## Space geometry test

Mon 7th January 24

Exercise 1. We are interested in four solids: a 6 -cm-high pyramid whose rectangular base has sides of lengths 3 cm and 6 cm ; a cylinder with a radius of 2 cm and a height of 3 cm ; a cone of radius and height 3 cm each; a ball of radius 2 cm .

1. Draw each of these solids (not necessarily to scale) indicating the data deemed relevant.
2. Order these solids by increasing volume.

## Exercise 2.

On the figure opposite, point $M$ lies on both the equator and Greenwich's meridian.

1. Give the geometrical coordinates of points $A$ to $F$ inclusive.
2. During a race, a sailor indicates their position to be $80^{\circ} \mathrm{E}$ and $40^{\circ} \mathrm{S}$.
On which point of the globe
above does the sailor lie?
3. Another sailor, of English nationality, is located at ' $37^{\circ} \mathrm{W} 41^{\circ} \mathrm{N}$ '.
In which ocean can they be located?


Exercise 3. The meter was originally defined as one millionth of the length of an imaginary line drawn from the equator to a pole. We will keep this definition here.

The time zones are twenty-four zones delimited by as many meridians evenly spaced around the Earth, including that of Greenwich.

The equator is evenly divided into three hundred and sixty arcs, each called a degree of arc. Each degree of arc is evenly divided into sixty minutes of arc. The length of such a minute of arc is called a nautical mile.

1. Using an explicit and motivated hypothesis, evaluate the length of the Earth's equator. How many degrees of arc does the latter have?
2. Round to the nearest kilometer the length of a portion of the equator included in a time zone. How many degree(s) of arc does such a portion have?
3. Determine the nautical mile to the nearest meter.

Exercise 4. The standard diameter of a tennis ball is 6.54 cm . Tennis balls are stored in groups of four in straight cylindrical boxes whose axis passes through the centers of the balls. When we shake such a box (full and closed), the centers of the balls it contains cannot move relatively to the box's frame of reference.

1. Determine the radius and height of the boxes.
2. We decide to paint the (exterior) side face of a box as well as the balls that can fit inside. Do we need more paint for the face or for the balls?
