Devoir maison

(à rendre le lundi 5 octobre 2015)

Exercice 1. (7 pts) Soit G un groupe fini muni d'un automorphisme involutif ne fixant que le neutre. On invoque une telle involution et on la nomme i.

- 1. Montrer que l'application $\begin{cases} G & \longrightarrow & G \\ g & \longmapsto & g^{-1}i(g) \end{cases}$ est injective, puis surjective.
- 2. En déduire que i est l'inversion de G.
- 3. Montrer que G est abélien puis que l'ordre de G est impair. Soit réciproquement Γ un groupe fini abélien d'ordre impair.
- 4. Exhiber un automorphisme involutif de Γ qui ne fixe que son neutre.

Exercice 2. (8 pts) Soit G un groupe fini où tout élément est involutif.

- 1. Donner une infinité d'exemples de tels groupes G. On justifiera qu'ils sont non deux à deux isomorphes.
- 2. Soient $g \in G$ et $z \in \mathbb{Z}$. Montrer que le z-ième itéré de g ne dépend que de la classe de z modulo 2.
- 3. Montrer que G est abélien. On note désormais sa loi additivement.
- 4. Montrer qu'il y a une partie génératrice 1 de G de cardinal minimal.

On invoque une telle partie, on note n son cardinal et on invoque une numérotation des éléments de cette partie $\{g_1, g_2, ..., g_n\}$.

5. Montrer que l'application $\left\{ \begin{array}{ccc} \left(\mathbf{Z}/2\right)^n & \longrightarrow & G \\ \left(\overline{a_i}\right) & \longmapsto & \sum_{i=1}^n a_i g_i \end{array} \right. \text{ est un isomorphisme de groupes.}$

Exercice 3. (7 pts) Soient S et T deux groupes. Soit $T \xrightarrow{\varphi} \operatorname{Aut} S$ un morphisme de groupes. On abrège ${}^ts := [\varphi(t)](s)$ pour chaque $\binom{s}{t} \in S \times T$ (visualiser que t "agit" sur s via φ). On définit une application $*: \left\{ \begin{array}{ccc} (S \times T)^2 & \longrightarrow & S \times T \\ \binom{s}{t}, \binom{\sigma}{\tau} & \longmapsto & \binom{s}{t} \end{array} \right.$

- 1. Donner une condition nécessaire et suffisante simple pour que * coïncide avec la loi du groupe produit $S \times T$.
- 2. Montrer que * munit $S \times T$ d'une structure de groupe.
- 3. On suppose que S et T sont deux sous-groupes stables par conjugaison d'un même groupe. On impose ${}^ts:=tst^{-1}$ pour chaque $(s,t)\in S\times T$.

 Exprimer alors simplement les itérés d'un élément de $S\times T$ pour la loi *.

Exercice 4. (10,5 pts) Soient p et q deux premiers distincts et G un groupe d'ordre pq.

- 1. Montrer que G admet un élément d'ordre p ou un élément d'ordre q. Soient a et b deux éléments dans G d'ordres respectifs p et q. (On ne demande pas de légitimer cette invocation.)
- 2. Exhiber des isomorphismes $\langle a \rangle \simeq \mathbf{U}_p$, $\langle b \rangle \simeq \mathbf{U}_q$, et $\langle a \rangle \times \langle b \rangle \simeq \mathbf{U}_{pq}$.
- 3. On suppose pour cette question G abélien : expliciter alors un isomorphisme $G \simeq \langle a \rangle \times \langle b \rangle$ et conclure à la cyclicité de G.
- 4. Montrer que \mathfrak{S}_3 satisfait les hypothèses de G, qu'on peut y invoquer deux éléments a et b comme ci-dessus, mais que \mathfrak{S}_3 n'est pas cyclique.

On suppose à présent que p est plus petit que q et ne divise pas q-1. On admet que l'on peut alors invoquer deux a et b tels que $\langle a \rangle$ et $\langle b \rangle$ soient les seuls sous-groupes d'ordres respectifs p et q.

- 5. Montrer que $\langle a \rangle$ est stable par conjugaison.
- 6. Montrer qu'est cyclique le groupe $\langle a \rangle \times \langle b \rangle$ muni de la loi de l'exercice 3 question 3.
- 7. Montrer que la loi de G induit par restriction à $\langle a \rangle \times \langle b \rangle$ un isomorphisme du groupe $\langle a \rangle \times \langle b \rangle$ (de la question précédente) sur le groupe G. En déduire la cyclicité de G. (bonus) Retrouver la cyclicité de G directement.

¹Une partie est dite *génératrice* si elle engendre tout le groupe.