Lab School Paris

Mock Brevet Exam

Mathematics

April 2023

Duration of the test: two hours

calculators: allowed

• The wording has four pages (1/4 2/4 3/4: text; 4/4: figures), in addition to this cover page.

▶ The wording is made up of eight independent exercises, labeled 1, 10, 15, 25, 29, 36, 37 & 52. You can process them in any order that suits you.

► The test is graded out of one hundred points.

► ► ► Each answer must *<u>be preceeded by a justification</u>*.

► ► The <u>English quality</u> and the <u>clarity of reasonning</u> will be decisive for the evaluation.

Any trace of research will be taken into account in the evaluation.

15 GLOBAL WARMING 17pts 15 min

Human activities produce carbon dioxide (CO₂), which contributes to global warming. The following graph shows the evolution of average atmospheric CO₂ concentration (expressed in ppm) as a function of time (expressed in years).

[top caption]Atmospheric CO_2 concentration (in ppm)[right caption]450 ppm = average level not to be exceeded by 2100[bottom right caption](Source: WMO World Data Center)[bottom left]1 ppm $CO_2 = 1$ part per million $CO_2 = 1$ milligram of CO_2 per kilogram of air

1° Determine graphically the CO_2 concentration in ppm in 1995, then in 2005. **2pts**

2° One wants to model the evolution of CO_2 concentration as a function of time using a map g, where g(x) is the CO_2 concentration in ppm as a function of year x.

a. Explain why an affine map seems appropriate to model CO_2 concentration as a function of time between 1995 and 2005. **3pts**

b. Arnold and Billy each propose an expression for map g: - Arnold proposes the expression g(x) = 2x - 3630; - Billy proposes the expression g(x) = 2x - 2000. Which expression best models the evolution of CO_2 concentration? **4pts**

c. Using the function you chose in the previous question, indicate the year in which the value of 450 ppm is reached. **4pts**

 3° In France, thanks to photosynthesis, forests capture around 70 megatons of CO₂ per year, which amounts to 15% of 2016 national carbon emissions. *Calculate an approximate value, to the nearest megaton, of the mass of CO₂ emitted in France in 2016.* **4pts**

29 COMPUTING PROGRAMS 8pts 15 min

Here are two computing programs:

Program A	Program B
Starting number	Starting number
\rightarrow Add 10	\rightarrow Add 20
\rightarrow Square	\rightarrow Multiply by the starting number
Result	\rightarrow Add 100
	Result

1° Show that, if 5 is chosen as a starting number, then both programs yield the same result. 2pts

2° With Program A, which starting number must be chosen to get a nil result? Does this number yield a nil result for Program B too? **3pts**

3° The teacher says both programs always yield the same result, whatever the starting number. *Are they right?* 3pts

Reminder. Two triangles are qualified **similar** if their angles have same measures. When this is the case, the lengths of one triangle can be obtained by multiplying those of the other triangle by the same number, called **the reduction** or **enlargement coefficient**.

10	COMPUTING PROGRAMS 1	2pts	15min			
	The following two computing program	ns are	given:			
Program	PROGRAM A Choose a number. Subtract 5 from this number. Multiply the result by the starting number		PROGRAM 8 Choose a number. Square this number. Subtract 4 from the result.			
1° Ali	ce chooses number 4 and applies progra	am A.	Show that she	e will obtain –4.	1pt	
2° Lu	cie chooses number –3 and applies prog	gram E	3 . What result	will she obtain?	2pts	
x as the	Tom wants to find a number for whic the starting number for both programs.	h both	n programs will	give the same resul	t. He chooses	
3° Sho	ow that the result of program A can be v	vritten	$a as x^2 - 5x.$	4pts		
4° Exp	press the result obtained with program	B as a	function of x.	2pts		
5° Wh	at number is Tom looking for? 3	Bpts				
25	Filling & painting a round tank 9	pts	15 min			
three of	A tank is made up of two identical hof them being 1.8 m in diameter.	nalf-sp	bheres linked b	y a 3 m long cylind	drical part, all	
1° Wh	at is the total capacity of this tank?		4pts			
each c	The outer surface of the tank is to be of which costs €60. The instructions stat				a 3 L buckets,	
2° Ho	w much paint do I need to paint this tar	ık?	5pts			
36	HOIST THE SAIL! 12pts 15min					
	For her own comfort, Lisa wants to install a triangular shade sail in her garden. The area of the sail must be at least 8 m^2 .					
Г		. 1	.1	1.1		

For each of the following three models, indicate whether it is suitable.

1° **2pts** 2° **4pts** 3° **6pts**

52 EARTHWORKS 16pts 20min

Mrs Smith wishes to create a concrete terrace opposite her bay window. She makes the following drawing.

[caption in left parallelogram]Bay window[caption in right rectangle]Terrace

To facilitate rainwater run-off, the terrace floor must be sloped.

The terrace is shaped like a right prism whose base is quadrilateral ABCD and height is segment [CG].

P is the point on segment [AD] such that BCDP is a rectangle.

1° Angle \measuredangle ABP must measure between 1° and 1.5°. Does Mrs Smith's project satisfy this condition? **6pts**

2° Mrs Smith would like to have the concrete required for her terrace delivered to her home. She calls in a specialist company. Using the information below, determine the amount of the invoice issued by the company. 10pts

INFORMATION 1 Distance between the company and Mrs. Smith's house: 23 km.

INFORMATION 2 Volume of a right prism = Area of prism base \times Height of prism.

INFORMATION 3 – SPECIALIZED COMPANY'S PRICING CONDITIONS Delivery charge: $\in 5$ per km covered by the truck. Maximum capacity of truck-mixer: 6 m^3 . Price per m³ of concrete: $\notin 95$. The company charges for round-trip distances (company \leftrightarrow delivery site) covered by the truck-mixer.

37 SIMILAR TRIANGLES 16pts 15min

Consider triangle ABC above, right-angled at A, with $\angle ABC = 30^{\circ}$ and AB = 7 cm. Point H is the foot of the height from A.

1° Draw the full-scale figure. Leave the construction lines visible. **3pts**

 2° Prove that AH = 3.5 cm. **5pts**

3° Show that triangles ABC and HAC are similar. 4pts

4° Determine the reduction coefficient from triangle ABC to triangle HAC. **4pts**

1 SHARING A TREASURE 10pts 10min

The captain of a ship has a treasure consisting of 69 diamonds, 1 150 pearls and 4 140 gold coins.

1° Decompose 69, 1 150 and 4 140 into products of prime factors. **5pts**

2° The captain divides the treasure equally among the sailors. How many sailors are there knowing that all diamonds, pearls and coins have been distributed? **5pts**

PICTURES & FIGURES

