Comparison between W_2 distance and \dot{H}^{-1} norm, and Localisation of Wasserstein distance

Rémi Peyre*

September 28, 2016

Abstract

It is well known that the quadratic Wasserstein distance $W_2(\cdot, \cdot)$ is formally equivalent, for infinitesimally small perturbations, to some weighted H^{-1} homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the W_2 distance exhibits some localisation phenomenon: if μ and ν are measures on \mathbf{R}^n and $\varphi \colon \mathbf{R}^n \to \mathbf{R}_+$ is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between $\varphi \cdot \mu$ and $\varphi \cdot \nu$ by an explicit multiple of $W_2(\mu, \nu)$.

Keywords: Wasserstein distance; homogeneous Sobolev norm; localisation

Foreword

This article is divided into two sections, each of which having its own introduction. § 1 deals with general results of comparison between Wasserstein distance and homogeneous Sobolev norm, while § 2 handles an application to localisation of W_2 distance.

1 Non-asymptotic equivalence between W_2 distance and \dot{H}^{-1} norm

1.1 Introduction

In all this section, M denotes a connected Riemannian manifold endowed with its distance $dist(\cdot, \cdot)$ and its Lebesgue measure λ . Let us give a few standard definitions which will be at the core of our work:

• For μ, ν two positive measures on M, denoting by $\Pi(\mu, \nu)$ the set of (positive) measures on $M \times M$ whose respective marginals are μ and ν , for $\pi \in \Pi(\mu, \nu)$ one defines

$$I(\pi) \coloneqq \int_{M \times M} dist(x, y)^2 \pi(dx, dy) \tag{1}$$

and then

$$W_2(\mu,\nu) \coloneqq \inf\{I(\pi) \mid \pi \in \Pi(\mu,\nu)\}^{1/2}.$$
 (2)

^{*}Supported by the Austrian Science Fund (FWF) under grant P25815.

 W_2 is a (possibly infinite) distance, called the *quadratic Wasserstein distance* [Villani, 2003, § 7.1]. Note that this distance is finite only between measures having the same total mass.

• On the other hand, for μ a (positive) measure on M, if f is a \mathcal{C}^1 real function on M, one denotes

$$\|f\|_{\dot{H}^{1}(\mu)} \coloneqq \left(\int_{M} |\nabla f(x)|^{2} d\mu(x)\right)^{1/2},\tag{3}$$

which defines a semi-norm; for ν a signed measure on M, one then denotes

$$\|\nu\|_{\dot{H}^{-1}(\mu)} \coloneqq \sup\{|\langle f, \nu\rangle| \mid \|f\|_{\dot{H}^{1}(\mu)} \leqslant 1\},\tag{4}$$

which defines a (possibly infinite) norm, which we will call the $\dot{H}^{-1}(\mu)$ weighted homogeneous Sobolev norm. Note that this norm is finite only for measures having zero total mass. In the case μ is the Lebesgue measure, we will merely write " \dot{H}^{-1} " for " $\dot{H}^{-1}(\lambda)$ ".

The W_2 Wasserstein distance is an important object in analysis; but it is nonlinear, which makes it harder to study. For infinitesimal perturbations however, the linearised behaviour of W_2 is well known: if μ is a positive measure on M and $d\mu$ is an infinitesimally small perturbation of this measure,^[*] one has formally (see [Villani, 2003, § 7.6] or [Otto and Villani, 2000, § 7])

$$W_2(\mu, \mu + d\mu) = \|d\mu\|_{\dot{H}^{-1}(\mu)} + o(d\mu).$$
(5)

More precisely, one has the following equality, known as the *Benamou–Brenier for*mula [Benamou and Brenier, 2000, Prop. 1.1]: for two positive measures μ, ν on M,

$$W_2(\mu,\nu) = \inf\left\{\int_0^1 \|d\mu_t\|_{\dot{H}^{-1}(\mu_t)} \mid \mu_0 = \mu, \ \mu_1 = \nu\right\}.$$
 (6)

Then, a natural question is the following: are there *non-asymptotic* comparisons between the W_2 distance and the \dot{H}^{-1} norm? Concretely, we are looking for inequalities like

$$C_{\rm a} \|\mu - \nu\|_{\dot{H}^{-1}(\mu)} \leqslant W_2(\mu, \nu) \leqslant C_{\rm b} \|\mu - \nu\|_{\dot{H}^{-1}(\mu)} \tag{7}$$

for constants $0 < C_{\rm a} \leqslant C_{\rm b} < \infty$, under mild assumptions on μ and ν .

1.2 Controlling W_2 by \dot{H}^{-1}

Theorem 1. For any positive measures μ, ν on M,

$$W_2(\mu,\nu) \leqslant 2 \|\mu - \nu\|_{\dot{H}^{-1}(\mu)}.$$
 (8)

Proof. We suppose that $\|\mu - \nu\|_{\dot{H}^{-1}(\mu)} < \infty$, otherwise there is nothing to prove. For $t \in [0, 1]$, let

$$\mu_t \coloneqq (1-t)\mu + t\nu,\tag{9}$$

so that $\mu_0 = \mu$, $\mu_1 = \nu$ and $d\mu_t = (\mu - \nu)dt$. Then, by the Benamou–Brenier formula (6):

$$W_2(\mu,\nu) \leqslant \int_0^1 \|\mu - \nu\|_{\dot{H}^{-1}(\mu_t)} dt.$$
(10)

Now, we use the following key lemma, whose proof is postponed:

^[*]Beware that here $d\mu$ denotes a small measure on M, not the value of μ on a small area.

Lemma 2. If μ, μ' are two measures such that $\mu' \ge \rho \mu$ for some $\rho > 0$, then $\|\cdot\|_{\dot{H}^{-1}(\mu')} \le \rho^{-1/2} \|\cdot\|_{\dot{H}^{-1}(\mu)}$.^[†]

Here obviously $\mu_t \ge (1-t)\mu$, so

$$W_2(\mu,\nu) \leqslant \int_0^1 (1-t)^{-1/2} \|\mu - \nu\|_{\dot{H}^{-1}(\mu)} dt = 2\|\mu - \nu\|_{\dot{H}^{-1}(\mu)},\tag{11}$$

QED.

Corollary 3. If $\mu \ge \rho \lambda$ for some $\rho > 0$, then

$$W_2(\mu,\nu) \leqslant 2\rho^{-1/2} \|\mu - \nu\|_{\dot{H}^{-1}}.$$
(12)

Proof. Just use that $\|\cdot\|_{\dot{H}^{-1}(\mu)} \leq \rho^{-1/2} \|\cdot\|_{\dot{H}^{-1}}$ by Lemma 2.

Proof of Lemma 2. Take $\mu' \ge \rho\mu$ and let ν be a signed measure on M such that $\mu + \nu$ is positive; then $\mu' + \rho\nu$ is also positive. For m a measure on M, we denote by diag(m) the measure on $M \times M$ supported by the diagonal whose marginals (which are equal) are m, i.e.:

$$(diag(m))(A \times B) \coloneqq m(A \cap B);$$
 (13)

with that notation,

$$\pi \in \Pi(\mu, \mu + \nu) \Rightarrow \rho \pi + diag(\mu' - \rho \mu) \in \Pi(\mu', \mu' + \rho \nu), \tag{14}$$

and

$$I(\rho\pi + diag(\mu' - \rho\mu)) = \rho I(\pi).$$
(15)

Therefore, taking infima,

$$W_{2}(\mu',\mu'+\rho\nu)^{2} = \inf\{I(\pi') \mid \pi' \in \Gamma(\mu',\mu'+\rho\nu)\} \\ \leqslant \inf\{I(\rho\pi + diag(\mu'-\rho\mu)) \mid \pi \in \Gamma(\mu,\mu+\nu)\} \\ = \rho \inf\{I(\pi) \mid \pi \in \Gamma(\mu,\mu+\nu)\} = \rho W_{2}(\mu,\nu)^{2}.$$
(16)

For infinitesimally small ν , it follows by Equation (5) that $\|\rho\nu\|_{\dot{H}^{-1}(\mu')}^2 \leq \rho \|\nu\|_{\dot{H}^{-1}(\mu)}^2$, hence $\|\nu\|_{\dot{H}^{-1}(\mu')} \leq \rho^{-1/2} \|\nu\|_{\dot{H}^{-1}(\mu)}$. This relation remains true even for non-infinitesimal ν by linearity, which ends the proof.

Remark 4. Lemma 2 could also be proved very quickly by using the definition (3)-(4) of the $\dot{H}^{-1}(\mu)$ norm. The proof above, however, has the advantage that it does not need the precise expression of $\|\cdot\|_{\dot{H}^{-1}(\mu)}$, but only the fact that it is the linearised W_2 distance.

^[†]Beware that here '·' stands for a *measure*, not for a function: otherwise the formula would be false.—When f is a function, $||f||_{\dot{H}^{-1}(\mu)}$ stands for the $\dot{H}^{-1}(\mu)$ norm of the measure having density f w.r.t. μ .

Controlling \dot{H}^{-1} by W_2 1.3

Theorem 5. Assume M has nonnegative Ricci curvature. Then for any positive measures μ, ν on M such that $\mu \leq \rho_0 \lambda$ and $\nu \leq \rho_1 \lambda$,

$$\|\mu - \nu\|_{\dot{H}^{-1}} \leqslant \frac{2(\rho_0^{1/2} - \rho_1^{1/2})}{\ln(\rho_0 / \rho_1)} W_2(\mu, \nu).$$
(17)

(For $\rho_1 = \rho_0$, the right-hand side of (17) is to be taken as $\rho_0^{1/2} W_2(\mu, \nu)$ by continuity).

Remark 6. For $M = \mathbf{R}^n$ a similar result was already stated in [Loeper, 2006, Proposition 2.8], with a different proof.

Proof. Let $(\mu_t)_{0 \le t \le 1}$ be the displacement interpolation between μ and ν (cf. [Villani, 2009, chap. 7]), which is such that $\mu_0 = \mu$, $\mu_1 = \nu$ and the infimum in (6) is attained with $||d\mu_t||_{\dot{H}^{-1}(\mu_t)} = W_2(\mu,\nu)dt \ \forall t$. Since Ricci curvature is nonnegative, the Lott–Sturm–Villani theory tells us that, denoting by $\|\mu\|_{\infty}$ the essential supre-mum of the density of μ w.r.t. λ , one has $\|\mu_t\|_{\infty} \leq \|\mu_0\|_{\infty}^{1-t} \|\mu_1\|_{\infty}^t = \rho_0^{1-t}\rho_1^t$ (see [Villani, 2009, Corollary 17.19] or [Cordero-Erausquin et al., 2001, Lemma 6.1]); so that $\|\cdot\|_{\dot{H}^{-1}} \leq \rho_0^{(1-t)/2} \rho_1^{t/2} \|\cdot\|_{\dot{H}^{-1}(\mu_t)}$ by Lemma 2. Then, by the integral triangle inequality for normed vector spaces,

$$\begin{aligned} \|\mu - \nu\|_{\dot{H}^{-1}} &= \left\| \int_{0}^{1} d\mu_{t} \right\|_{\dot{H}^{-1}} \leqslant \int_{0}^{1} \|d\mu_{t}\|_{\dot{H}^{-1}} \\ &\leqslant \int_{0}^{1} \rho_{0}^{(1-t)/2} \rho_{1}^{t/2} \|d\mu_{t}\|_{\dot{H}^{-1}(\mu_{t})} = \left(\int_{0}^{1} \rho_{0}^{(1-t)/2} \rho_{1}^{t/2} dt \right) W_{2}(\mu, \nu) \\ &= \frac{2(\rho_{0}^{1/2} - \rho_{1}^{1/2})}{\ln(\rho_{0} / \rho_{1})} W_{2}(\mu, \nu), \end{aligned}$$
(18)
ED.

QED.

Remark 7. Taking into account the dimension n of the manifold M, the bound on $\|\mu_t\|_{\infty}$ could be refined into

$$\|\mu_t\|_{\infty} \leqslant \left((1-t)\|\mu_0\|_{\infty}^{-1/n} + t\|\mu_1\|_{\infty}^{-1/n}\right)^{-n},\tag{19}$$

which would yield a slightly sharper bound in Equation (17), namely:

$$\|\mu - \nu\|_{\dot{H}^{-1}} \leq \left(\int_{0}^{1} \left((1-t)\rho_{0}^{-1/n} + t\rho_{1}^{-1/n} \right)^{-n/2} dt \right) W_{2}(\mu, \nu)$$

$$= \begin{cases} \frac{\rho_{0}^{1/2-1/n} - \rho_{1}^{1/2-1/n}}{(n/2-1)(\rho_{1}^{-1/n} - \rho_{0}^{-1/n})} W_{2}(\mu, \nu) & n \geq 2; \\ \frac{\ln(\rho_{1}/\rho_{0})}{2(\rho_{0}^{-1/2} - \rho_{1}^{-1/2})} W_{2}(\mu, \nu) & n = 2. \end{cases}$$

$$(20)$$

For n = 1 it turns out that one can let tend $\rho_1 \to \infty$ in (20) without making the integral diverge; which leads to a much more powerful result:

Theorem 8. When M is an interval of **R**, then under the sole assumption that $\mu \leq$ $\rho_0 \lambda$, one has for all positive measures ν on M:

$$\|\mu - \nu\|_{\dot{H}^{-1}} \leqslant 2\rho_0^{1/2} W_2(\mu, \nu).$$
(21)

Remark 9. For $n \ge 2$ there is no hope to get a bound valid for all ν , because then it can occur that $W_2(\mu,\nu) < \infty$ but $\|\mu - \nu\|_{\dot{H}^{-1}} = \infty$: for instance, take μ to be the uniform measure on the 2-dimensional sphere and ν a Dirac mass.

2 Application to localisation of Wasserstein distance

2.1 Introduction

In all this section, we work in the Euclidian space \mathbb{R}^n , whose norm is denoted by $|\cdot|$. $dist(x, A) := \inf\{|x - y| \mid y \in A\}$ denotes the distance between a point x and a set A; A^c denotes the complement of A; λ denotes the Lebesgue measure. We will use the following notation to handle measures:

- For μ a measure on \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}^n$ a measurable map, $f_* \mu$ denotes the pushforward of μ by f, that is, $(f_* \mu)(A) \coloneqq \mu(f^{-1}(A))$.
- For μ a measure on \mathbf{R}^n and $\varphi \colon \mathbf{R}^n \to \mathbf{R}_+$ a nonnegative measurable function, $\varphi \cdot \mu$ denotes the measure such that $d(\varphi \cdot \mu)(x) \coloneqq \varphi(x) d\mu(x)$.

We will also use the following norms on measures:

- $\|\mu\|_{\dot{H}^{-1}(\nu)}$ has the same definition as in § 1;
- $\|\mu\|_1 \coloneqq \int_{\mathbf{R}^n} |d\mu(x)|$ is the total variation norm of μ ;^[‡]
- For ν a positive measure with $\mu \ll \nu$, we define

$$\|\mu\|_{L^2(\nu)} \coloneqq \left(\int_{\operatorname{supp}\nu} \left(\frac{d\mu}{d\nu}(x)\right)^2 d\nu(x)\right)^{1/2}.$$
(22)

For $A \subset \mathbf{R}^n$, we also denote $\|\cdot\|_{L^2(A)}$ for $\|\cdot\|_{L^2(\mathbf{1}_A \cdot \lambda)}$.

The goal of this section is to give an application of Theorem 1 to the problem of *localisation* of the quadratic Wasserstein distance. Morally, the question is the following: take two measures μ, ν on \mathbf{R}^n being close to each other in the sense of W_2 distance; is it true that μ and ν remain close when you consider their restrictions to a subset of \mathbf{R}^n ? Concretely, if φ is a non-negative real function on \mathbf{R}^n with compact support (plus some technical assumptions to be specified later), we want to bound above $W_2(a\varphi \cdot \mu, \varphi \cdot \nu)$ by some multiple of $W_2(\mu, \nu)$ —where, in the former expression, a is a constant factor ensuring that $a\varphi \cdot \mu$ and $\varphi \cdot \nu$ have the same mass (for otherwise the distance between $\varphi \cdot \mu$ and $\varphi \cdot \nu$ is generically infinite).

This question, which was my initial motivation for the results of § 1, was asked to me by Xavier TOLSA, who needed such a result for his paper [Tolsa, 2012] on characterizing uniform rectifiability in terms of mass transport. Actually Xavier managed to devise a proof of his own [Tolsa, 2012, Theorem 1.1], but it was quite long (about thirty pages) and involved arguments of multi-scale analysis. With Theorem 1 at hand, however, the reasoning becomes far more direct; moreover we will be able to relax some of the assumptions of Xavier's theorem.

2.2 Statement of the theorem

Theorem 10. Let μ, ν be (positive) measures on \mathbb{R}^n having the same total mass; let B be a ball of \mathbb{R}^n (whose radius will be denoted by R when needed). Assume that on B, the density of μ w.r.t. the Lebesgue measure is bounded above and below:

$$\exists \ 0 < m_1 \leqslant m_2 < \infty \quad \forall x \in B \qquad m_1 \lambda(dx) \leqslant d\mu(x) \leqslant m_2 \lambda(dx).$$
(23)

Let $\varphi \colon \mathbf{R}^n \to \mathbf{R}_+$ be a function such that:

^[‡]Note that in the case μ is a positive measure on \mathbf{R}^n , then $\|\mu\|_1$ is noting but $\mu(\mathbf{R}^n)$.

- (i) φ is zero outside B;
- (ii) There exist $0 < c_1 \leq c_2 < \infty$ such that for all $x \in B$, $c_1 \operatorname{dist}(x, B^{\mathsf{c}})^2 \leq \varphi(x) \leq c_2 \operatorname{dist}(x, B^{\mathsf{c}})^2$.
- (iii) φ is k-Lipschitz for some $k < \infty$.

Then, denoting $a \coloneqq \|\varphi \cdot \nu\|_1 / \|\varphi \cdot \mu\|_1$,

$$W_2(a\varphi \cdot \mu, \varphi \cdot \nu) \leqslant C(n) \frac{c_2^{3/2} m_2^{3/2}}{c_1^{3/2} m_1^{3/2}} k c_1^{-1/2} W_2(\mu, \nu),$$
(24)

for $C(n) < \infty$ some absolute constant only depending on n. Moreover, one can bound explicitly C(n) in such a way that $C(n) = O(n^{1/2})$ when $n \to \infty$.^[§]

Remark 11. Actually the constraint that the support of φ is a ball is of little importance: we could assume as well that it would be a cube, a simplex, or many other shapes, as the corollary below shows:

Corollary 12. Make the same assumptions as in Theorem 10, except that B need not be a ball: instead, we only assume that, denoting by B_{\circ} the (true) ball having the same volume as B, there exists a bijection $\Phi: B \leftrightarrow B_{\circ}$ mapping the uniform measure on B onto the uniform measure on B_{\circ} (i.e. such that $\Phi_*(\mathbf{1}_B \cdot \lambda) = \mathbf{1}_{B_{\circ}} \cdot \lambda$) such that Φ is bi-Lipschitz (i.e. such that both Φ and Φ^{-1} are Lipschitz). Denote by $\|\Phi\|_{Lip}$ and $\|\Phi^{-1}\|_{Lip}$ the optimal Lipschitz constants for resp. Φ and Φ^{-1} . Then, the conclusion of Theorem 10 remains true, except that now you have to replace the factor C(n) by

$$(\|\Phi\|_{Lip}\|\Phi^{-1}\|_{Lip})^5 C(n).$$
(25)

Proof. Consider the measures $\mu_{\circ} \coloneqq \Phi_* \mu$ and $\nu_{\circ} \coloneqq \Phi_* \nu$, and the bump function $\varphi_{\circ} \coloneqq \varphi \circ \Phi^{-1}$; then, μ_{\circ} , ν_{\circ} and φ_{\circ} satisfy the original assumptions of Theorem 10, the roles of ' m_1 ' and ' m_2 ' (in the ball situation) being held by m_1 and m_2 (in the general situation) themselves, the role of 'k' being held by $\|\Phi^{-1}\|_{Lip}k$, and the roles of ' c_1 ' and ' c_2 ' being held by $c_1 / \|\Phi\|_{Lip}^2$ and $c_2 \|\Phi^{-1}\|_{Lip}^2$. Therefore, applying (24):

$$W_2(a\varphi_{\circ} \cdot \mu_{\circ}, \varphi_{\circ} \cdot \nu_{\circ}) \leqslant C(n) \|\Phi\|_{Lip}^4 \|\Phi^{-1}\|_{Lip}^4 \frac{c_2^{3/2} m_2^{3/2}}{c_1^{3/2} m_1^{3/2}} W_2(a\mu_{\circ}, \nu_{\circ}).$$
(26)

But the optimal transportation plan from $a\mu$ to ν , with cost $W_2(\mu,\nu)^2$, can be pushed forward by Φ into a (not optimal in general) transportation plan from $a\mu_{\circ}$ to ν_{\circ} , whose cost will then be $\leq \|\Phi\|_{Lip}^2 W_2(\mu,\nu)^2$; so $W_2(a\mu_{\circ},\nu_{\circ}) \leq \|\Phi\|_{Lip} W_2(a\mu,\nu)$. Similarly $W_2(a\varphi \cdot \mu, \varphi \cdot \nu) \leq \|\Phi^{-1}\|_{Lip} W_2(a\varphi_{\circ} \cdot \mu_{\circ}, \varphi_{\circ} \cdot \nu_{\circ})$. The announced result follows.

2.3 Proof of the main theorem

In the sequel we will shorthand $W_2(\mu, \nu) =: w$, and also $\varphi \cdot \mu =: \hat{\mu}$, resp. $\varphi \cdot \nu =: \hat{\nu}$. Let g =: Id + S be a map achieving optimal transportation from ν to μ , i.e. such that $\mu = g * \nu$ with $\int_{\mathbf{R}^n} |S(y)|^2 d\nu(y) = w^2 \cdot [\P]$

^[§]For instance, with the estimates of this article, one finds that $C(n) := 47n^{1/2}$ fits—though this may be strongly suboptimal.

^[¶]Actually such an g does not always exist, as it can occur that the optimal transportation plan from ν to μ "splits points" if ν is not regular enough. However it would suffice to use the general

Our strategy will consist in transforming $\hat{\nu}$ into $a\hat{\mu}$ according to the following procedure:

- ① We apply the transportation plan g to $\hat{\nu}$; this transforms $\hat{\nu}$ into some measure $\hat{\mu}^*$. The measure $\hat{\mu}^*$ is not supported by B a priori, so we split it into $\hat{\mu}^*_B + \hat{\mu}^*_c := \mathbf{1}_B \cdot \hat{\mu}^* + \mathbf{1}_{B^c} \cdot \hat{\mu}^*$.
- ② Denoting $a_{\mathsf{c}} \coloneqq \|\hat{\mu}_{\mathsf{c}}^*\|_1 / \|\hat{\mu}\|_1$, we then transform $\hat{\mu}_{\mathsf{c}}^*$ into $a_{\mathsf{c}}\hat{\mu}$ according to an arbitrary transference plan.
- (3) Finally, denoting $a_B := \|\hat{\mu}_B^*\|_1 / \|\hat{\mu}\|_1$, we transform $\hat{\mu}_B^*$ into $a_B\hat{\mu}$ according to the optimal transference plan: the cost of this operation is $W_2(\hat{\mu}_B^*, a_B\hat{\mu})$, which we bound above by $2\|\hat{\mu}_B^* a_B\hat{\mu}\|_{\dot{H}^{-1}(a_B\hat{\mu})}$ thanks to Theorem 1.

Then, denoting by $W_2(\mathfrak{D}), W_2(\mathfrak{D}), W_2(\mathfrak{D})$ the respective Wasserstein distances of these steps, we shall have $W_2(\hat{\nu}, a\hat{\mu}) \leq W_2(\mathfrak{D}) + (W_2(\mathfrak{D})^2 + W_2(\mathfrak{D})^2)^{1/2}$.

Let us begin with bounding the cost of Step ^①. The squared cost of this step is

$$W_{2}(\textcircled{1})^{2} = \int |S(y)|^{2} d\hat{\nu}(y) = \int |S(y)|^{2} \varphi(y) d\nu(y)$$

$$\leqslant \sup \varphi \times \int |S(y)|^{2} d\nu(y) = \sup \varphi \times w^{2} \leqslant c_{2} R^{2} w^{2}, \quad (27)$$

whence $W_2(\mathfrak{D}) \leqslant c_2^{1/2} R w$.

Now consider Step @. As $a_{\mathsf{c}}\hat{\mu}$ is supported by B, one has obviously

$$W_2(\mathfrak{D})^2 \leqslant \int \left(dist(x,B) + 2R \right)^2 d\hat{\mu}_{\mathsf{c}}^*(x) = \int_{B^{\mathsf{c}}} \left(dist(x,B) + 2R \right)^2 d\hat{\mu}^*(x).$$
(28)

From that we deduce that $W_2(\mathfrak{D}) \leq 2c_2^{1/2}Rw$ by the following computation:

$$\int_{B^{c}} (dist(x,B) + 2R)^{2} d\hat{\mu}^{*}(x) = \int_{g(y)\notin B} (dist(g(y),B) + 2R)^{2} \varphi(y) d\nu(y)$$

$$\leq c_{2} \int_{\substack{y\in B\\g(y)\notin B}} (dist(g(y),B) + 2R)^{2} dist(y,B^{c})^{2} d\nu(y)$$

$$\leq c_{2} \int_{\substack{y\in B\\g(y)\notin B}} (R dist(g(y),B) + 2R dist(y,B^{c}))^{2} d\nu(y)$$

$$\leq 4c_{2}R^{2} \int_{\substack{y\in B\\g(y)\notin B}} (dist(g(y),B) + dist(y,B^{c}))^{2} d\nu(y)$$

$$\leq 4c_{2}R^{2} \int |y - g(y)|^{2} d\nu(y) = 4c_{2}R^{2}w^{2}. \quad (29)$$

formalism of transportation plans to handle that case: we do not do it here to keep notation light, but this is straightforward. Also note that it is not obvious that the infimum in (2) is attained: again, that is not a real problem as our proof still works by considering a sequence of transportation plans approaching optimality.

[[]II]Observe that $a_B + a_c = a$.

Step ③ is the difficult one. We begin with observing that it is easy to bound the $L^2(B)$ distance between $\hat{\mu}_B^*$ and $\hat{\mu}$: indeed, denoting by $f \eqqcolon Id + T$ the inverse map of $g^{[**]}$,

$$\begin{aligned} \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(\mathbf{1}_{B} \cdot \mu)}^{2} &= \int_{B} \left(\frac{d\hat{\mu}^{*}(x) - \varphi(x)d\mu(x)}{d\mu(x)} \right)^{2} d\mu(x) \\ &= \int_{B} \left(\varphi(f(x)) - \varphi(x) \right)^{2} d\mu(x) \\ &\leqslant k^{2} \int_{\mathbf{R}^{n}} |x - f(x)|^{2} d\mu(x) = k^{2} \int |T(x)|^{2} d\mu(x) = k^{2} w^{2}, \quad (30) \end{aligned}$$

(where we used that $d\hat{\mu}^*(x) = d\hat{\nu}(f(x)) = \varphi(f(x))d\nu(f(x)) = \varphi(f(x))d\mu(x))$, so that

$$\|\hat{\mu}_B^* - \hat{\mu}\|_{L^2(B)}^2 \leqslant k^2 m_2 w^2.$$
(31)

Now we have to link $\|\cdot\|_{L^2(B)}$ with $\|\cdot\|_{\dot{H}^{-1}(\mu)}$. This is achieved by the following lemma, whose proof is postponed:

Lemma 13. Define $\hat{\lambda}$ to be the measure on B such that $\hat{\lambda}(dx) \coloneqq dist(x, B^{c})^{2}\lambda(dx)$. Then, for any signed measure m on B having total mass zero:

$$\|m\|_{\dot{H}^{-1}(\hat{\lambda})} \leqslant C_1(n)^{1/2} \|m\|_{L^2(B)},\tag{32}$$

where $C_1(n)$ is some absolute constant only depending on n. Moreover, taking $C_1(n) \coloneqq ((2e+1)n-1) \lor 8e$ fits.

Thanks to Theorem 1 and Lemma 13, we have that

$$W_{2}(\mathfrak{S}) \leq 2 \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{\dot{H}^{-1}(a_{B}\hat{\mu})} \leq 2(a_{B}c_{1}m_{1})^{-1/2} \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{\dot{H}^{-1}(\hat{\lambda})} \leq 2C_{1}(n)^{1/2}(a_{B}c_{1}m_{1})^{-1/2} \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{L^{2}(B)}.$$
 (33)

Next, we compute

$$\begin{aligned} \|a_{B}\hat{\mu} - \hat{\mu}_{B}^{*}\|_{L^{2}(B)} &= \left\|\frac{\|\hat{\mu}_{B}^{*}\|_{1}}{\|\hat{\mu}\|_{1}}\hat{\mu} - \hat{\mu}_{B}^{*}\right\|_{L^{2}(B)} \leqslant \frac{\|\|\hat{\mu}_{B}^{*}\|_{1} - \|\hat{\mu}\|_{1}}{\|\hat{\mu}\|_{1}} \|\hat{\mu}\|_{L^{2}(B)} + \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \\ &\leqslant \frac{\|\hat{\mu}\|_{L^{2}(B)}}{\|\hat{\mu}\|_{1}} \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{1} + \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \leqslant \left(\frac{\|\hat{\mu}\|_{L^{2}(B)}}{\|\hat{\mu}\|_{1}}\lambda(B)^{1/2} + 1\right) \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \\ &\leqslant \left(\frac{c_{2}m_{2}}{c_{1}m_{1}}\frac{\lambda(B)^{1/2}\|\hat{\lambda}\|_{L^{2}(B)}}{\|\hat{\lambda}\|_{1}} + 1\right) \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \leqslant \left(\sqrt{6}\frac{c_{2}m_{2}}{c_{1}m_{1}} + 1\right) \|\hat{\mu}_{B}^{*} - \hat{\mu}\|_{L^{2}(B)} \\ &\leqslant \left(\sqrt{6} + 1\right)\frac{c_{2}m_{2}}{c_{1}m_{1}}km_{2}^{1/2}w, \quad (34) \end{aligned}$$

so that, combining (33) and (34), we have got:

$$W_2(\mathfrak{S}) \leqslant (2\sqrt{6}+2)C_1(n)^{1/2}a_B^{-1/2}\frac{c_2m_2^{3/2}}{c_1m_1^{3/2}}\frac{k}{c_1^{1/2}}w.$$
 (35)

^[**]For f to exist, g should be bijective, which is not always true *stricto sensu*; but we can safely carry out the reasoning with pretending so, by the same argument as in Footnote $[\P]$ on page 6. ^[††]This step comes from the computation $\lambda(B)^{1/2} \|\hat{\lambda}\|_{L^2(B)} / \|\hat{\lambda}\|_1 = (\int_0^1 r^{n-1} dr)^{1/2} \times (\int_0^1 (1-r)^2 r^{n-1} dr) = (6(1+n)(2+n) / (3+n)(4+n))^{1/2} \leq \sqrt{6} \forall n.$ The computations are the following. First, it is obvious that

$$W_2(\mathfrak{V}) = W_2(\hat{\mu}_B^*, a_B \hat{\mu}) \leqslant 2R \|\hat{\mu}_B^*\|_1^{1/2}.$$
(36)

Next, observing that $\varphi(f(x)) \ge \frac{c_1}{c_2}\varphi(x) - 2c_1 \operatorname{dist}(x, B^{\mathsf{c}})|T(x)|,^{[\ddagger\ddagger]}$ we compute that

$$\begin{aligned} \|\hat{\mu}_{B}^{*}\|_{1} &= \int_{B} \varphi(f(x)) d\mu(x) \geqslant \int_{B} \left(\frac{c_{1}}{c_{2}} \varphi(x) - 2c_{1} \operatorname{dist}(x, B^{\mathsf{c}}) |T(x)| \right) d\mu(x) \\ &\geqslant \frac{c_{1}}{c_{2}} \|\hat{\mu}\|_{1} - 2c_{1} \left(\int_{B} \operatorname{dist}(x, B^{\mathsf{c}})^{2} d\mu(x) \right)^{1/2} \left(\int_{B} |T(x)|^{2} d\mu(x) \right)^{1/2} \\ &= \frac{c_{1}}{c_{2}} \|\hat{\mu}\|_{1} - 2c_{1} \|\operatorname{dist}(\cdot, B^{\mathsf{c}})^{2} \cdot \mu\|_{1}^{1/2} w \geqslant \frac{c_{1}}{c_{2}} \|\hat{\mu}\|_{1} - 2c_{1} m_{2}^{1/2} \|\hat{\lambda}\|_{1}^{1/2} w, \end{aligned}$$
(38)

whence

$$w \ge \frac{\left(\frac{c_1}{c_2} \|\hat{\mu}\|_1 - \|\hat{\mu}_B^*\|_1\right)_+}{2c_1 m_2^{1/2} \|\hat{\lambda}\|_1^{1/2}} = \frac{\left(\frac{c_1}{c_2} - a_B\right)_+ \|\hat{\mu}\|_1}{2c_1 m_2^{1/2} \|\hat{\lambda}\|_1^{1/2}} \ge \frac{m_1^{1/2}}{2c_1 m_2^{1/2}} \left(\frac{c_1}{c_2} - a_B\right)_+ \|\hat{\mu}\|_1^{1/2}.$$
 (39)

So,

$$W_2(\mathfrak{S}) \leqslant 2R \|\hat{\mu}_B^*\|_1^{1/2} = 2Ra_B^{1/2} \|\hat{\mu}\|_1^{1/2} \leqslant 4Rc_1^{1/2} \frac{m_2^{1/2}}{m_1^{1/2}} \frac{a_B^{1/2}}{(\frac{c_1}{c_2} - a_B)_+} w.$$
(40)

In the end, choosing either (35) if $a_B \ge c_1 / 2c_2$ or (40) if $c_1 / 2c_2$, and observing that $c_1 \le kR^{-1}$, one has always:

$$W_2(\mathfrak{3}) \leqslant \left((4\sqrt{3} + 2\sqrt{2})C_1(n)^{1/2} \lor 4\sqrt{2} \right) \frac{c_2^{3/2} m_2^{3/2}}{c_1^{3/2} m_1^{3/2}} \frac{k}{c_1^{1/2}} w. \quad \Box$$
(41)

Remark 14. To bound $W_2(\mathfrak{V})$ in the situation where $a_B \ll 1$, we could also have started from " $\varphi(f(x)) \geq \varphi(x) - k|T(x)|$ " (instead of " $\varphi(f(x)) \geq \frac{c_1}{c_2}\varphi(x) - 2c_1 \operatorname{dist}(x, B^{\mathsf{c}})|T(x)|$ ") to get another bound analogous to (38). Following such an approach, the factor $(c_2 / c_1)^{3/2}$ in (40) would be improved into (c_2 / c_1) in the analogous formula; however the dimensional factor would behave in O(n) rather than in $O(n^{1/2})$.

2.4 Proof of Lemma 13

It still remains to prove Lemma 13, whose statement we recall to be:

$$\varphi(f(x)) \ge c_1 \operatorname{dist}(f(x), B^{\mathsf{c}})^2 \ge c_1 \left(\operatorname{dist}(x, B^{\mathsf{c}}) - |T(x)|\right)_+^2$$
$$\ge c_1 \operatorname{dist}(x, B^{\mathsf{c}})^2 - 2c_1 \operatorname{dist}(x, B^{\mathsf{c}})|T(x)| \ge \frac{c_1}{c_2}\varphi(x) - 2c_1 \operatorname{dist}(x, B^{\mathsf{c}})|T(x)|.$$
(37)

^[‡‡]This follows from the computation:

Lemma. Denoting $\hat{\lambda} := dist(\cdot, B^{c})^{2} \cdot \lambda$, one has, for any signed measure m on B having total mass zero:

$$\|m\|_{\dot{H}^{-1}(\hat{\lambda})} \leqslant \left(\left((2e+1)n - 1 \right) \lor 8e \right)^{1/2} \|m\|_{L^{2}(B)}.$$

$$\tag{42}$$

-In the sequel, " $((2e+1)n-1) \vee 8e$ " will be shorthanded into " $C_1(n)$ ".

Remark 15. The bound (42) is within a constant factor of being optimal, uniformly in n, as one sees by f in (45) to be linear.

Proof of the lemma. We begin with translating the lemma into a functional analysis statement by a duality argument. Recall the duality definition of $||m||_{\dot{H}^{-1}(\hat{\lambda})}$ from § 1:

$$\|m\|_{\dot{H}^{-1}(\hat{\lambda})} \coloneqq \sup\{|\langle f, m \rangle| \mid \|f\|_{\dot{H}^{1}(\hat{\lambda})} \leqslant 1\}.$$

$$\tag{43}$$

There is a similar duality formula for $||m||_{L^2(B)}$:

$$||m||_{L^{2}(B)} = \sup\{|\langle f, m \rangle| \mid ||f||_{L^{2}(B)} \leq 1\},$$
(44)

where, for f a function, $||f||_{L^2(B)}$ has its usual meaning, namely $||f||_{L^2(B)} := (\int_B f(x)^2 d\lambda(x))^{1/2}$. Since m is assumed to have total mass zero, $|\langle f, m \rangle|$ does not change when one adds a constant to f. On the other hand, when f describes the set $\{||f_0 + a|| \mid a \in \mathbf{R}\}, ||f||_{L^2(B)}$ is minimal when a is such that f has zero mean on B, while the value of $||f||_{\dot{H}^1(\hat{\lambda})}$ remains constant.^[*] As a consequence, we can restrict the supremum in (43) and (44) to those f having zero mean on B. Thus, the lemma will be implied^[†] by proving that

$$\langle f, \mathbf{1}_B \cdot \lambda \rangle = 0 \quad \Rightarrow \quad \|f\|_{L^2(B)} \leqslant C_1(n)^{1/2} \|f\|_{\dot{H}^1(\hat{\lambda})}.$$
 (45)

Going back to the definitions of $\|\cdot\|_{\dot{H}^{-1}(\hat{\lambda})}$ and $\|\cdot\|_{L^2(B)}$, relaxing the condition on f to be centred by projecting it orthogonally in $L^2(B)$ onto the subspace of centred functions, and denoting by P the uniform probability measure on B, Equation (45) turns into:

$$\forall f \qquad \operatorname{Var}_{P}(f) \leqslant C_{1}(n) \int dist(x, B^{\mathsf{c}})^{2} |\nabla f(x)|^{2} dP(x), \tag{46}$$

which we recognize to be a weighted Poincaré inequality.

To prove (46), the first key idea (inspired by [Bobkov, 2003]) is to separate radial and spherical coordinates. This is, considering the bijection

$$\varphi \colon (0,R) \times \mathbb{S}^{n-1} \to B \smallsetminus \{0\}$$

$$(r,\theta) \mapsto r\theta$$

$$(47)$$

(the origin of space being set at the center of B), we introduce the measure $\tilde{P} := \varphi^{-1} * P$, which is obviously the product measure $\tilde{P}_r \otimes \tilde{P}_{\theta}$, where \tilde{P}_r is the probability measure on (0, R) such that $d\tilde{P}_r(r) := nR^{-n}r^{n-1}dr$, resp. \tilde{P}_{θ} is the uniform measure

^[*]Here we implicitly assume that $\int_{B} |f(x)| d\lambda(x) < \infty$, which is legit since an approximation argument allows to restrict the suprema in (43) and (44) to those f having a \mathcal{C}^{∞} continuation on cl(B).

^[†]Actually there is even equivalence.

on the sphere \mathbb{S}^{n-1} . With this notation, we perform can a change of variables to see that (46) is equivalent to proving that, for all $g \in L^2(\tilde{P})$:

$$C_1(n)^{-1}\operatorname{Var}_{\tilde{P}}(g) \leqslant \int_0^R \int_{\mathbb{S}^{n-1}} (R-r)^2 \left(|\nabla_r g(r,\theta)|^2 + r^{-2} |\nabla_\theta g(r,\theta)|^2 \right) d\tilde{P}_r(r) d\tilde{P}_\theta(\theta),$$

$$\tag{48}$$

where ∇_r and ∇_{θ} denote the gradient along resp. the *r* coordinate and the θ coordinate.^[‡] We will denote the right-hand side of (48) by $\mathcal{E}(g, g)$.

Because $\tilde{P} = \tilde{P}_r \otimes \tilde{P}_{\theta}$, we know that $L^2(\tilde{P})$ can be seen as (the closure of) the tensor product of $L^2(\tilde{P}_r)$ and $L^2(\tilde{P}_{\theta})$:

$$L^{2}(\tilde{P}) = \operatorname{cl}(L^{2}(\tilde{P}_{r}) \overset{\perp}{\otimes} L^{2}(\tilde{P}_{\theta})), \qquad (49)$$

where the symbol ' $\stackrel{\leftarrow}{\otimes}$ ' means that the Hilbertian structure of $L^2(\tilde{P})$ is compatible with the Hilbertian structures of $L^2(\tilde{P}_r)$ and $L^2(\tilde{P}_{\theta})$ —i.e., that $\langle h_a \otimes u_a, h_b \otimes u_b \rangle_{L^2(\tilde{P})} = \langle h_a, h_b \rangle_{L^2(\tilde{P}_r)} \times \langle u_a, u_b \rangle_{L^2(\tilde{P}_{\theta})}$. Now consider the spherical harmonics Y_0, Y_1, \ldots , which by definition are an orthonormal basis, in $L^2(\tilde{P}_{\theta})$, of eigenfunctions of the Laplace–Beltrami operator Δ on \mathbb{S}^{n-1} ; and call ℓ_0, ℓ_1, \ldots the associated eigenvalues, which are known to be such that (up to permuting indices) $Y_0 \equiv 1$ with $\ell_0 = 0$, and $\ell_i \leq -(n-1) \quad \forall i \neq 0$ (see for instance [Seeley, 1966]). By construction, $L^2(\tilde{P}_{\theta}) = \operatorname{cl}(\bigoplus_{i \in \mathbf{N}} (\mathbf{R} \cdot Y_i))$; therefore, one has that

$$L^{2}(\tilde{P}) = \operatorname{cl}\left(\bigoplus_{i \in \mathbf{N}}^{\perp} L^{2}(\tilde{P}_{r}) \cdot Y_{i}\right):$$
(50)

in other words, the functions of $L^2(\tilde{P})$ are those of the form

$$g(r,\theta) = \sum_{i \in \mathbf{N}} h_i(r) Y_i(\theta), \tag{51}$$

with $\sum_{i} \|h_i\|_{L^2(\tilde{P}_r)}^2 < \infty$, and the correspondence is bijective. An interesting point is that, then, one has:

$$\operatorname{Var}_{\tilde{P}}(g) = \operatorname{Var}_{\tilde{P}_{r}}(h_{0}) + \sum_{i \neq 0} ||h_{i}||_{L^{2}(\tilde{P}_{r})}^{2}.$$
(52)

On the other hand, one has

٦

$$\mathcal{E}(g,g) = -\langle Lg,g \rangle_{L^2(\tilde{P})},\tag{53}$$

where

$$(Lg)(r,\theta) \coloneqq (R-r)^2 \Delta_r g + \left((n-1)\frac{(R-r)^2}{r} - 2(R-r) \right) \mathbf{e}_r \cdot \nabla_r g + \frac{(R-r)^2}{r^2} \Delta_\theta g.$$
 (54)

From (54) we see that, since the Y_i are eigenfunctions of Δ_{θ} , all the $L^2(\tilde{P}_r) \cdot Y_i$ are invariant by L, and that one has:

$$\mathcal{E}(g,g) = \sum_{i \in \mathbf{N}} \int_0^R \left((R-r)^2 |\nabla h_i(r)|^2 - \ell_i \frac{(R-r)^2}{r^2} h_i(r)^2 \right) \tilde{P}_r(dr).$$
(55)

 $^{[\}ddagger]$ In the latter case, we have to use the Riemannian definition of the gradient on \mathbb{S}^{n-1} .

So, proving (48) becomes equivalent to proving that both following formulas hold for all $h \in L^2(\tilde{P}_r)$:

$$\operatorname{Var}_{\tilde{P}_{r}}(h) \leqslant C_{1}(n) \int_{0}^{R} (R-r)^{2} |\nabla h(r)|^{2} \tilde{P}_{r}(dr);$$
(56)

$$\|h\|_{L^{2}(\tilde{P}_{r})}^{2} \leq C_{1}(n) \int_{0}^{R} \left((R-r)^{2} |\nabla h(r)|^{2} + (n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2} \right) \tilde{P}_{r}(dr).$$
(57)

Let us start with (56). In all the sequel of the proof, we introduce

$$b \coloneqq 1 - n^{-1}. \tag{58}$$

By the Cauchy–Schwarz inequality, one has, for all $r \in (bR, R)$:

$$(h(r) - h(bR))^{2} = \left(\int_{bR}^{r} h'(s)ds\right)^{2} \leq \left(\int_{bR}^{r} (R-s)^{-3/2}ds\right) \times \int_{bR}^{r} (R-s)^{3/2} |\nabla h(s)|^{2}ds$$

$$\leq 2((R-r)^{-1/2} - (R-bR)^{-1/2}) \int_{bR}^{r} (R-s)^{3/2} |\nabla h(s)|^{2}ds$$

$$\leq 2(R-r)^{-1/2} \int_{bR}^{r} (R-s)^{3/2} |\nabla h(s)|^{2}ds.$$
 (59)

Integrating and using Fubini's formula, it follows that

$$\int_{bR}^{R} (h(r) - h(bR))^{2} d\tilde{P}_{r}(r) \leq 2 \int_{s=bR}^{R} \left(\int_{r=s}^{R} nR^{-n}(R-r)^{-1/2}r^{n-1}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} ds \leq 2 \int_{s=bR}^{R} \left(\int_{r=s}^{R} nR^{-n}(b^{-1}s)^{n-1}(R-r)^{-1/2}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} ds = 2b^{-(n-1)} \int_{s=bR}^{R} \left(\int_{r=s}^{R} (R-r)^{-1/2}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} d\tilde{P}_{r}(s) = 4b^{-(n-1)} \int_{s=bR}^{R} (R-s)^{2} |\nabla h(s)|^{2} ds. \quad (60)$$

One can apply the same line of reasoning for $r \in (0, bR)$: the (unweighted this time) Cauchy–Schwarz inequality then yields $(h(r) - h(bR))^2 \leq (bR - r) \times \int_r^{bR} |\nabla h(s)|^2 ds$, whence:

$$\int_{0}^{bR} (h(r) - h(bR))^{2} d\tilde{P}_{r}(r) \leq \int_{s=0}^{bR} \left(\int_{r=0}^{s} nR^{-n}(bR - r)r^{n-1}dr \right) |\nabla h(s)|^{2} ds$$

$$\leq bR^{-(n-1)} \int_{s=0}^{bR} \left(\int_{r=0}^{s} nr^{n-1}dr \right) |\nabla h(s)|^{2} ds = bR \int_{0}^{bR} |\nabla h(s)|^{2}s^{n} ds$$

$$\leq bn^{-1}R^{2} \int_{0}^{bR} |\nabla h(s)|^{2} d\tilde{P}_{r}(s) \leq b(1 - b)^{-2}n^{-1} \int_{0}^{bR} (R - s)^{2} |\nabla h(s)|^{2} d\tilde{P}_{r}(s). \quad (61)$$

Summing (60) and (61), we get that

$$\int_{0}^{R} (h(r) - h(bR))^{2} d\tilde{P}_{r}(r) \leq (4b^{-(n-1)} \vee b(1-b)^{-2}n^{-1}) \int_{0}^{s} (R-s)^{2} |\nabla h(s)|^{2} d\tilde{P}_{r}(s),$$
(62)

where $(4b^{-(n-1)} \vee b(1-b)^{-2}n^{-1})$ can itself be bounded by $((n-1) \vee 4e)$. The left-hand-side of (62) being an upper bound for $\operatorname{Var}_{\tilde{P}_r}(h)$, this proves (56).

Now we turn to (57). For $r \in (bR, R)$ we have, similarly to (59), that

$$(h(r) - h(br))^2 \leq 2(R - r)^{-1/2} \int_{br}^r (R - s)^{3/2} |\nabla h(s)|^2 ds,$$
(63)

so that

$$h(r)^2 \leq 2h(br)^2 + 4(R-r)^{-1/2} \int_{br}^r (R-s)^{3/2} |\nabla h(s)|^2 ds.$$
 (64)

Then, integrating and applying Fubini's formula:

$$\int_{bR}^{R} h(r)^{2} d\tilde{P}_{r}(r) \leq 2 \int_{bR}^{R} h(br)^{2} d\tilde{P}_{r}(r) + 4 \int_{s=b^{2}R}^{R} \left(\int_{r=s\vee bR}^{b^{-1}s\wedge R} nR^{-n}r^{n-1}(R-r)^{-1/2}dr \right) (R-s)^{3/2} |\nabla h(s)|^{2} ds. \quad (65)$$

By change of variables, the first term of the right-hand side of (65) is equal to $2b^{-n}\int_{b^2R}^{bR}h(s)^2d\tilde{P}_r(s)$, which we can bound by

$$2b^{-(n-2)}\frac{(1-b)^{-2}}{n-1}\int_{b^2R}^{bR}(n-1)\frac{(R-r)^2}{r^2}h(s)^2d\tilde{P}_r(s) \leqslant 2ne\int_0^R(n-1)\frac{(R-r)^2}{r^2}h(s)^2d\tilde{P}_r(s).$$
(66)

The second term of the right-hand side of (65) is itself bounded by

$$4b^{-(n-1)} \int_{s=b^2R}^{R} \left(\int_{r=s}^{R} (R-r)^{-1/2} dr \right) (R-s)^{3/2} |\nabla h(s)|^2 d\tilde{P}_r(s) \\ \leqslant 8e \int_{0}^{R} (R-s)^2 |\nabla h(s)|^2 d\tilde{P}_r(s).$$
(67)

This way, we have bounded $\int_{bR}^{R} h(r)^2 d\tilde{P}_r(r)$. On the other hand, it is trivial that, for $r \leq bR$,

$$h(r)^2 \leq \frac{b^2}{(n-1)(1-b)^2} \times (n-1)\frac{(R-r)^2}{r^2}h(r)^2,$$
 (68)

whence:

$$\int_{0}^{bR} h(r)^{2} d\tilde{P}_{r}(r) \leqslant (n-1) \int_{0}^{R} (n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2} d\tilde{P}_{r}(r).$$
(69)

Combining (66), (67) and (69), we finally get the wanted bound (57).

Acknowledgement. The technical tools for the above proof were provided to me by Franck BARTHE, which I warmly thank for his much precious help.

References

- Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. *Numer. Math.*, 84(3):375–393, 2000.
- S. G. Bobkov. Spectral gap and concentration for some spherically symmetric probability measures. In *Geometric aspects of functional analysis*, volume 1807 of *Lecture Notes in Math.*, pages 37–43. Springer, Berlin, 2003.
- Dario Cordero-Erausquin, Robert J. McCann, and Michael Schmuckenschläger. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. *Invent. Math.*, 146(2):219–257, 2001.
- Grégoire Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9), 86(1):68–79, 2006.
- F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2):361–400, 2000.
- R. T. Seeley. Spherical harmonics. *The American Mathematical Monthly*, 73(4): 115–121, 1966.
- Xavier Tolsa. Mass transport and uniform rectifiability. *Geom. Funct. Anal.*, 22(2): 478–527, 2012.
- Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, 2003. ISBN 0-8218-3312-X.
- Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer, 2009. ISBN 978-3-540-71049-3.