Déterminants bis (version chantier)

Marc SAGE <2015

Table des matières

1	Détail sur Hadamard	2
2	maximiser le dét sur la boule unité infinie	2
3	Un déterminant	2
4	Vandermonde généralisé	2
5	Matrices stochastiques	2
6	un calcul	3
7	Det par blocs	3
8	Formule Sylvester et calcul d'un wronskien	3
9	$\mathbf{poly} \mathbf{car} A \cdot$	4
10	déragnements	4
11	Dans $M_n\left(Z\right)$	4
12	des poids	4
13	décomposition LU	4
14	Sur la comatrice	5
15	Uen équation	6
16	Sur le diamètre transfini des parties bornées du plan	6
17	Déterminant de Fredholm	7

1 Détail sur Hadamard

EXO :rappel sur lemme Hadamard. On le précise en minorant le détermiannt par le produit des $\delta_k := (\sum_{i < k} |a_{i,k}|) - |a_{k,k}|$.

DEM : résultat et hypothèses invariant par dilatations des lignes. On peut supposer la diagonale égale à 1 puis tuer la première colonne par n transvectios $L_i \leftarrow L_0 - a_{0,1}L_0$ (on a indexé de 0 à n).

idée : récurrer sur la matrice restante $a'_{i,j} = a_{i,j} + a_{i,0}a_{0,j}$. Montrons que celle ci est à diag dominnate : deux inégalité traingualire brutes donnent

$$\Delta_{i}' : = |a_{i,i}'| - \sum_{\substack{j \neq i \\ j \ge 1}} |a_{i,j}'|$$

$$\ge (|a_{i,i}| - |a_{i,0}| |a_{0,i}|) - \sum_{\substack{j \neq i \\ j \ge 1}} (|a_{i,j}| + |a_{i,0}a_{0,j}|)$$

on réordonne

$$= |a_{i,i}| - \left(\sum_{j \neq i} |a_{i,j}|\right) + |a_{i,0}| \left(1 - \sum_{j \geq 1} |a_{0,j}|\right)$$

la second parethèse vaut Δ_0 donc est < 0. On en déduit $\Delta_i' \ge \Delta_i$ pour $i \ge 1$. En bornant les somme à j < i au lieu de $i \ne j$, on trouve de même $\delta_i' \ge \delta_i$. Donc det $\ge 1 \prod \delta_k' \ge \delta_1 \prod \delta_k$, CQFD. (pour $n = 1, \delta_1 = \det$)

2 maximiser le dét sur la boule unité infinie

Montrer que $\sup_{\|A\|<1} \det A$ est un entier multiple de 2^{n-1}

3 Un déterminant

soit A tq $a_{i,j} \neq 0 \implies a_{j,i} = 0$ et $a_{i,j}a_{j,k} \neq 0 \implies a_{i,k} \neq 0$. Que vaut det A? SOI.

on prend un serpent $\prod a_{i,\sigma(i)}$ non nul associé à un σ décomposée en cycles.... FGN

4 Vandermonde généralisé

Soit
$$0 < \alpha_1 < \dots < \alpha_n$$
 et $\overrightarrow{\lambda} \neq 0$.
Montrer que $\sum \lambda_i x^{\alpha_i}$ s'annule au plus $n-1$ fois sur R^{++} POur $0 < t_1 < \dots < t_n$, mq det $(t_i^{\alpha_j}) > 0$

5 Matrices stochastiques

soit $A \in M_n(R^+)$ de somme 1 sur chaque ligne. montrer $|\det A| \le 1$ et étudier le cas d'égalité

(mq par réc que si somme ligne ≤ 1 alors $|\det| \leq 1$) (les matries de permitation sont solutions)

6 un calcul

soit $A, B \in M_n$ tq Im A et B (Ker A) ne sont pas en \bigoplus . Notons A_j la matrice A où la j-ièm colonne a été remplacéée par celle de B.

Caculer $\sum \det A_j$

7 Det par blocs

Mq det $A_{i,j} = \det = \sum \varepsilon(\sigma) \prod A_{i,\sigma(i)}$ si les $A_{i,j}$ commutent

8 Formule Sylvester et calcul d'un wronskien

Soit A une matrice.

On note $A_{q_1,\ldots,q_n}^{p_1,\ldots,p_n}$ la matrice obtenues à partir de A en retirant les lignes d'indices les p_i et les colonnes d'indices les q_j .

1. Montrer la formule de Sylvester

$$\forall p \neq q, \ |A|^2 \left| A_{p,q}^{p,q} \right| = \left| \begin{array}{c} \left| A_p^p \right| \\ A_q^p \end{array} \right| \left| \begin{array}{c} A_q^p \\ A_q^q \end{array} \right| \ .$$

2. Soit $f: I \longrightarrow \mathbb{K}$ une application C^{∞} sur un intervalle I de \mathbb{R} . On pose pour tout entier $k \geq -1$

$$w_{k} := \left\{ \begin{array}{ll} I & \longrightarrow & K \\ t & \longmapsto & \det \left(f^{(i+j)} \left(t \right) \right)_{0 \leq i, j \leq k} \end{array} \right.$$

Montrer pour $n \ge 0$ l'identité

$$w_{n-1}w_{n+1} = \left| \begin{array}{cc} w_n & w'_n \\ w'_n & w''_n \end{array} \right|.$$

Solution proposée.

1. On suppose dans un premier temps A inversible et (p,q)=(1,2).

Pour faire apparaître $A_{1,2}^{1,2}$, on écrit $A=\begin{pmatrix} *&*\\ *&A_{1,2}^{1,2} \end{pmatrix}$ par blocs où les premières ligne et colonne correspondent aux deux premières lignes et colonnes de A. Par ailleurs, les déterminants apparaissant dans la matrice de droite sont des mineurs : plus précisément, si l'on écrit com $A=\begin{pmatrix} X&*\\ x&* \end{pmatrix}$ par blocs de façon adpatée à l'écriture de A ci-dessus, alors $X=\begin{pmatrix} |A_1^1|&-|A_2^1|\\ -|A_1^2|&|A_2^2| \end{pmatrix}$.

On en déduit que le déterminant de droite vaut celui de X. Pour faire le lien entre X et $A_{1,2}^{1,2}$, on peut invoquer l'identité $({}^t \operatorname{com} A) A = |A|$, mais l'on ne pourrait pas extraire |X| de cette dernière. Regardons plutôt le produit de $({}^t X {}^t x {}^t x) A$: la seconde ligne sera celle de A et la première sera la première ligne de $({}^t \operatorname{com} A) A = |A|$, autrement dit (|A|, 0). Prenant le déterminant dans l'égalité $({}^t X {}^t x) A = ({}^t A {}^t A {}^t$

Lorsque A n'est pas supposée inversible, on remplace les coefficients de A par n^2 indéterminée $(X_{i,j})$ de sorte à avoir une matrice inversible dans le corps $K\left((X_{i,j})_{i,j}\right)$ à laquelle s'appliquera la formule de Sylvester; spécialiser les indéterminées en les coefficients de A donnera alors le résultat.

3

2. Notons W_k la matrice $(f^{(i+j)}(t))_{0 \le i,j \le k}$ pour tout $k \ge -1$ et fixons un entier $n \ge 0$.

On applique la formule de Sylvester à la matrice $A := W_{n+1}$ et aux indices (p,q) = (n, n+1). Puisque $A_{n+1}^{n+1} = W_n$ et $A_{n,n+1}^{n,n+1} = W_{n-1}$, on obtient

$$\underbrace{|W_{n+1}|\,|W_{n-1}|}_{=w_{n-1}\,w_{n+1}} = \left|\begin{array}{cc} |A_n^n| & \left|A_{n+1}^n\right| \\ \left|A_n^{n+1}\right| & w_n \end{array}\right| \stackrel{?}{=} \left|\begin{array}{cc} w_n & w_n' \\ w_n' & w_n'' \end{array}\right|.$$

On est incité à regarder ce qui se passe lorque l'on dérive w_n . Comme il s'agit d'une forme multilinéaire en les colonnes, on a $w_n' = \sum_{j=0,\dots,n} \delta_j$ où δ_j est le déterminant w_n où l'on a remplacé la j-ième colonne par sa dérivée. Vue la tête de w_n , les δ_j sont nuls sauf pour j=n maximal et δ_n s'obtient alors en barrant la dernière ligne et l'avant-dernière colonne de W_{n+1} , d'où $w_n' = \left|A_n^{n+1}\right|$. En raisonnant cette fois sur les lignes de A_n^{n+1} , on montre que w_n'' s'obtient en barrant les avant-dernières ligne et colonne de A, d'où $w_n'' = |A_n^n|$. On conclut en réinjectant les valeurs de w_n' et w_n'' que l'on vient de trouver.

Remarque. Une matrice constante sur les anti-diagonales est dite de de Hankel.

9 poly car A.

trouver det $(A \cdot)$.dans $L(M_n)$.

10 déragnements

comparer nb dérangement pairs/impairs. (la différence vaut $\det\left(1-\delta_i^j\right)$

11 Dans $M_n(Z)$

cns sur un vecteur de \mathbb{Z}^n pour être une colonne d'une matrice inversible? coef 1,1 doit donne $\sum a_i$? = 1, donc les a_i doivent être premire entr eux.

12 des poids

soit A réelle de diag nulle à coef dans $\{\pm 1\}$. Si n pair, mq A inversible

On a 2n+1 caillours. OS chaque paquets de 2n cailoux se décompose en deux paquets de n cailloux de même masse totale. Mq tous les cailloux ont la même masse

pour tout i, $\exists J$ tq $2\sum_j x_j + x_i = X$ où X poids total. On sait que $x_i = \frac{X}{2n+1}$ est solution . C'est la seule car matrice inversible 2 – Id : son det est non nul mod 2, donc non nul :-)

13 décomposition LU

c
ns pour que A = LU? (det $(a_{i,j})_{1 \le i,j \le p} \ne 0$ pour tout p)

14 Sur la comatrice

Pour une matrice A, on pose $\widetilde{A} := {}^{t} \operatorname{com} A$.

- 1. Que valent $A\widetilde{A}$ et $\widetilde{A}A$?
- 2. Calculer le rang de la comatrice ainsi que ses noyau et image.
- 3. Que vaut le déterminant de la comatrice?
- 4. Montrer l'égalité $\widetilde{AB} = \widetilde{AB}$ pour toutes matrices A et B. En déduire que, si deux matrices A et B sont semblables, alors \widetilde{A} et \widetilde{B} également.
- 5. Montrer que les sous-espaces propres de A sont des sous-espaces propres de \widetilde{A} .
- 6. Que vaut $\widetilde{\widetilde{A}}$?
- 7. Evaluer $\chi_{\widetilde{A}} = \chi_{t_A} = \frac{(-X)^n}{|A|} \chi_A \left(\frac{1}{X}\right)$ (diag inversible sont dense)
- 8. Montrer \widetilde{A} est un poynôme en A; en déduire Comm $A \subset \text{Comm } \widetilde{A}$
- 9. résoudre $A = \widetilde{A}$ dans \mathbb{R}
- 1. Le cours donne $A\widetilde{A} = \widetilde{A}A = |A|$.
- 2. Discutons selon le rang de A. Lorsque A est inversible, \widetilde{A} l'est également, d'où les rang, noyau et images de \widetilde{A} . Lorsque A est de rang $\leq n-2$, tous les mineurs sont nuls, donc \widetilde{A} est nulle?

Lorsque A est de rang n-1, les égalités $A\widetilde{A}=\widetilde{A}A=0$ s'écrivent $\begin{cases} \operatorname{Im}\widetilde{A}\subset\operatorname{Ker}A\\ \operatorname{Im}A\subset\operatorname{Ker}\widetilde{A} \end{cases}$. Prenant les dimensions et sommant, il vient $n\leq n$ par le théorème du rang, donc on avait déjà égalité au niveau des

- 3. Prendre le déterminant dans l'égalité ci-dessus donne $|A| \left| \widetilde{A} \right| = |A|^n$. Si $|A| \neq 0$, on trouve $\left| \widetilde{A} \right| = |A|^{n-1}$. Si |A| = 0, le rang de A n'est pas n, donc le rang de \widetilde{A} vaut 1 ou 0, d'où $\left| \widetilde{A} \right| = 0 = |A|^{n-1}$ pour $n \geq 2$. (Pour n = 1, la condition |A| = 0 se réécrit A = 0, d'où $\left| \widetilde{A} \right| = 0$.)
- 4. L'égalité est claire pour des matrices inversibles puisqu'alors

inclusions. En particulier, $\operatorname{rg} A = \dim \operatorname{Ker} A = 1$.

$$\widetilde{AB} = \frac{1}{|AB|}^{t} (AB)^{-1} = \frac{1}{|A||B|} (^{t}A^{-1}) (^{t}B^{-1}) = \widetilde{A}\widetilde{B}.$$

Lorsque le corps de base K est \mathbb{R} ou \mathbb{C} , on prolonge cette identité par densité de GL_n et par continuité de $A \mapsto \widetilde{A}$ (la comatrice est polynomiale en chaque coordonnée, donc C^{∞}). Dans le cas général, on rend les matrices A et B inversibles en considèrant $2n^2$ indéterminées $X_{i,j}$ et $Y_{i,j}$ et en se plaçant dans le corps $K(X_{i,j},Y_{i,j})$ où les matrices $X:=(X_{i,j})$ et $Y:=(Y_{i,j})$ sont inversibles (car de déterminant non nul) : on évalue ensuite l'identité $\widetilde{XY}=\widetilde{XY}$ en spécialisant les $X_{i,j}$ en les $a_{i,j}$ et les $Y_{i,j}$ en les $b_{i,j}$.

Si $B = PAP^{-1}$, on écrit BP = PA, d'où $\widetilde{BP} = \widetilde{PA}$ avec rg $\widetilde{P} = n$ car rg P = n, d'où $\widetilde{B} = \widetilde{PAP}^{-1}$.

5. si $|A| \neq 0$, on a l'équivalence $Ax = \lambda x \iff \frac{|A|}{\lambda}x = \widetilde{A}x$. D'où $\operatorname{Sp} \widetilde{A} = \left\{\frac{|A|}{\lambda}\right\}_{\lambda \in \operatorname{Sp} A}$

SI rg A < n-1, tout vep de A est vep de $\widetilde{A} = 0$.

Si $\operatorname{corg} A = 1$, partons de $Ax = \lambda x$. Deux $\operatorname{cas} : \lambda \neq 0 \implies 0 = \lambda \widetilde{A}x \implies x \in \operatorname{Ker} \widetilde{A}$, ou bien $\lambda = 0 \implies x \in \operatorname{Ker} A = \operatorname{Im} \widetilde{A}$ qui est une droite, donc $\left(x, \widetilde{A}x\right)$ lié.

- 6. = $|A|^{n-2} A$, ok pour n = 2, et même pour n = 1 si $A \neq 0$.
- 7. $\chi_{\widetilde{A}} = \chi_{\operatorname{Com} A} = \frac{(-X)^n}{|A|} \chi_A \left(\frac{1}{X}\right)$ (diag inversible sont dense)
- 8. ..
- 9. oN A $A^tA = A^tcomA = |A|$. Si $A \neq 0$, l'un des colonnes est dnon nulle, donc un coef diag de A^tA est > 0, donc |A| > 0, donc $\frac{A}{\sqrt{|A|}} \in O_n$. Or, |A| > 0, donc $\frac{A}{\sqrt{|A|}} \in SO_n$, ie $|A|^{1-n/2} = 1$. Pour $n \neq 2$, on trouve |A| = 1, donc SOL= SO_n . Sinon, RSO_2 fonctionne.

5

15 Uen équation

Dans $M_n(C)$ où $n \geq 2$, résoudre $A + \widetilde{A} \in C$.

16 Sur le diamètre transfini des parties bornées du plan

Soit A une partie du plan.

On note $d_n := \sup_{\overrightarrow{a} \in A^n} \frac{n(n-1)}{2} \sqrt{\prod_{i < j} |a_i - a_j|}$ le diamètre d'ordre n de A.

On rappelle que la suite (d_n) est décroisante. On note d sa limite, appelée diamètre transfini de A. On souhaite donner une autre expression de d

Pour $n \geq 0$, on note U_n l'ensemble des polynômes unitaires de $\mathbb{C}_n[X]$ et on pose

$$\delta_n = \inf_{P \in U_n} \sup_A |P|.$$

Par commodité, on notera $D_n:=d_n^{\frac{n(n+1)}{2}}$ et $\Delta_n:=\delta_n^n$

- 1. Montrer que la suite $(\ln \Delta_n)$ est sous-additive et en déduire que δ_n converge vers son infimum que l'on notera δ .
- 2. On considère le Vandermonde $V(\overrightarrow{a})$ en n+1 variables $a_0,...,a_n$. En remplaçant la rangée de a_i^n par une rangée de $P(a_i)$ pour un polynôme P à choisir, montrer les inégalités

$$1 \le \frac{1}{\Delta_n} \frac{D_{n+1}}{D_n} \le n+1.$$

3. Conclure $d = \delta$.

Solution proposée.

1. Soit $p, q \ge 0$ et $(P, Q) \in U_p \times U_q$. On a

$$\Delta_{p+q} \le \sup_{A} |PQ| = \sup_{A} |P| |Q| \le \sup_{A} |P| \sup_{A} |Q|.$$

On prend ensuite l'infimum sur les $P \in U_p$, d'où $\Delta_{p+q} \leq \Delta_p \sup_A |Q|$, puis l'infimum sur les $Q \in U_q$, d'où $\Delta_{p+q} \leq \Delta_p \Delta_q$, CQFD.

2. Le Vandermonde perturbé que l'on demande de considérer vaut le Vandermonde sans perturbation du moment que le polynôme P est de degré $\leq n$ (soustraire à la dernière rangée une combinaison linéaire des rangées précédentes). Par ailleurs, en développant selon la rangée de $P(a_i)$, on trouve

$$V\left(\overrightarrow{a}\right) = \sum_{i=0}^{n} P\left(a_{i}\right) V\left(\left(a_{j}\right)_{j \neq i}\right),\,$$

d'où la majoration

$$|V\left(\overrightarrow{a}\right)| \le \sum_{A} \sup_{\overrightarrow{x} \in A^n} |V\left(\overrightarrow{x}\right)| = (n+1) \sup_{A} |P| \cdot D_n.$$

En prenant le supremum sur les $\overrightarrow{a} \in A^{n+1}$, puis l'infimum sur les $P \in U_n$, on en déduit

$$D_{n+1} \leq (n+1) \Delta_n D_n$$

ce qui est l'inégalité de droite à montrer.

Par ailleurs, une récurrence immédiate donne

$$|V(\overrightarrow{a})| = |V(a_1,...a_n)| \prod_{i=1}^{n} |a_0 - a_i|$$

Le facteur de droite est continu en a_0 et minoré, donc atteint????

3. On va encadrer d_n à l'aide des δ_k afin de la faire converger vers δ .

Minoration. L'inégalité de gauche se réécrit $D_{n+1} \ge \Delta_n d_n^{\frac{n(n-1)}{2}}$, ce qui se minore par $\Delta_n d_{n+1}^{\frac{n(n-1)}{2}}$ vue la décroissance des d_k . Simplifiant par d_{n+1} , il vient

$$d_{n+1} \geq \Delta_n$$
,

ce qui est très synpathique. Si par malheur d_{n+1} était nul, cela signifierait que A contient au plus n points, mais alors le polynôme $\prod_{a\in A}(X-a)$ est dans U_n et permet d'obtenir $\delta_n \leq \sup_{z\in A}\prod_{a\in A}|z-a|=0$, ce qui sauve l'inégalité souhaitée.

Majoration. On multiplie les inégalités de droite de 1 à n-1, d'où $\frac{1}{\Delta_1 \cdots \Delta_{n-1}} \frac{D_n}{D_1} \le n!$. Passant à d_n , il vient (on sait que $D_1 = 1$)

$$d_n \le \frac{\frac{n(n-1)}{2}\sqrt{n!}}{\sqrt[n]{n!}} \frac{\frac{n(n-1)}{2}\sqrt{\delta_1\cdots\delta_{n-1}^{n-1}}}.$$

Puisque $n! \leq n^n$, le facteur de gauche se majore par $\frac{n-1}{2}\sqrt{n} = e^{\frac{\ln n}{2(n-1)}} \longrightarrow 1$. Par ailleurs, la suite $(\underline{\delta_1}, \underline{\delta_2}, \underline{\delta_2}, \underline{\delta_3}, \underline{\delta_3}, \underline{\delta_3}, \underline{\delta_3}, \dots)$ converge vers δ , donc son logarithme tend vers ∞ ; par Cesàro, sa moyenne aussi; en particulier, la moyenne $\ln\left(\frac{n(n-1)}{2}\sqrt{\delta_1\cdots\delta_{n-1}^{n-1}}\right)$ de ses $\frac{n(n-1)}{2}$ premiers termes tend vers $\ln \delta$. Passant à l'exponentielle, on en déduit que $\frac{n(n-1)}{2}\sqrt{\delta_1\cdots\delta_{n-1}^{n-1}}$ converge vers δ .

Finalement, on a encadré δ_n par deux suites de limite δ , ce qui conclut.

17 Déterminant de Fredholm

Pour K fonction de deux variables, on pose

$$\det\left(1+tK\right) = \sum_{n\geq 0} \frac{t^n}{n} \int \det\left(K\left(x_i, x_j\right)_{1\leq i, j\leq n}\right) dx_1 \cdots dx_n$$

(on somme les mineurs).

on identifie K avec $f \mapsto \int K(\cdot, x) f(x) dx$

Alors $\det(1+tK)$ converge si K opérateur borné

prop:

$$\det \left[\left(1+K \right) \left(1+K' \right) \right] \quad = \quad \det \left(1+K \right) \det \left(1+K' \right)$$

$$\det \left(1+K \right) \quad = \quad \prod_{\lambda \in \operatorname{Sp} K} \left(1+\lambda \right)$$

le faire pour opérateur de rang finis, puis les opératuer compacts, opérateurs à trace?????