏

i
Y|πi|

(
⊗

i

Eπi

λi

)
=
⊕

−→
λ

Eπ−→
λ
. (17)

2

Remark. If one actually wants the irreducible modules ofBn, one can easily show they are the
⊗

i V
πi

λi ’s.
We won’t use them in the following.
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3.3 The symmetries of the algebra Bn

Let us now take into account the symmetries of the blocksEπ−→
λ

. First, if π andπ′ are two set partitions

with the same profile, thenQ[Sπ] andQ[Sπ′ ] are isomorphic algebras, so they yield the same blocks.
Then, given a profile|π| ∈ Yn and a set partitionπ with this profile, two blocksEπ−→

λ
andEπ−→µ are isomor-

phic when the families of partitions are symmetries of a samesplit partition. Thus, the indecomposable
blocks ofBn are classified by then-sized split partitions. Let us denote byEΛ := Eπ−→

λ
a block of type

Λ |= n. Then, the previous argument shows that

Bn
∼=
⊕

Λ|=n

( ⊕

|π|=|Λ|
EΛ

)⊕|AutΛ|
. (18)

We have already computed|AutΛ|. Then, to choose a set partition of profile(c1 ≥ · · · ≥ cp), one has
to choose the parts knowing their cardinalci, whence a multinomial coefficient

(
n

c1 ··· cp
)
. However, a set

partition is unordered, so one has to divide by all the reorderings of the chosen parts having same size.
Hence,

∀Λ |= n, card
{
π ∈ Pn | |π| = |Λ|

}
=

(
n

|λ1| · · · |λp|

)
1∏

k≥1mk(|Λ|!)
. (19)

A straightforward simplification leads with the notation|Λ|! :=∏i |λi|! to the following proposition:

Proposition 5 There is an isomorphism of algebrasBn
∼=
⊕

Λ|=n(EΛ)
⊕b(Λ), where the numberb(Λ) of

blocks of typeΛ is b(Λ) = n!/(|Λ|!
∏
λmλ(Λ)!).

4 Hurwitz numbers and the powers of the class of transpositions
We now carry on with the spectral decomposition ofC(2)s . We show that the latter acts diagonally in

An with eigenvalues the contents of alln-sized split partitions.

4.1 Describing the matrix of C(2)s

Let us describe the action ofC(2)s by multiplication onC̃Λ for a givenn-sized split partitionΛ. We set
for convenience

(a, b)s :=

(
(a, b), {a, b} ⊔

⊔

c 6=a,b
{c}
)
. (20)

By definition, C(2)s is the sum of the(a, b)s’s for 1 ≤ a < b ≤ n. Since the productC(2)s C̃Λ

lies in An, it equals its projection inAn, hence for any fixed(σ, π) in CΛ the equalityC(2)s C̃Λ =∑
a<b prAn

[(a, b)s (σ, π)] . One has therefore to determine the type of the products(a, b)s (σ, π):

1. If a andb are in cycles of lengthsλik andλjl in different partsπi andπj , then the type of the product
is the split partitionΛ[λi ⊔ λj , λik + λjl ] obtained fromΛ by replacing the two partitionsλi andλj

by their disjoint union and then replacing the two partsλik andλjl by their sum.
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2. If a andb are in cycles of lengthsλik andλil in a same partλi, then the type of the product is the
split partitionΛ[λik + λil ] obtained fromΛ by replacing in the partitionλi the two partsλik andλil
by their sum.

3. Finally, ifa andb lie in a same cycleλik, then the looked-for type is the split partitionΛ[λik = d+d′],
where the partλik has been replaced by the two parts corresponding to the two distancesd andd′

betweena andb in the cycle.

The following proposition comes from clustering the projections prAn
[(a, b)s (σ, π)] according to the

three previous cases: for each of them, choose the part(s) then the cycle(s) and in the third case remind
the symmetry between both distances in a cycle.

Proposition 6 For any split partitionΛ = [λ1, . . . , λp], one has the decomposition:

C(2)s C̃Λ =
∑

1≤i<j≤p
1≤k≤ℓ(λi)

1≤l≤ℓ(λj)

λikλ
j
l C̃Λ[λi⊔λj ,λi

k
+λj

l
] +

∑

1≤i≤p
1≤k<l≤ℓ(λi)

λikλ
i
l C̃Λ[λi

k
+λi

l
] +

∑

1≤i≤p
1≤k≤ℓ(λi)

1≤d<λi
k

λik
2
C̃Λ[λi

k
=d+d′]

(21)

For example, the matrix ofC(2)s in the basis , , , , , of B3 is the following
6× 6-matrix: 



0 2 0 2 0 0

3 0 3 0 2 0

0 1 0 0 0 0

0 0 0 0 1 3
0 0 0 1 0 0

0 0 0 0 0 0




(22)

4.2 The diagonalisability and spectrum of C(2)s

We shall now prove thatC(2)s acts diagonally onAn. Let us first recall some basic facts about the
Jucys-MurphyelementsJk :=

∑
i<k(i, k) ∈ Q[Sn] defined for all1 ≤ k ≤ n. If one fixesn, then

Jn acts as a scalar inVλ (a fortiori diagonally inQ[Sn]) by the contents of the corners(i, λi) of the
Young diagramλ. Moreover, each eigenspaceE ⊂ Vλ of Jn is isomorphic overSn−1 to Vλ\(i,λi), which
allows one to carry on the spectral decomposition with the remainingJ1, . . . , Jn−1. Therefore, iff is any
symmetric function, thenf (J1, . . . , Jn) acts onEλ by f(contents ofλ).

Now,C2 = p1(J1, . . . , Jn), so the action of the classC2 by multiplication onQ[Sn] is the direct sum
of the c(λ) idEλ

. More generally, ifπ is a set partition of[[1, n]], then the sumCπ2 =
∑

i C
πi

2 of all

transpositions inSπ acts onEπ−→
λ
=
⊗

i E
πi

λi by the sumc(
−→
λ ) :=

∑
i c(λ

i) of all contents. Since

ϕπ ((a, b)s) =

{
(a, b) if a andb are in the same partπi,

0 otherwise,
(23)
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the class of split transpositionsC(2)s is sent toCπ2 byϕπ. Therefore, once sent byϕ, the classC(2)s acts
as

ϕ(C(2)s x) =
∑

π

ϕπ(C(2)s) pr
π(x) =

∑

π

Cπ2

(∑

−→
λ

prπ−→
λ
(x)

)
=
∑

π,
−→
λ

c(
−→
λ ) prπ−→

λ
(x) (24)

showing that the action ofC(2)s in Bn is diagonalisable. Moreover,C(2)s stabilizes the subspaceAn

because the latter is an algebra, which proves its diagonalisability inAn.

Remark. If one seeks to diagonalizeCλs for λ 6= (2) (so as to get more-than-one-part Hurwitz numbers),
one will encounter two hindrances :

1. If λ has at least two parts, the decomposition ofCπλ on the Young subgroupπ is no longer trivial.
2. The decomposition of theCλ’s as symmetric functions of the Jucys-Murphy elements generally

involvesn-dependant functions, hence differents actions on the Young subgroups.

Remark. Heuristically, the action ofC(2)s onAn has for set of eigenvalueswith multiplicities{c(Λ)}Λ|=n.
In particular, all contents of split partitions are involved. We did not prove this precise result, and it is
not necessary to know it in order to compute Hurwitz numbers.We conjecture the following: for any
given split partitionΛ, the intersection of the direct sum of blocks of typeΛ with An is a one-dimensional
vector space.

4.3 Final description of the algorithm and the Frobenius formula
Let us finally describe the algorithm provided by the previous paragraphs:

Algorithm 7 In order to compute a one-part Hurwitz numberHg
n(λ), one has to:

1. List the split partitions of sizen and write down the matrixM ofC(2)s acting onAn; this is easy
thanks to Proposition 6.

2. Find a diagonalization basis ofM ; since we knowa priori the eigenvalues, it amounts to solve
linear systems of equations.

3. Compute the(2n+ 2g′ − r(λ))-th power ofM , which is easy becauseM has been diagonalized.

Since|Ys
n| = O(Bn), our algorithm has complexityO(Cn) for someC > 0.

On the other hand, by writing down explicitly the projections prπ−→
λ

in terms of the characters of the
symmetric groups, one can easily deduce from equation 24 an abstract formula for one-part Hurwitz
numbers, which turns out to be the formula one could have obtained by applying an inclusion-exclusion
principle on the aforementioned Frobenius formula for disconnected Hurwitz numbers. IfΛ is a split
partition of sizen, we setSΛ = S|λ1| × · · · ×S|λp|, and we denote

dimΛ = dimVλ1 × · · · × dim Vλp ; χΛ = χλ
1 ⊗ · · · ⊗ χλ

p

. (25)

As a tensor product,χΛ is an irreducible character of the Young subgroupSΛ. Finally, m(Λ) =
(−1)p−1 (p−1)! is the Möbius function between a set partition of profile|Λ| and the coarsest set partition
[[1, n]]. With these notations and by using the Möbius inversion formula for the reciprocal ofϕ and the
previous computations:



12 Pierre-Löıc Méliot and Marc Sage

Theorem 8 The one-part (connected) Hurwitz numbers are given by the abstract formula:

Hg
n(µ) =

∑

Λ∈Ys
n

c(Λ)2n+2g′−r(µ) m(Λ) b(Λ) dimΛ

n! |Λ|!




∑

σ∈Cµ̃ ∩SΛ

χΛ(σ)



 (26)

This last formula gives for instanceHg
3 ((2)) = (9g+1 − 1)/2 andHg

4 ((3)) = 62g+2 − 32g+2.
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