Probability test [1h]
 Monday 4 December

8 An urn contains two red balls marked R1 and R2 and two black balls marked N1 and N2. All are indistinguishable by touch. We draw a first ball at random and we do not put this ball back in the urn. A second ball is drawn at random from those remaining in the urn.
1° Complete the tree which illustrates the two successive draws.

First ball

drawn

Second ball drawn

2° Define E to be the event: "we drew two red balls". What is the probability of event E ?
3° Define F to be the event: "two balls bearing the same number were drawn". What is the probability of event F ?
$9 \quad$ A bag contains 3 red tokens that are indistinguishable by touch numbered 1 to 3 . We draw a token at random from this bag and write down its number.

A second bag contains 4 blue tokens indistinguishable by touch numbered from 1 to 4 . We draw a token at random from this bag and write down its number.

We then constitute a whole number of two digits whose tens digit is written on the red token and whose units digit is written on the blue token.

Example: 2[red] 4[blue] which gives the number 24 .
1° We call A the event: "the number obtained is a multiple of 2 ". What is the probability of A? 2° We call B the event: "the number obtained is a multiple of 3 ". What is the probability of B? 3° We call C the event: "the number obtained is a multiple of 2 and 3 ". What is the probability of C? 4° We call D the event: "the number obtained is a multiple of 5 ". What is the probability of D ?

10 Two perfectly balanced wheels are rotated simultaneously. On each, the four sectors are numbered from 1 to 4 . When they stop, we note the number located in front of the arrow, then we calculate the sum of numbers obtained.

Part A We simulate 100 results with a spreadsheet. The following graph gives the relative frequency of appearance of each sum obtained.

[on the ordinate axis] Relative frequency (\%)

[on the abscissa axis] Sum of the numbers read on the wheels
1° By reading graphically, give the frequency of appearance of the sum 3.
2° What can we say about the frequency of appearance of the sum 1 ?

Part B We want to determine the probability of each possible sum.
1° Complete the opposite double entry table.
[top] First wheel [left, vertically] Second wheel
2° How many throws of the two wheels give a sum equal to 5 ? What is the probability of the event: "the sum obtained is equal to 5 "?
3° Complete the table giving the probability of each possible sum.

Sum obtained

Probability

4° Compare these probabilities and the relative frequencies provided by the simulation of the part A.
5° What is the probability of obtaining a prime number?

