Théorèmes de Stone Weierstrass (version chantier)

Marc SAGE

15 novembre 2005

Table des matières

1 Stone Weierstrass 2

1 Stone Weierstrass

Lemme : il y a une suite de polynôme qui converge uniformément vers la valeur absolue sur [-1,1].

Soit K un compact, $E := C^0(K, \mathbb{R})$, et $A \subset E$. Montrer que A est dense dans E lorsqu'elle

- 1. est stable par min et max et interpole deux points quelconques distincts de K;
- 2. est une algèbre contenant les constantes et séparant les points;
- 3. est une algèbre séparante incluse dans aucun idéal maximal
- 1. Soit $f \in E$ et $\varepsilon > 0$. Pour $a \neq b$ dans K, il y a un $\varphi_{a,b} \in A$ tel que $\varphi_{a,b}\left(a,b\right) = (f\left(a\right),f\left(b\right))$. En posant $\Omega_{a,b} = \left\{f > \varphi_{a,b} \varepsilon\right\}$ ouvert de K contenant a et b, alors à a fixé on a $K = \bigcup_b \Omega_{a,b} = \bigcup_{\text{finie}} \Omega_{a,b_j}$ par compacité. Posons $\varphi_a := \min \varphi_{a,b_j}$. Alors $\Omega_a = \left\{f < \varphi_a + \varepsilon\right\}$ ouvert de K contenant a, donc $K = \bigcup_a \Omega_a = \bigcup_{\text{finie}} \Omega_{a_i}$ par compacité. Posons $\varphi := \max \varphi_{a_i}$.

Fixons maintenant $k \in K$. D'une part, k est dans un Ω_{a_i} , d'où

$$\varphi(k) \ge \varphi_{a_i}(k) > f(k) - \varepsilon.$$

D'autre part, $\varphi(k)$ vaut $\varphi_{a_{i_0}}(k)$ pour un certain a_{i_0} , et k est dans un $\Omega_{a_{i_0},b_j}$, d'où

$$\varphi \left(k \right) = \varphi _{{a_{{i_0}}}}\left(k \right) \le \varphi _{{a_{{i_0}}},b}\left(k \right) < f\left(k \right) + \varepsilon.$$

2. Puisque $\max\{f,g\} = \frac{f+g+|f-g|}{2}$, on va déjà montrer $[f \in A \implies |f| \in \overline{A}]$. Soit $f \in A$. D'après le lemme, $||f|| P_n\left(\frac{f}{||f||}\right)$ c.u. vers f et reste dans \overline{A} , CQFD.

Soit $a \neq b$ dans K. Puisque A sépare les points, il y a un $\sigma \in A$ tel que $\sigma(a) \neq \sigma(b)$. On cherche un $f = \lambda \sigma + \mu$ tel que $f(a,b) = (\alpha,\beta)$ avec α,β arbitraires. C'est dire $\begin{cases} \lambda \sigma(a) + \mu = \alpha \\ \lambda \sigma(b) + \mu = \beta \end{cases}$, système en (λ,μ) de déterminant $\sigma(a) - \sigma(b) \neq 0$, donc qui a une solution. Ainsi A interpole deux points quelconques distincts.

Montrons enfin que \overline{A} satisfait les hypothèses précédentes. Pour $f \in \overline{A}$, on a $f = \lim f_n$ avec $f_n \in A$, d'où $|f| = \lim_{\epsilon \to \overline{A}} |f_n| \in \overline{A}$, donc \overline{A} stable par min et max. De plus, \overline{A} interpole ce qu'il faut car A le fait.

3. Soit $a \neq b$ dans K. Il y a un $\sigma \in A$ tel que $\sigma(a) \neq \sigma(b)$. Supposons par symétrie $\sigma(a) \neq 0$ et même $\sigma(a) = 1$ (car A stable par homothétie). Les idéaux maximaux de E étant les $\{f \in E, f(a) = 0\}$ pour a décrivant K, on sait qu'il y a un α et un β dans A tels que $\alpha(a)\beta(b)\neq 0$; quitte à normaliser, on peut supposer $\alpha(a) = 1 = \beta(b)$. Cherchons alors $f = \lambda \alpha \sigma^n + \mu \beta$. On veut $\begin{pmatrix} 1 & \beta(a) \\ \alpha(b)\sigma(b)^n & 1 \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} =?$.

Le déterminant vaut $1 - \beta(a) \alpha(b) \sigma(b)^n$ qui est non nul pour un n, sinon $\sigma(b) = \sqrt[n]{\frac{1}{\beta(a)\alpha(b)}}$ tendrait vers $1 = \sigma(a)$.

2