Séries de Fourier

Marc SAGE

$<\!2015$

Table des matières

1	TF discrète	2
2	"Noyau" d'un opérateur	2
3	Problème de Cantor	3
4	Opérateurs compacts	3

histoire : intérêt pour chaleur, loin des controverses métaphisques, d'où équatio de newton pour chaleur $\frac{\partial T}{\partial t} = Cste \ \Delta T$. Lien avec cordes vibrantes : "Si l'ordre qui s'établit dans tous les phénomènes de propagation de la chaleur pouvait être saisi par nos sens ces phénomènes nous causeraient une impression comparable à celle des résonances harmoniques."

intro TF discrete, en parle sur R, sur Z, puis finalment sur le cercle (groupe loc compact)

Seul problème, dans les deux premiers cas on a l'idée fausse que les fréquences vivent dans le même espace que la variable de "temps". On peut circonvenir au problème en ne démontrant qu'incidemment qu'un groupe fini a le même cardinal que son groupe des fréquences (en insistant sur le fait que l'isomorphisme entre les deux n'est pas unique).

Th Carleson : tout fonction périodique L^2 vaut sa série de Fourier en presque tout point

intro Randé/Tosel bien sur les hilbert

poser
$$a_0' = \frac{a_0}{2}$$
 et $\omega := \frac{2\pi}{T}$ joliifie les formules $(e_n(t) = e^{in\omega t})$

prendre des séries de Fourier à valeurs dans un banach / hilbert????

1 TF discrète

```
cf Monasse : parle aussi du produit de convolution. neutre = |G| \delta tend vers un gros Dirac lorsque |G| \longrightarrow \infty \widehat{\hat{f}}?
```

2 "Noyau" d'un opérateur

Disons que quand tu as deux espaces E_1 et E_2 (par exemple deux variétés différentielles), tu te donnes une distribution K sur $D_1 \times D_2$, tu peux définir un opérateur T comme :

$$\begin{array}{ccc} D\left(E_{1}\right) & \longrightarrow & D'\left(E_{2}\right) \\ u & \longmapsto & \int_{D_{1}} K\left(x,\cdot\right) u\left(x\right) dx \end{array}.$$

Il me semble que l'on peut montrer que tous les opérateurs de $D(E_1)$ dans $D'(E_2)$ sont de cette forme. Ainsi, on peut toujours parler du noyau d'un opérateur.

Dans une telle situation, tu dis que K est le noyau de l'opérateur.

Quand le noyau est de la forme K(x;y) = h(x-y) (ce qui est le cas des noyaux que tu cites), on parle de noyau de convolution.

20 04 2006, 03h07

3 Problème de Cantor

Citation de Dieudonné (pages 209-10) où l'on adapte le langage réel->complexe et les périodes

Il se peut qu'une série trigonométrique $\sum_{n\geq 0} c_n e^{inx}$ soit convergente (mais non absolument convergente) pour tout $x\in\mathbb{R}$; mais sa somme f(x) n'est pas nécessairement continue, et les intégrales $\int f(x) e^{inx} dx$ peuvent n'avoir aucun sens; c'est par exemple le cas de la série $\sum_{n\geq 1} \frac{e^{inx}}{\sqrt{\ln n}}$. La notion de série trigonométrique est donc plus générale que celle de série de Fourier. Ele fut considérée d'abord par Riemann, qui put prouver le théorème suivant : si la série $\sum_{n\geq 0} c_n e^{inx}$ converge pour tout x et a pour somme 0, alors les coefficients c_n sont tous nuls. Cantor se demanda si cette concluion est ncore vrie lorsqu'on supose que la série $\sum_{n\geq 0} c_n e^{inx}$ converge et a pour somme 0 sauf aux points d'un ensemble E; c'est ce qui l'amena à l'étude des parties quelconques de \mathbb{R} , en particulier du point de vue de leur structure d'ordre ou de leur topologie. Mais il abandonna très vite son problème initial, qui n'est toujours pas complètement résolu.

4 Opérateurs compacts

Soit u un opérateur continu tel que

$$\begin{array}{rcl} H & = & \overbrace{\bigoplus_{\lambda \in \operatorname{Sp} u}^{\perp}}^{\perp} H_{\lambda} \\ \forall \lambda & \in & \operatorname{Sp} u, \ \dim H_{\lambda} < \infty \\ \forall \varepsilon & > & 0, \ \{\lambda \in \operatorname{Sp} u \ ; \ |\lambda| > \varepsilon\} \ \text{fini} \end{array}$$

Montrons que u est autoadjoint et compact.

Montrons déjà que u est autoadjoint sur $\bigoplus_{\lambda \in \operatorname{Sp} u} H_{\lambda}$; la continuité de u permettra de passer à H tout entier. Soit $a = \sum_{\lambda \in \operatorname{Sp} u} \alpha_{\lambda}$ deux éléments de $\bigoplus_{\lambda \in \operatorname{Sp} u} H_{\lambda}$. Alors $\langle u(a) \mid b \rangle = \sum_{\lambda \in \operatorname{Ap} \lambda} \lambda \alpha_{\lambda} \beta_{\lambda} = \langle u(a) \mid b \rangle$ car la somme $\bigoplus_{\lambda \in \operatorname{Sp} u} H_{\lambda}$ est orthogonale, CQFD.

Soit (a^n) une suite bornée, mettons par M. Montrons que l'on peut extraire de $u(a^n)$ une sous-suite convergente.

Il suffit de montrer le résultat pour toute suite restant dans $\bigoplus H_{\lambda}$. En effet, si on peut le faire, alors a^n s'approche par un b^n dans $\bigoplus H_{\lambda}$ à $\frac{1}{n}$ près avec une sous-suite $u\left(b^{\varphi(n)}\right) \longrightarrow l$. Alors

$$\left\|u\left(a^{\varphi(n)}\right)-u\left(b^{\varphi(n)}\right)\right\|\leq |||u|||\left\|a^{\varphi(n)}-b^{\varphi(n)}\right\|\leq \frac{|||u|||}{\varphi\left(n\right)}\longrightarrow 0, \text{ d'où } u\left(a^{\varphi(n)}\right)\longrightarrow l, \text{ CQFD}.$$

Les hypothèses permettent d'écrire

$$\operatorname{Sp} u = \{0\} \cup \bigcup_{n \ge 1} \left\{ \lambda \in \operatorname{Sp} u \; ; \; |\lambda| > \frac{1}{n} \right\}$$

donc Sp u est dénombrable, mettons Sp $u = \{\lambda_n\}_{n \geq 1}$. Mieux : $\lambda_n \longrightarrow 0$, sinon il y aurait une sous-suite (donc une infinité de λ_i) hors d'un petit disque centré en 0.

Chaque a^n se décompose alors comme une somme finie

$$a^n = \alpha_1^n + \alpha_2^n + \dots + \alpha_{k_n}^n$$

avec $\alpha_i^n \in H_{\lambda_i}$ pour tout n et pour tout $i \leq k_n$. Quitte à rajouter des termes nuls, on peut prendre (k_n) strictement croissante. On voit poindre un argument diagonal...

En prenant la norme, il vient

$$\forall n, \ \forall i \leq k_n, \ \|\alpha_i^n\| \leq \sqrt{\|\alpha_1^n\|^2 + \|\alpha_2^n\|^2 + \dots + \|\alpha_{k_n}^n\|^2} = \|a^n\| < M,$$

majoration uniforme en n et i. Comme par ailleurs chaque H_{λ_i} est de dimension finie, on peut extraire $\alpha_1^{\varphi_1(n)} \longrightarrow \alpha_1$, puis $\alpha_2^{\varphi_1\varphi_2(n)} \longrightarrow \alpha_2$, etc..., et on pose $\psi(n) = \varphi_1...\varphi_n(n)$. Puisque $u(a^n)$ s'écrit

$$u(a^n) = \lambda_1 \alpha_1^n + \lambda_2 \alpha_2^n + \dots + \lambda_{k_n} a_{k_n}^n,$$

on intuite que $u\left(a^{\psi(n)}\right)$ va converge vers $\sum_{i>1}\lambda_i\alpha_i$.

Déjà, cette dernière expression a un sens car la série vérifie le critère de Cauchy (on est dans un complet!) :

$$\left\| \sum_{p \le i \le q} \lambda_i \alpha_i \right\|^2 = \sum_{p \le i \le q} |\lambda_i|^2 \|\alpha_i\|^2 \le M \sup_{i \ge p} |\lambda_i|^2 \xrightarrow{p \infty} 0.$$

Soit maintenant $\varepsilon > 0$. Puisque $k_n \longrightarrow \infty$, on a $\lambda_{k_n} \longrightarrow 0$, donc il y a un rang N tel que $n > N \implies |\lambda_{k_n}| < \varepsilon$. On a alors,

$$u\left(a^{\psi(n)}\right) = \lambda_{1}\alpha_{1}^{\psi(n)} + \lambda_{2}\alpha_{2}^{\psi(n)} + \dots + \lambda_{k_{\psi(n)}}\alpha_{k_{\psi(n)}}^{\psi(n)}$$
$$= \sum_{i=1}^{N} \lambda_{i}\alpha_{i}^{\psi(n)} + \sum_{i>N}^{k_{\psi(n)}} \lambda_{i}\alpha_{i}^{\psi(n)}.$$

Le premier terme tend vers $\sum_{i=1}^{N} \lambda_i \alpha_i$, tandis que la norme du second vaut

$$\sqrt{\sum_{i>N}^{k_{\psi(n)}}\left|\lambda_{i}\right|^{2}\left\|\alpha_{i}^{\psi(n)}\right\|^{2}}\leq\varepsilon\cdot\sqrt{\sum_{1}^{k_{\psi(n)}}\left\|\alpha_{i}^{\psi(n)}\right\|^{2}}=\varepsilon\left\|a^{\psi(n)}\right\|<\varepsilon M.$$

On en déduit

$$\left\| u\left(a^{\psi(n)}\right) - \sum_{i \ge 1} \lambda_i \alpha_i \right\| \le \underbrace{\left\| u\left(a^{\psi(n)}\right) - \sum_{i=1}^N \lambda_i \alpha_i \right\|}_{<\varepsilon \text{ pour } n \text{ assez grand}} + \underbrace{\left\| \sum_{i > N} \lambda_i \alpha_i \right\|}_{<\varepsilon \text{ pour } N \text{ assez grand}}$$

Général : si f linéiare continue admet une base hilbertienne (e_n) de vecteurs propres, son spectre est exactement les λ_n , et les sep associés sont les $H_{\lambda} = \operatorname{Vect}_{\lambda_n = \lambda} e_n$ (qui sont de dim finie si $\lambda_n \longrightarrow 0$). Soit en effet λ vp, $fx = \lambda x$. On décompose $x = \sum x_n e_n$. Alors $0 = fx - \lambda x = \sum x_n (\lambda - \lambda_n) e_n$, d'où un n tel que $\lambda = \lambda_n$ (sinon x = 0).

Exemple : opérateur de convolution L^2 . (cf. bouquin archi classique, noyau compact, Fredholm, tout ça...) Les e_n sont une base hilbertienne de vecteurs propres pour $f * \cdot$, de valeurs propres associées $c_n(f) \longrightarrow 0$. On a donc $\bigoplus_{\lambda \in \operatorname{Sp} u} H_{\lambda} = \bigoplus_{n} R \cdot e_n = H$. Cela suffit à montrer que $f * \cdot$ est auto-adjoint de spectre $c_n(f)$, d'où le nom des coefficients de Fourier (spectre)!