Divers

Marc SAGE

Table des matières

1	Théorème de Grothendieck	2
2	Sev de $L^{2}\left(\mathbb{R}\right)$ invariant par le shift	3
3	Caractères de l'algèbre de convolution ${\cal L}^1$	4
4	La composée de deux foncions Riemann intégrable n'est pas Rieman intégrable	5
5	Fubini pour les fonctions continues sur des segments	5
6	SUr les partitions de rectangles à côtés entiers	6
7	Une limite	6
8	Une fonction dérivée pas Rieman intégable	6
9	Une condition l^2	6
10	Dual topologique de \mathbb{S}^1	7

Soit $E := l^2(\mathbb{N}) \oplus l^2(\mathbb{R})$.

- 1. Montrer que toute famille orthogonale de E est incluse dans $l^2(\mathbb{R})$ sauf un nombre au plus dénombrable.
- 2. (bonus) Montrer que dim $l^2(\mathbb{N}) = 2^{\aleph_0}$.

Soit (a_{α}) une base linéaire de $l^{2}(\mathbb{N})$ et (b_{α}) une b. on. de $l^{2}(\mathbb{R})$. On pose $F := \operatorname{Vect}_{\alpha \in R} \{a_{\alpha} + b_{\alpha}\}$

- 3. Montrer que F est en somme directe avec $l^2(\mathbb{R})$
- 4. Montrer que F n'est pas séparable
- 5. Montrer que F n'est pas de base hilbertienne

Solution proposée.

- 1. Soit (e_i) une famille orthogonale de E. Pour tout $n \in \mathbb{N}$, Parseval nous dit que $\sum \langle e_i \mid \delta_n \rangle^2 \leq \|\delta_n\|^2 = 1$, donc les $\langle e_i \mid \delta_n \rangle$ sont sommables, donc à support I_n fini, donc $e_i \perp l^2(N)$ pour $i \notin \bigcup_{n>0} I_n$.
- 2. La famille des $(a^n)_{n\geq 0}$ lorsque a décrit]0,1[est \mathbb{R} -libre, d'où dim $l^2(\mathbb{N})\geq 2^{\aleph_0}$. Par ailleurs, on a l'inégalité dans l'autre sens

$$\dim l^{2}\left(\mathbb{N}\right) \leq \operatorname{card} l^{2}\left(\mathbb{N}\right) \leq \operatorname{card} \mathbb{R}^{\mathbb{N}} = \left(2^{\aleph_{0}}\right)^{\aleph_{0}} = 2^{\aleph_{0}^{2}} = 2^{\aleph_{0}}.$$

- 3. Supposons $\sum \lambda_{\alpha} (a_{\alpha} + b_{\alpha}) = \sum \mu_{\alpha} b_{\alpha}$. Séparant $l^{2}(\mathbb{R})$ de $l^{2}(\mathbb{N})$, il vient $\sum \lambda_{\alpha} a_{\alpha} = 0$, d'où $(\lambda_{\alpha}) = 0$.
- 4. Supposon F séparable. Alors $F+l^2\left(\mathbb{N}\right)$ aussi, donc son adhérence aussi. Or, $\overline{F+l^2\left(\mathbb{N}\right)}$ contient $l^2\left(\mathbb{R}\right)$ car

$$\sum_{n \in N} \lambda_n b_{\alpha_n} = \lim_{N \infty} \left[\sum_{0}^{N} \lambda_n \left(a_{\alpha_n} + b_{\alpha_n} \right) - \sum_{0}^{N} \lambda_n b_n \right].$$

Donc $l^2(\mathbb{R})$ est séparable : soit (c_n) une suite dense. La réunion D des supports des c_n est au plus dénombrable. De plus, $c_n(\alpha) = 0$ car $\overline{\{c_n\}}$ ne peut atteindre que les suites de $l^2(R)$ à support $\subset D$: contradiction.

5. Soit (e_i) une base hilbertienne de F. Les points 1 et 3 montrent que (e_i) est dénombrable, de sorte que F est séparable, contredisant le point précédent.

1 Théorème de Grothendieck

Soit E un sev fermé de $L^p \cap L^{\infty}$ sur un espace de proba avec p > 1. On veut montrer que E est de dimension finie.

- 1. Montrer que l'injection canonique $\iota: E \subset L^p \longrightarrow L^\infty$ est continue.
- 2. Montrer que

$$\exists \beta, \ \forall f \in S, \ \|f\|_{\infty} \leq \beta \|f\|_{2}$$
.

(on pourra distinguer les cas $p \le 2$ et p > 2)

On fixe à présent $f_1, ..., f_n$ une famille orthogonale dans $E \subset L^2$ dont on souhaite borner le cardinal. Pour $a \in B$ boule unité de \mathbb{C}^n , on pose

$$f_a := \sum a_i f_i$$
.

On considère B' une partie dénombrable dense de B.

3. Montrer $||f_a||_{\infty} \leq \beta$ pour tout $a \in B$.

4. Conclure par un bon choix de a.

Solution proposée.

1. Soit $\iota: E \subset L^p \longrightarrow L^\infty$ l'injection canonique. Montrons que ι est continue par le théorème du graphe fermé. Soit f_n dans E qui converge vers f dans L^∞ . Puisque $\|\cdot\|_p \leq \|\cdot\|_\infty$ (on est dans un espace de proba), on bien $f_n \longrightarrow f$ dans L^p , et comme E est fermé, on a $f \in E$, ce qui conclut.

Ainsi, il y a un α tel que $\forall f \in E, ||f||_{\infty} \leq \alpha ||f||_{p}$.

2. Pour $1 , Jensen à <math>x^{\frac{2}{p}}$ donne $\sqrt[p]{\int f^p}^2 \le \int (f^p)^{\frac{2}{p}}$, i. e. $||f||_p \le ||f||_2$. Pour p > 2, on a

$$\left(\frac{\|f\|_{\infty}}{\alpha}\right)^p \leq \|f\|_p^p = \int \left|f\right|^p \leq \int \|f\|_{\infty}^{p-2} \left|f\right|^2 = \|f\|_{\infty}^{p-2} \left\|f\right\|_2^2,$$

d'où en prenant la racine carré $\|f\|_{\infty} \leq \alpha^{\frac{p}{2}} \|f\|_{2}$.

On conclut en prenant $\beta := \max \{1, \alpha^{\frac{p}{2}}\}.$

3. Pour $a \in B'$, on a

$$||f_a||_{\infty} \le \beta ||f_a||_2 = \beta,$$

donc $f_a(x) \leq \beta$ p. p. en x, donc pareil $\forall a \in B'$ car B' dénombrable. Or, à x fixé, l'application $a \mapsto f_a(x)$ est continue (car linéaire), ce qui permet d'obtenir l'inégalité ci-dessus pour tout $a \in B$.

4. On prend ensuite $a_i = \frac{\overline{f_i(x)}}{\sqrt{\sum |f_j(x)|^2}}$, de sorte que

$$f_a(x) = \frac{\sum f_i(x) \overline{f_i(x)}}{\sqrt{\sum |f_j(x)|^2}} = \sqrt{\sum |f_j(x)|^2},$$

d'où $\sum |f_i(x)|^2 = |f_a(x)|^2 \le \beta^2$. Intégrer en x donne

$$\sum \|f_j(x)\|_2^2 \leq \beta^2,$$

$$i. e. n \leq \beta^2, CQFD.$$

2 Sev de $L^{2}(\mathbb{R})$ invariant par le shift

Pour $f \in L^1(\mathbb{R}, \mathbb{C})$, on pose $\widehat{f}(x) = \int_{\mathbb{R}} f(t) e^{-itx} dt$.

Soit E un sev de $L^{2}(\mathbb{R})$ invariant par translation :

$$f \in E \implies [\forall a \in \mathbb{R}, \ f(\cdot - a) \in E].$$

Montrer qu'il y a une partie $A \subset R$ mesurable telle que

$$E = \left\{ f \in L^2 \; ; \; \widehat{f}_{|A} = 0 \text{ p. p.} \right\}$$

Solution proposée.

 \widehat{E} est un sev fermé de L^2 (car $\widehat{\cdot}$ est une isométrie) stable par translation : $f \in E \implies f(\cdot - a) \in E \implies \widehat{f} \underbrace{e^{-ia\cdot}}_{\in E} \in \widehat{E}$.

On considère la projection orthogonale P sur \widehat{E} : pour tout $f,g \in L^2$ et pour tout $a \in R$, on a $f - Pf \perp (Pg) e_a$, ie $\int (f - Pf) \overline{Pg} \overline{e_a} = 0$, et ceci $\forall a$, d'où $(f - Pf) \overline{Pg} = 0$. Or, $f - Pf, Pg \in L^2$, donc le produit $(f - Pf) \overline{Pg}$ est dans L^1 , et par injectivité de $\widehat{\cdot}$ on en déduit $(Pg) f = Pf \overline{Pg}$.

Échanger les rôles de f et g donne (Pg) $f = \overline{g}Pf$. En particulier pour g > 0 (par exemple $g(t) = e^{-|t|}$), on obtient (avec $\varphi := \frac{\overline{Pg}}{\overline{g}}$)

$$\forall f \in L^2, \ Pf = \varphi \cdot f.$$

Or, puisque $P^2=P,$ on doit avoir $\varphi^2=\varphi$ p. p., i. e. $\varphi\in\{0,1\}$ p. p..

Enfin, en notant A le lieu d'annulation de φ (défini à un ensemble de mesure nulle près), on a les équivalences

$$f \in \widehat{E} \iff Pf = f \iff f = \varphi f \iff \left\{ \begin{array}{l} f = 1f \text{ sur }^c A \\ f = 0f \text{ sur } A \end{array} \right. \iff f = 0 \text{ sur } A.$$

3 Caractères de l'algèbre de convolution L^1

Pour $f \in L^{1}(\mathbb{R}, \mathbb{C})$, on pose $\widehat{f}(x) = \int_{\mathbb{R}} f(t) e^{-itx} dt$.

Pour $a \in \mathbb{R} \cup \{\infty\}$, on pose $\langle \widetilde{a}, f \rangle := \langle \widehat{f}, a \rangle$.

On veut montrer que les \tilde{a} sont les caractères non nuls de l'algèbre L^1 munie du produit de convolution.

- 1. Donner un sens à $\widetilde{\infty}$.
- 2. Montrer que tout caractère φ d'une algèbre de Banach satisfait $|||\varphi||| \le 1$.

On fixe par la suite un caractère φ non nul.

3. Montrer qu'il y un $\widetilde{\varphi} \in L^{\infty}$ tel que, en notant $f_t := f(\cdot - t)$, on ait pour tout $f \in L^1$

$$\varphi(f_t) = \varphi(f)\widetilde{\varphi}(t)$$
 presque partout en t.

- 4. Montrer que $\widetilde{\varphi}$ peut être pris dans $C^0(\mathbb{R},\mathbb{C})$ puis que ψ transforme sommes en produits.
- 5. Conclure.

Solution proposée.

1. Tentons de définir $\widetilde{\infty}$ par la limite simple des \widetilde{a} quand $a \to \infty$:

$$\langle \widetilde{\infty}, f \rangle := \lim_{a \infty} \langle \widetilde{a}, f \rangle = \lim_{a \infty} \int f(t) e^{-iat} dt \stackrel{\text{Riemann}}{=} 0.$$

On trouve le caractère nul.

- 2. Supposons par l'absurde que $|||\varphi||| > 1$. Il y a donc un point a de norme < 1 tel que $||\varphi(a)|| = 1$. Alors la série $s_n := -a a^2 a^3 \dots a^n$ converge absolument, donc converve vers un certain s. Mais puisque $s_n + a = as_{n-1}$, on a s + a = as, d'où $\varphi(s) + \varphi(a) = \varphi(s) \varphi(a)$, i. e. $\varphi(s) + 1 = \varphi(s)$, ce qui est impossible.
- 3. D'après le lemme, φ est une forme linéaire continue, donc l'intégration contre un $\psi \in L^{\infty}$. Alors le complexe $\varphi(f * g)$ vaut d'une part

$$\varphi\left(x \mapsto \int_{t} f(x-t) g(t) dt\right) = \int_{x} \int_{t} f(x-t) g(t) \psi(x) dx dt$$
$$= \int_{t} g(t) \int_{t} f_{t} \psi = \int_{t} g(t) \underline{\varphi(f_{t})} dt,$$

d'autre part

$$\varphi(f)\varphi(g) = \int_{t} g(t) \underline{\varphi(f)} \widetilde{\varphi}(t) dt.$$

D'après l'unicité de Riesz, on conclut à l'égalité presque partout en t

$$\varphi(f_t) = \varphi(f) \psi(t)$$
.

4. En prenant un f tel que $\varphi(f) \neq 0$ (on peut car $\varphi \neq 0$), l'égalité ci-dessus se réécrit

$$\psi\left(t\right) = \frac{\varphi\left(f_{t}\right)}{\varphi\left(f\right)}.$$

Or, l'application $t \mapsto f_t$ est continue pour la norme?????, donc la formule ci-dessus montre que ψ se prolonge en une application continue partout définie.

Ensuite, on peut voir que ψ transforme sommes en produits :

$$\psi\left(x+y\right) = \frac{\varphi\left(f_{x+y}\right)}{\varphi\left(f\right)} = \frac{\varphi\left(\left(f_{x}\right)_{y}\right)}{\varphi\left(f\right)} = \frac{\varphi\left(f_{x}\right)\psi\left(y\right)}{\varphi\left(f\right)} = \psi\left(x\right)\psi\left(y\right).$$

Ce qui suit est un classique des équations fonctionnelles. 5.

Faire x=y=0 donne $\psi(0)\in\{0,1\}$. Si c'était 0, alors faire y=0 donnerait $\psi=0$, d'où $\varphi(f)=0$ $\int f\psi = 0$, ce qui n'est pas.

On a donc

$$\psi\left(0\right)=1.$$

Par continuité, il y a un $\delta > 0$ tel que $\int_0^\delta \psi > 0$, ce qui permet de déduire de l'égalité

$$\left(\int_{0}^{\delta} \psi\right) \psi\left(x\right) = \int_{0}^{\delta} \psi\left(t\right) \psi\left(x\right) dt = \int_{0}^{\delta} \psi\left(t+x\right) dt = \int_{x}^{\delta+x} \psi\left(t+x\right) dt$$

la dérivabilité de ψ .

Dérivant selon x puis faire x=0, on trouve $\psi'=A\psi$ (avec $A:=\psi'(0)$), d'où $\psi=Be^{A\cdot}$. Mais la condition $\psi(0) = 1$ impose B = 1, d'où $\psi = e^{A}$. Enfin, le caractère L^{∞} de ψ impose $A \in \mathbb{R}i$, disons A = -ai, d'où $\psi(t) = e^{-ait}$ et finalement

$$\varphi\left(f\right)=\int f\left(t\right)\psi\left(t\right)dt=\int f\left(t\right)e^{-ait}dt=\widetilde{a}\left(f\right),\;CQFD.$$

La composée de deux foncions Riemann intégrable n'est pas Rieman intégrable

on peut prendre f= la fonction de Weierstrass qui vaut $\frac{1}{q}$ sur un rationnel $\frac{p}{q}$ en forme irréductible, et 0 sur un irrationnel, et $g=\chi_{]0,1]}$: alors la composée $g\circ f$ est la fonction $\chi_{\mathbb{Q}}$ indicatrice des rationnels, qui n'est pas intégrable au sens de Riemann, tandis que g et f le sont

5 Fubini pour les fonctions continues sur des segments

si tu veux faire démontrer Fubini pour les intégrales de fonctions continues, tu peux faire comme ceci : Soit $f:[a,b]\times[c,d]\longrightarrow\mathbb{R}$ une fonction continue.

Je veux montrer que :

Se veux montrer que :
$$\int_{a}^{b} \left(\int_{c}^{d} f(x, y) \, dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) \, dx \right) dy$$
Pour cela, je pose :

$$g(X) = \int_{a}^{X} \left(\int_{c}^{d} f(x, y) \, dy \right) dx$$

$$h(X) = \int_{d}^{d} \left(\int_{a}^{X} f(x, y) \, dy \right) dx$$

Alors g est dérivable (intégration des fonctions continues : $\int_c^d f(\cdot,y) dy$ est continue par continuité sous l'intégrale) et $g'(X) = \int_c^d f(X, y)$. De même, h est dérivable (dérivation sous l'intégrale) et $h'(X) = \int_c^d f(X, y) dy =$

Comme g(a) = h(a) = 0, on a g(b) = h(b), CQFD.

6 SUr les partitions de rectangles à côtés entiers

Soit un rectangle R que l'on partitionne en rectangles R_i . On suppose que chacun des R_i a l'un de ses cotés de longueur entière, démontrer qu'alors R a l'un de ses cotés de longueur entière.

On peut supposer, quitte à rajouter toutes les abscisses et ordonnées, que les petits rectangles quadrillent le grand (gni????)

L'astuce consiste à regarder l'intégrale de $e^{2i\pi(x+y)}$. (le bon invariant)

Une limite 7

Il me semble que $f: a \mapsto \int_0^\infty \frac{\sin x}{(1+ax^2)} dx$ a une limite quand a tend vers 0 (1 en l'occurence). Quelqu'un a

une preuve simple de ce resultat qui me semble completement contre-intuitif? si $\frac{1}{t^2} = a$, alors $f(a) = t \int_0^\infty \frac{\sin(tx)}{1+x^2} dx$ qu'on intègre par parties en $t\left(\left[-\frac{\cos(tx)}{t}\frac{1}{1+x^2}\right] - \frac{2}{t}\int_0^\infty \frac{x\cos tx}{(1+x^2)^2} dx\right)$ qui vaut $1 - 2\int_0^\infty g(x)\cos(tx) dx$ avec $g(x) = \frac{x}{(1+x^2)^2}$ qui est L^1 sur R^+ , donc par riemann lebesgue le deuxième terme tens vers 0 quand $t \longrightarrow \infty$, ie $f(a) \longrightarrow 1$.

Rmq: f est de toutes facons calculable par le thm des résidus (si a > 0 au moins)

GAga, 4 juillet 2000, 18h43

8 Une fonction dérivée pas Rieman intégable

$$x^2 \ln x \sin\left(\frac{1}{x}\right)$$
$$x^2 \sin\left(\frac{1}{x^3}\right)$$

Une condition l^2 9

Montrer qu'une suite positive pour laquelle le "produit scalaire" avec toute suite carre sommable est bien defini est carre sommable elle-meme.

Pour ne pas faire de provocation, voici une version non-physicienne :

Soit (a_n) suite de termes positifs tq $\sum a_n b_n$ converge pour toute b_n de $l^2(R)$, montrer que (a_n) est dans $l^{2}(R)$.

On suppose que a_n n'est pas l^2 , donc que la somme des a_n^2 diverge.

J'affirme qu'on peut alors construire une suite t_n qui soit pas trop petite, de telle sorte que $\sum t_n a_n^2$ diverge encore, mais assez petite quand meme pour que $\sum t_n^2 a_n^2$ converge.

Alors en posant $b_n = t_n a_n$ on a que b_n est l^2 mais que $\sum a_n b_n$ diverge, d'ou la contradiction.

Pour construire les t_n , c'est un peu du bricolage, il y a plein de facons possibles, en voici une.

Comme $\sum a_n^2$ diverge, on peut trouver une suite d'entiers n_k croissante telle que pour tout k la somme S_k des a_n^2 pour $n_k \le n < n_{k+1}$ verifie $S_k \ge 1$. Alors pour $n_k \le n < n_{k+1}$ je pose $t_n = \frac{1}{kS_k}$. En sommant par paquets, on a bien $\sum t_n a_n^2 = \sum \frac{1}{k}$ diverge mais $\sum t_n^2 a_n^2 \le \sum \frac{1}{k^2}$ converge.

Application de Banach-Steinhaus?

10 Dual topologique de \mathbb{S}^1

Une autre façon de voir ça que ce qu'a dit Yves, c'est que si f était un caractère (continu) autre que $e_n : z - > z^n$, il serait orthogonal à tous les e_i (pour le produit scalaire usuel sur $L^2(S_1)$) (car l'intégrale sur S_1 d'un caractère non trivial est nul), ce qui contredirait la densité des e_n dans $L^2(S_1)$.

Pour être sûr de comprendre pour quoi l'intégrale d'un caractère χ non trivial fait zéro :

En tout cas, tu peux toujours adapter la démonstration usuelle : par un changement de variables (la mesure est invariante par translation), tu obtiens que l'intégrale de $\chi(xt)$ sur S_1 s'identifie à I, intégrale de χ , mais aussi à $\chi(x)I$, d'où la nullité de I si tu choisis au départ x tel que $\chi(x) \neq 1$.

Ah oui, c'est beaucoup mieux, ça... Je voulais à tout prix utiliser la continuité dans un argument de densité, mais tu ne l'utilises que pour dire que l'intégrale est bien définie, ça a l'air magique.