Literal computation test

Friday 22d March 24
adapted from Annales abc p. 58 \& 64

Suggested correction

Wording 11.

1. Let us apply program 1 on number 5 : tripling it gives $3 \cdot 5=15$, adding 1 gives $15+1=16$.

Let us apply program 2 on number 5: taking 1 from it (resp. adding 2 to it) gives $5-1=4$ (resp. $5+2=7$), multiplying the difference and sum obtained gives $4 \cdot 7=28$.
(a) Image $A(r)$ is the outcome of program 1 applied on number r. Let us therefore apply that program on that number: tripling r gives $3 r$, adding 1 gives $3 r+1$. One consequently has equality

$$
A(r)=3 r+1
$$

(This equality holding for each number r, map $A: t \mapsto \sqrt[3]{ } t+\underline{\underline{1}}$ is affine, its slope is 3 and its y-intercept 1 .)
(b) Analysis. Let d be such a number. One has then equality $A(d)=0$, i. e. $3 d+1=0$. subtracting 1 gives $3 d=-1$, then dividing by 3 gives $d=-\frac{1}{3}$. The only possible candidate is therefore $-\frac{1}{3}$.

Synthesis. Let us check is the latter is suitable: one has equalities

$$
A\left(-\frac{1}{3}\right)=3\left(-\frac{1}{3}\right)+1=-1+1=0
$$

Conclusion: number $-\frac{1}{3}$, and only it, meets the given conditions.
2. It is custom to imply that x is any number, i. e. on which everything we will say later will apply whatever its numerical value. The one way - which has already been used above - to EXPLICIT this is the evocation ${ }^{1}$

$$
\text { «Let } x \text { be number ». }
$$

Let us then ("then" $=$ "following the previous evocation"), so as to obtain image $B(x)$, apply program 2 on evoked number x : subtracting 1 from it (resp. adding 2 to it) gives $x-1$ (resp. $x+2$), multiplying the difference and sum obtained yields $(x-1)(x+2)$. One consequently has equalities

$$
B(x)=(x-1)(x+2)=x^{2}+2 x-x-2=x^{2}+x-2 .
$$

(a) One has on the one hand equalities

$$
\begin{aligned}
B(s)-A(s) & =s^{2}+s-2-(3 s+1) \\
& =s^{2}+s-2-3 s-1 \\
& =s^{2}-2 s-3
\end{aligned}
$$

on the other hand

$$
\begin{aligned}
(s+1)(s-3) & =s^{2}-3 s+s-3 \\
& =s^{2}-2 s-3
\end{aligned}
$$

Since we get the same thing, both starting numbers are equal, $Q E D$.

[^0](b) Analysis. Let m be such a number: images $A(m)$ and $B(m)$ are then equal, so their difference is nil. But that difference equals $(m+1)(m-3)$: one of the factors of this nil-product is therefore zero, which writes $\left\{\begin{array}{c}m+1=0 \\ \text { or } \\ m-3=0\end{array}\right.$, i. e. $\left\{\begin{array}{c}m=-1 \\ \text { or } \\ m=3\end{array}\right.$. The only possible candidates are consequently -1 and 3.

Synthesis. Let us show that these two numbers are suitable. On the one hand, equalities

$$
\left\{\begin{array}{l}
A(-1)=3(-1)+1=-3+1=-2 \\
B(-1)=(-1-1)(-1+2)=-2 \cdot 1
\end{array} \text { show that }-1\right. \text { is suitable, }
$$

on the other hand equalities

$$
\left\{\begin{array}{l}
A(3)=3 \cdot 3+1=9+1=10 \\
B(3)=(3-1)(3+2)=2 \cdot 5
\end{array} \text { show that } 3\right. \text { is suitable. }
$$

Conclusion: both programs yield the same result when we choose as starting number -1 or 3 , and only these two numbers.

Wording 13.

1. One has equalities

$$
\begin{aligned}
E & =(\square-2)(2 \square+3)-3(\square-2) \\
& =2 \square^{2}+3 \square-4 \square-6 \\
& =2 \square+6 \\
& =2 \square^{2}-4 \square .
\end{aligned}
$$

2. One has equalities

$$
\begin{aligned}
E & =2 \square^{2}-4 \square \\
& =2 \square(\square-2) \\
& =n \square(\square-2) \text { where we defined } n:=2
\end{aligned}
$$

Alternative solution: start directly from the non-developed expression at the beginning and see in it $\square-2$ as a common factor:

$$
\begin{aligned}
E & =(\square-2)(2 \square+3)-3(\square-2) \\
& =\overline{(\square-2)}(2 \square+3-3) \\
& =\overline{(\square-2)}(2 \square) \\
& =2 \square(\square-2) .
\end{aligned}
$$

3. The hypothesis means product $2 \square(\square-2)$ is nil, i. e. that its half $\square(\square-2)$ is zero: one at least of its factors is therefore nil, which writes $\left\{\begin{array}{c}\square=0 \\ \square-2=0\end{array}\right.$, i. e. $\square=0$ or $\square=2$.
4. The condition on sought-after numbers a translates (subtract the right-hand side) as expression E being zero after each symbol \square has been replaced by a, i. e. as product $a(a-2)$ being nil, i. e. (we just said it above) as elementhood ${ }^{2} a \in\{0,2\}$. The sought-after numbers are therefore 0 and 2 .

Remark: instead of reasoning (as we did above) by analysis-synthesis, we have here reasoned directed by equivalences (hidden in the "i.e.").

[^1]
[^0]: ${ }^{1}$ to evoke here is to create by way of magic (it does not mean to mention), as though we "ordered" a number to be (the verb "let... be" is an imperative!)

[^1]: ${ }^{2}$ " $e \in E$ " reads " e is an element of E " or " e belongs to E "

