Devoir sur table

Exercices groupes (cours).

- 1. Définir un groupe.
- 2. Donner les deux caractérisations d'un sous-groupe avec démonstration de leur équivalence.
- 3. Soit G un groupe. Montrer que Aut G est un groupe pour une loi à préciser. Montrer alors qu'est un
- 4. Les groupes Z/2 × S3 × S2 et Z/3 × D8 sont-ils isomorphes¹?
 5. On définit deux lois ⊞: { R²₊ → R₊ et ⊠ : { R²₊ → R₊ (a,b) ↦ ln (e^a + e^b 1) et ⊠ : { (a,b) ↦ ln (e^{a+b} e^a e^b + 2) montrer que ces lois sont bien définies, associatives, commutatives, unifères et que ⊠ se distribue sur ⊞.
- 6. Déterminer tous les morphismes de $GL_{42}(\mathbf{R})$ vers \mathbf{H}_8 .

Exercices anneaux (cours).

- 1. Définir un idéal (d'un anneau commutatif donné), définir un anneau intègre, définir un corps.
- 2. Décrire (avec démonstration) les idéaux de $\mathbb{Q}[X]$.
- 3. Soit $K \longrightarrow A$ un morphisme d'anneaux où K est un corps et A un anneau non nul. Montrer que ce morphisme est injectif.
- 4. Définir la caractéristique d'un anneau. Soit K un corps fini dont on note c la caractéristique, supposée non nulle. Montrer alors que c est un premier et que l'élévation à la puissance c est un automorphisme du corps K.
- 5. Combien l'anneau $\mathbb{Z}_{18!}$ possède-t-il d'inversibles? On décomposera la réponse en premiers.
- 6. Notons A l'ensemble formée des matrices de la formes $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ pour (a,b) décrivant \mathbf{R}^2 .
 - (a) Montrer que A est un sous-anneau de $M_2(\mathbf{R})$ qui est un corps.
 - (b) Retrouver ce résultat par transfert de structure à l'aide de la bijection $\left\{ \begin{array}{ccc} \mathbf{C} & \longrightarrow & A \\ a+ib & \longmapsto & \left(\begin{array}{cc} a & -b \\ b & a \end{array} \right) \right.$

 $^{^{1}}$ on rappelle au besoin que D_{8} désigne le groupe des symétries euclidiennes du carré

Exercice 1. Soient G et H deux groupes.

Donner une condition nécessaire et suffisante (simple) pour que le groupe produit $G \times H$ soit cyclique.

Exercice 2. Soit G un groupe.

Expliquer en quoi $\text{Hom}(G, \mathbf{C}^*)$ est inclus dans \mathbf{C}^G .

Montrer que toute partie de $\operatorname{Hom}(G, \mathbf{C}^*)$ est linéairement libre dans le \mathbf{C} -espace vectoriel \mathbf{C}^G . On pourra raisonner par l'absurde et invoquer une partie liée de cardinal minimal.

Problème. Soient p un premier et u un naturel.

- 1. Soit K un sous-corps de \mathbf{F}_{p^u} .
 - (a) Montrer que K est (isomorphe à) \mathbf{F}_{q^v} pour un certain premier q et pour un certain naturel v.
 - (b) Montrer la divisibilité $q^v \mid p^u$ et en déduire q.
 - (c) Montrer la divisibilité $v \mid u$.
- 2. Soit $d\mid u$. On veut réaliser \mathbf{F}_{p^d} comme sous-corps de \mathbf{F}_{p^u} . On définit $K:=\Big\{a\in \mathbf{F}_{p^u}\ ;\ a^{p^d}=a\Big\}.$
 - (a) Pour tous naturels non nuls a et b, montrer d'une part l'égalité

$$(X^a - 1) \wedge (X^b - 1) = X^{a \wedge b} - 1$$

d'autre part l'équivalence $X^a - 1 \mid X^b - 1 \iff a \mid b$.

- (b) Établir la factorisation $X^{p^u} X = \prod_{\lambda \in \mathbf{F}_{p^u}} (X \lambda)$ et en déduire le cardinal $|K| = p^d$.
- (c) Montrer que K est un sous-corps de \mathbf{F}_{p^u} .