Feuille d'exercices 2

Nombres complexes.

Exercice 2.1 - Calculs avec les formes algébriques.

- 1. On pose $z_1 = 2 3i$ et $z_2 = 1 + 2i$. Effectuer les calculs : $z_1 + z_2$, $z_1 z_2$, $z_1 \times z_2$, z_1^2 et z_1/z_2 .
- 2. Mettre sous forme algébrique les quantités complexes suivantes :

$$\frac{2+5i}{1-i} + \frac{2-5i}{1+i}$$
 , $\frac{3+6i}{3-4i}$, $(2-5i)(3+8i)(1+i)$.

Exercice 2.2 - Modules. Calculer le module de chacun des nombres complexes suivants :

$$z_1 = \sqrt{2} + i\sqrt{3}$$
 , $z_2 = (1 + i\sqrt{3})(2 + 2i)$, $z_3 = \frac{1 - i}{1 + i}$, $z_4 = \frac{4 - 3i}{5 - 12i}$, $z_5 := z_2 z_4$, $z_6 := (z_2)^{10}$

Exercice 2.3 – Interprétation géométrique de la forme trigonométrique.

1. Dans chacun des cas suivants, représenter le point M_k d'affixe $z_k=r_k\mathrm{e}^{i\theta_k}$ et donner la forme algébrique de z_k ,

$$(r_1 = \sqrt{2}, \theta_1 = \frac{\pi}{4})$$
 , $(r_2 = 4, \theta_2 = \frac{5\pi}{6})$, $(r_3 = 2, \theta_3 = -\frac{3\pi}{4})$, $(r_4 = 1, \theta_1 = \frac{\pi}{3})$.

2) On pose $j=-\frac{1}{2}+\frac{\sqrt{3}}{2}i$. Montrer que $1+j+j^2=0$ et $j^3=1$. Quelle est la nature du triangle de sommets M(1), M(j) et $M(j^2)$?

Exercice 2.4 – Forme trigonométrique (ou exponentielle) : la trouver et la manipuler.

1. Donner la forme trigonométrique (module et argument) des nombres complexes suivants :

$$z_1 = -\frac{5}{2}i$$
 , $z_2 = 2 + 2i$, $z_3 = -1 - i\sqrt{3}$.

2. En déduire la forme trigonométrique de

$$z_1 z_2$$
 , $\frac{z_2}{z_3}$, $(z_2)^{15}$.

Exercice 2.5 – Ecrire les deux formes du produit $z = (1+i)(\sqrt{3}+i)$. En déduire les valeurs de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$.

Exercice 2.6 - Racines carrées complexes (méthode algébrique). Déterminer les racines carrées des nombres complexes suivants :

$$z_1 = i$$
 , $z_2 = -5 - 12i$, $z_3 = 10 - 4i\sqrt{6}$, $z_4 = -1 + i\sqrt{3}$

Exercice 2.7 – Equations du second degré dans \mathbb{C} . Résoudre, dans \mathbb{C} , les équations suivantes

1)
$$z^2 - 2iz + 2 - 4i = 0$$

2)
$$z^2 + (2-i)z + (5i-1) = 0$$

3)
$$z^2 + (2-5i)z - 7 + i = 0$$

1)
$$z^2 - 2iz + 2 - 4i = 0$$
 2) $z^2 + (2 - i)z + (5i - 1) = 0$
3) $z^2 + (2 - 5i)z - 7 + i = 0$ 4) $z^4 - (5 - 14i)z^2 - 2(5i + 12) = 0$

Exercice 2.8 – Racines *n*-ièmes complexes (méthode trigonométrique).

1. Déterminer la forme trigonométrique puis les deux racines carrées des nombres complexes suivants :

$$z_1 = -2i$$
 , $z_2 = 1 - i\sqrt{3}$

2. Résoudre $z^3 = 8i$ (on commencera par écrire 8i sous forme trigonométrique, et on cherchera z également sous forme trigonométrique).

Exercice 2.9 - Linéarisation. Donner une expression linéarisée des deux fonctions suivantes

$$f(x) = \cos^3 x \quad , \quad g(x) = (\cos x \sin x)^3 \quad .$$