Comparison between W_{2} distance and \dot{H}^{-1} norm, and Localisation of Wasserstein distance

Rémi Peyre*

September 28, 2016

Abstract

It is well known that the quadratic Wasserstein distance $W_{2}(\cdot, \cdot)$ is formally equivalent, for infinitesimally small perturbations, to some weighted H^{-1} homogeneous Sobolev norm. In this article I show that this equivalence can be integrated to get non-asymptotic comparison results between these distances. Then I give an application of these results to prove that the W_{2} distance exhibits some localisation phenomenon: if μ and ν are measures on \mathbf{R}^{n} and $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$ is some bump function with compact support, then under mild hypotheses, you can bound above the Wasserstein distance between $\varphi \cdot \mu$ and $\varphi \cdot \nu$ by an explicit multiple of $W_{2}(\mu, \nu)$.

Keywords: Wasserstein distance; homogeneous Sobolev norm; localisation

Foreword

This article is divided into two sections, each of which having its own introduction. § 1 deals with general results of comparison between Wasserstein distance and homogeneous Sobolev norm, while § 2 handles an application to localisation of W_{2} distance.

1 Non-asymptotic equivalence between W_{2} distance and \dot{H}^{-1} norm

1.1 Introduction

In all this section, M denotes a connected Riemannian manifold endowed with its distance $\operatorname{dist}(\cdot, \cdot)$ and its Lebesgue measure λ. Let us give a few standard definitions which will be at the core of our work:

- For μ, ν two positive measures on M, denoting by $\Pi(\mu, \nu)$ the set of (positive) measures on $M \times M$ whose respective marginals are μ and ν, for $\pi \in \Pi(\mu, \nu)$ one defines

$$
\begin{equation*}
I(\pi):=\int_{M \times M} \operatorname{dist}(x, y)^{2} \pi(d x, d y) \tag{1}
\end{equation*}
$$

and then

$$
\begin{equation*}
W_{2}(\mu, \nu):=\inf \{I(\pi) \mid \pi \in \Pi(\mu, \nu)\}^{1 / 2} . \tag{2}
\end{equation*}
$$

[^0]W_{2} is a (possibly infinite) distance, called the quadratic Wasserstein distance [Villani, 2003, §7.1]. Note that this distance is finite only between measures having the same total mass.

- On the other hand, for μ a (positive) measure on M, if f is a \mathcal{C}^{1} real function on M, one denotes

$$
\begin{equation*}
\|f\|_{\dot{H}^{1}(\mu)}:=\left(\int_{M}|\nabla f(x)|^{2} d \mu(x)\right)^{1 / 2} \tag{3}
\end{equation*}
$$

which defines a semi-norm; for ν a signed measure on M, one then denotes

$$
\begin{equation*}
\|\nu\|_{\dot{H}^{-1}(\mu)}:=\sup \left\{|\langle f, \nu\rangle| \mid\|f\|_{\dot{H}^{1}(\mu)} \leqslant 1\right\}, \tag{4}
\end{equation*}
$$

which defines a (possibly infinite) norm, which we will call the $\dot{H}^{-1}(\mu)$ weighted homogeneous Sobolev norm. Note that this norm is finite only for measures having zero total mass. In the case μ is the Lebesgue measure, we will merely write " \dot{H}^{-1} " for " $\dot{H}^{-1}(\lambda)$ ".

The W_{2} Wasserstein distance is an important object in analysis; but it is nonlinear, which makes it harder to study. For infinitesimal perturbations however, the linearised behaviour of W_{2} is well known: if μ is a positive measure on M and $d \mu$ is an infinitesimally small perturbation of this measure, ${ }^{[*]}$ one has formally (see [Villani, 2003, § 7.6] or [Otto and Villani, 2000, § 7])

$$
\begin{equation*}
W_{2}(\mu, \mu+d \mu)=\|d \mu\|_{\dot{H}^{-1}(\mu)}+o(d \mu) \tag{5}
\end{equation*}
$$

More precisely, one has the following equality, known as the Benamou-Brenier formula [Benamou and Brenier, 2000, Prop. 1.1]: for two positive measures μ, ν on M,

$$
\begin{equation*}
W_{2}(\mu, \nu)=\inf \left\{\int_{0}^{1}\left\|d \mu_{t}\right\|_{\dot{H}^{-1}\left(\mu_{t}\right)} \mid \mu_{0}=\mu, \mu_{1}=\nu\right\} \tag{6}
\end{equation*}
$$

Then, a natural question is the following: are there non-asymptotic comparisons between the W_{2} distance and the \dot{H}^{-1} norm? Concretely, we are looking for inequalities like

$$
\begin{equation*}
C_{\mathrm{a}}\|\mu-\nu\|_{\dot{H}^{-1}(\mu)} \leqslant W_{2}(\mu, \nu) \leqslant C_{\mathrm{b}}\|\mu-\nu\|_{\dot{H}^{-1}(\mu)} \tag{7}
\end{equation*}
$$

for constants $0<C_{\mathrm{a}} \leqslant C_{\mathrm{b}}<\infty$, under mild assumptions on μ and ν.

1.2 Controlling W_{2} by \dot{H}^{-1}

Theorem 1. For any positive measures μ, ν on M,

$$
\begin{equation*}
W_{2}(\mu, \nu) \leqslant 2\|\mu-\nu\|_{\dot{H}^{-1}(\mu)} \tag{8}
\end{equation*}
$$

Proof. We suppose that $\|\mu-\nu\|_{\dot{H}^{-1}(\mu)}<\infty$, otherwise there is nothing to prove. For $t \in[0,1]$, let

$$
\begin{equation*}
\mu_{t}:=(1-t) \mu+t \nu \tag{9}
\end{equation*}
$$

so that $\mu_{0}=\mu, \mu_{1}=\nu$ and $d \mu_{t}=(\mu-\nu) d t$. Then, by the Benamou-Brenier formula (6):

$$
\begin{equation*}
W_{2}(\mu, \nu) \leqslant \int_{0}^{1}\|\mu-\nu\|_{\dot{H}^{-1}\left(\mu_{t}\right)} d t \tag{10}
\end{equation*}
$$

Now, we use the following key lemma, whose proof is postponed:

[^1]Lemma 2. If μ, μ^{\prime} are two measures such that $\mu^{\prime} \geqslant \rho \mu$ for some $\rho>0$, then $\|\cdot\|_{\dot{H}^{-1}\left(\mu^{\prime}\right)} \leqslant \rho^{-1 / 2}\|\cdot\|_{\dot{H}^{-1}(\mu)} .{ }^{[\dagger]}$
Here obviously $\mu_{t} \geqslant(1-t) \mu$, so

$$
\begin{equation*}
W_{2}(\mu, \nu) \leqslant \int_{0}^{1}(1-t)^{-1 / 2}\|\mu-\nu\|_{\dot{H}^{-1}(\mu)} d t=2\|\mu-\nu\|_{\dot{H}^{-1}(\mu)} \tag{11}
\end{equation*}
$$

QED.
Corollary 3. If $\mu \geqslant \rho \lambda$ for some $\rho>0$, then

$$
\begin{equation*}
W_{2}(\mu, \nu) \leqslant 2 \rho^{-1 / 2}\|\mu-\nu\|_{\dot{H}^{-1}} \tag{12}
\end{equation*}
$$

Proof. Just use that $\|\cdot\|_{\dot{H}^{-1}(\mu)} \leqslant \rho^{-1 / 2}\|\cdot\|_{\dot{H}^{-1}}$ by Lemma 2.
Proof of Lemma 2. Take $\mu^{\prime} \geqslant \rho \mu$ and let ν be a signed measure on M such that $\mu+\nu$ is positive; then $\mu^{\prime}+\rho \nu$ is also positive. For m a measure on M, we denote by $\operatorname{diag}(m)$ the measure on $M \times M$ supported by the diagonal whose marginals (which are equal) are m, i.e.:

$$
\begin{equation*}
(\operatorname{diag}(m))(A \times B):=m(A \cap B) ; \tag{13}
\end{equation*}
$$

with that notation,

$$
\begin{equation*}
\pi \in \Pi(\mu, \mu+\nu) \Rightarrow \rho \pi+\operatorname{diag}\left(\mu^{\prime}-\rho \mu\right) \in \Pi\left(\mu^{\prime}, \mu^{\prime}+\rho \nu\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
I\left(\rho \pi+\operatorname{diag}\left(\mu^{\prime}-\rho \mu\right)\right)=\rho I(\pi) \tag{15}
\end{equation*}
$$

Therefore, taking infima,

$$
\begin{align*}
W_{2}\left(\mu^{\prime}, \mu^{\prime}+\rho \nu\right)^{2}=\inf \left\{I\left(\pi^{\prime}\right) \mid\right. & \left.\pi^{\prime} \in \Gamma\left(\mu^{\prime}, \mu^{\prime}+\rho \nu\right)\right\} \\
\leqslant \inf \{I(\rho \pi+ & \left.\left.\operatorname{diag}\left(\mu^{\prime}-\rho \mu\right)\right) \mid \pi \in \Gamma(\mu, \mu+\nu)\right\} \\
& =\rho \inf \{I(\pi) \mid \pi \in \Gamma(\mu, \mu+\nu)\}=\rho W_{2}(\mu, \nu)^{2} \tag{16}
\end{align*}
$$

For infinitesimally small ν, it follows by Equation (5) that $\|\rho \nu\|_{\dot{H}^{-1}\left(\mu^{\prime}\right)}^{2} \leqslant \rho\|\nu\|_{\dot{H}^{-1}(\mu)}^{2}$, hence $\|\nu\|_{\dot{H}^{-1}\left(\mu^{\prime}\right)} \leqslant \rho^{-1 / 2}\|\nu\|_{\dot{H}^{-1}(\mu)}$. This relation remains true even for noninfinitesimal ν by linearity, which ends the proof.

Remark 4. Lemma 2 could also be proved very quickly by using the definition (3)-(4) of the $\dot{H}^{-1}(\mu)$ norm. The proof above, however, has the advantage that it does not need the precise expression of $\|\cdot\|_{\dot{H}^{-1}(\mu)}$, but only the fact that it is the linearised W_{2} distance.

[^2]
1.3 Controlling \dot{H}^{-1} by W_{2}

Theorem 5. Assume M has nonnegative Ricci curvature. Then for any positive measures μ, ν on M such that $\mu \leqslant \rho_{0} \lambda$ and $\nu \leqslant \rho_{1} \lambda$,

$$
\begin{equation*}
\|\mu-\nu\|_{\dot{H}^{-1}} \leqslant \frac{2\left(\rho_{0}^{1 / 2}-\rho_{1}^{1 / 2}\right)}{\ln \left(\rho_{0} / \rho_{1}\right)} W_{2}(\mu, \nu) \tag{17}
\end{equation*}
$$

(For $\rho_{1}=\rho_{0}$, the right-hand side of (17) is to be taken as $\rho_{0}^{1 / 2} W_{2}(\mu, \nu)$ by continuity). Remark 6. For $M=\mathbf{R}^{n}$ a similar result was already stated in [Loeper, 2006, Proposition 2.8], with a different proof.

Proof. Let $\left(\mu_{t}\right)_{0 \leqslant t \leqslant 1}$ be the displacement interpolation between μ and ν (cf. [Villani, 2009, chap. 7]), which is such that $\mu_{0}=\mu, \mu_{1}=\nu$ and the infimum in (6) is attained with $\left\|d \mu_{t}\right\|_{\dot{H}^{-1}\left(\mu_{t}\right)}=W_{2}(\mu, \nu) d t \forall t$. Since Ricci curvature is nonnegative, the Lott-Sturm-Villani theory tells us that, denoting by $\|\mu\|_{\infty}$ the essential supremum of the density of μ w.r.t. λ, one has $\left\|\mu_{t}\right\|_{\infty} \leqslant\left\|\mu_{0}\right\|_{\infty}^{1-t}\left\|\mu_{1}\right\|_{\infty}^{t}=\rho_{0}^{1-t} \rho_{1}^{t}$ (see [Villani, 2009, Corollary 17.19] or [Cordero-Erausquin et al., 2001, Lemma 6.1]); so that $\|\cdot\|_{\dot{H}^{-1}} \leqslant \rho_{0}^{(1-t) / 2} \rho_{1}^{t / 2}\|\cdot\|_{\dot{H}^{-1}\left(\mu_{t}\right)}$ by Lemma 2.

Then, by the integral triangle inequality for normed vector spaces,

$$
\begin{align*}
& \|\mu-\nu\|_{\dot{H}^{-1}}=\left\|\int_{0}^{1} d \mu_{t}\right\|_{\dot{H}^{-1}} \leqslant \int_{0}^{1}\left\|d \mu_{t}\right\|_{\dot{H}^{-1}} \\
& \leqslant \int_{0}^{1} \rho_{0}^{(1-t) / 2} \rho_{1}^{t / 2}\left\|d \mu_{t}\right\|_{\dot{H}^{-1}\left(\mu_{t}\right)}=\left(\int_{0}^{1} \rho_{0}^{(1-t) / 2} \rho_{1}^{t / 2} d t\right) W_{2}(\mu, \nu) \\
& \tag{18}\\
& \quad=\frac{2\left(\rho_{0}^{1 / 2}-\rho_{1}^{1 / 2}\right)}{\ln \left(\rho_{0} / \rho_{1}\right)} W_{2}(\mu, \nu),
\end{align*}
$$

QED.
Remark 7. Taking into account the dimension n of the manifold M, the bound on $\left\|\mu_{t}\right\|_{\infty}$ could be refined into

$$
\begin{equation*}
\left\|\mu_{t}\right\|_{\infty} \leqslant\left((1-t)\left\|\mu_{0}\right\|_{\infty}^{-1 / n}+t\left\|\mu_{1}\right\|_{\infty}^{-1 / n}\right)^{-n} \tag{19}
\end{equation*}
$$

which would yield a slightly sharper bound in Equation (17), namely:

$$
\begin{align*}
\|\mu-\nu\|_{\dot{H}^{-1}} \leqslant\left(\int _ { 0 } ^ { 1 } \left((1-t) \rho_{0}^{-1 / n}+\right.\right. & \left.\left.t \rho_{1}^{-1 / n}\right)^{-n / 2} d t\right) W_{2}(\mu, \nu) \\
& = \begin{cases}\frac{\rho_{0}^{1 / 2-1 / n}-\rho_{1}^{1 / 2-1 / n}}{(n / 2-1)\left(\rho_{1}^{-1 / n}-\rho_{0}^{-1 / n}\right)} W_{2}(\mu, \nu) & n \geqslant 2 \\
\frac{\ln \left(\rho_{1} / \rho_{0}\right)}{2\left(\rho_{0}^{-1 / 2}-\rho_{1}^{-1 / 2}\right)} W_{2}(\mu, \nu) & n=2 .\end{cases} \tag{20}
\end{align*}
$$

For $n=1$ it turns out that one can let tend $\rho_{1} \rightarrow \infty$ in (20) without making the integral diverge; which leads to a much more powerful result:

Theorem 8. When M is an interval of \mathbf{R}, then under the sole assumption that $\mu \leqslant$ $\rho_{0} \lambda$, one has for all positive measures ν on M :

$$
\begin{equation*}
\|\mu-\nu\|_{\dot{H}^{-1}} \leqslant 2 \rho_{0}^{1 / 2} W_{2}(\mu, \nu) \tag{21}
\end{equation*}
$$

Remark 9. For $n \geqslant 2$ there is no hope to get a bound valid for all ν, because then it can occur that $W_{2}(\mu, \nu)<\infty$ but $\|\mu-\nu\|_{\dot{H}^{-1}}=\infty$: for instance, take μ to be the uniform measure on the 2-dimensional sphere and ν a Dirac mass.

2 Application to localisation of Wasserstein distance

2.1 Introduction

In all this section, we work in the Euclidian space \mathbf{R}^{n}, whose norm is denoted by $|\cdot|$. $\operatorname{dist}(x, A):=\inf \{|x-y| \mid y \in A\}$ denotes the distance between a point x and a set $A ; A^{\text {c }}$ denotes the complement of $A ; \lambda$ denotes the Lebesgue measure. We will use the following notation to handle measures:

- For μ a measure on \mathbf{R}^{n} and $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ a measurable map, $f_{*} \mu$ denotes the pushforward of μ by f, that is, $\left(f_{*} \mu\right)(A):=\mu\left(f^{-1}(A)\right)$.
- For μ a measure on \mathbf{R}^{n} and $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$a nonnegative measurable function, $\varphi \cdot \mu$ denotes the measure such that $d(\varphi \cdot \mu)(x):=\varphi(x) d \mu(x)$.
We will also use the following norms on measures:
- $\|\mu\|_{\dot{H}^{-1}(\nu)}$ has the same definition as in $\S 1$;
- $\|\mu\|_{1}:=\int_{\mathbf{R}^{n}}|d \mu(x)|$ is the total variation norm of $\mu ;{ }^{[\ddagger]}$
- For ν a positive measure with $\mu \ll \nu$, we define

$$
\begin{equation*}
\|\mu\|_{L^{2}(\nu)}:=\left(\int_{\operatorname{supp} \nu}\left(\frac{d \mu}{d \nu}(x)\right)^{2} d \nu(x)\right)^{1 / 2} \tag{22}
\end{equation*}
$$

For $A \subset \mathbf{R}^{n}$, we also denote $\|\cdot\|_{L^{2}(A)}$ for $\|\cdot\|_{L^{2}\left(\mathbf{1}_{A} \cdot \lambda\right)}$.
The goal of this section is to give an application of Theorem 1 to the problem of localisation of the quadratic Wasserstein distance. Morally, the question is the following: take two measures μ, ν on \mathbf{R}^{n} being close to each other in the sense of W_{2} distance; is it true that μ and ν remain close when you consider their restrictions to a subset of \mathbf{R}^{n} ? Concretely, if φ is a non-negative real function on \mathbf{R}^{n} with compact support (plus some technical assumptions to be specified later), we want to bound above $W_{2}(a \varphi \cdot \mu, \varphi \cdot \nu)$ by some multiple of $W_{2}(\mu, \nu)$ —where, in the former expression, a is a constant factor ensuring that $a \varphi \cdot \mu$ and $\varphi \cdot \nu$ have the same mass (for otherwise the distance between $\varphi \cdot \mu$ and $\varphi \cdot \nu$ is generically infinite).

This question, which was my initial motivation for the results of $\S 1$, was asked to me by Xavier Tolsa, who needed such a result for his paper [Tolsa, 2012] on characterizing uniform rectifiability in terms of mass transport. Actually Xavier managed to devise a proof of his own [Tolsa, 2012, Theorem 1.1], but it was quite long (about thirty pages) and involved arguments of multi-scale analysis. With Theorem 1 at hand, however, the reasoning becomes far more direct; moreover we will be able to relax some of the assumptions of Xavier's theorem.

2.2 Statement of the theorem

Theorem 10. Let μ, ν be (positive) measures on \mathbf{R}^{n} having the same total mass; let B be a ball of \mathbf{R}^{n} (whose radius will be denoted by R when needed). Assume that on B, the density of μ w.r.t. the Lebesgue measure is bounded above and below:

$$
\begin{equation*}
\exists 0<m_{1} \leqslant m_{2}<\infty \quad \forall x \in B \quad m_{1} \lambda(d x) \leqslant d \mu(x) \leqslant m_{2} \lambda(d x) \tag{23}
\end{equation*}
$$

Let $\varphi: \mathbf{R}^{n} \rightarrow \mathbf{R}_{+}$be a function such that:

[^3](i) φ is zero outside B;
(ii) There exist $0<c_{1} \leqslant c_{2}<\infty$ such that for all $x \in B, c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)^{2} \leqslant \varphi(x) \leqslant$ $c_{2} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)^{2}$.
(iii) φ is k-Lipschitz for some $k<\infty$.

Then, denoting $a:=\|\varphi \cdot \nu\|_{1} /\|\varphi \cdot \mu\|_{1}$,

$$
\begin{equation*}
W_{2}(a \varphi \cdot \mu, \varphi \cdot \nu) \leqslant C(n) \frac{c_{2}^{3 / 2} m_{2}^{3 / 2}}{c_{1}^{3 / 2} m_{1}^{3 / 2}} k c_{1}^{-1 / 2} W_{2}(\mu, \nu) \tag{24}
\end{equation*}
$$

for $C(n)<\infty$ some absolute constant only depending on n. Moreover, one can bound explicitly $C(n)$ in such a way that $C(n)=O\left(n^{1 / 2}\right)$ when $n \rightarrow \infty$.[§]

Remark 11. Actually the constraint that the support of φ is a ball is of little importance: we could assume as well that it would be a cube, a simplex, or many other shapes, as the corollary below shows:
Corollary 12. Make the same assumptions as in Theorem 10, except that B need not be a ball: instead, we only assume that, denoting by B_{\circ} the (true) ball having the same volume as B, there exists a bijection $\Phi: B \leftrightarrow B_{\circ}$ mapping the uniform measure on B onto the uniform measure on B_{\circ} (i.e. such that $\left.\Phi_{*}\left(\mathbf{1}_{B} \cdot \lambda\right)=\mathbf{1}_{B_{\circ}} \cdot \lambda\right)$ such that Φ is bi-Lipschitz (i.e. such that both Φ and Φ^{-1} are Lipschitz). Denote by $\|\Phi\|_{\text {Lip }}$ and $\left\|\Phi^{-1}\right\|_{\text {Lip }}$ the optimal Lipschitz constants for resp. Φ and Φ^{-1}. Then, the conclusion of Theorem 10 remains true, except that now you have to replace the factor $C(n)$ by

$$
\begin{equation*}
\left(\|\Phi\|_{L i p}\left\|\Phi^{-1}\right\|_{L i p}\right)^{5} C(n) \tag{25}
\end{equation*}
$$

Proof. Consider the measures $\mu_{\circ}:=\Phi_{*} \mu$ and $\nu_{\circ}:=\Phi_{*} \nu$, and the bump function $\varphi_{\circ}:=\varphi \circ \Phi^{-1}$; then, μ_{\circ}, ν_{\circ} and φ_{\circ} satisfy the original assumptions of Theorem 10, the roles of ' m_{1} ' and ' m_{2} ' (in the ball situation) being held by m_{1} and m_{2} (in the general situation) themselves, the role of ' k ' being held by $\left\|\Phi^{-1}\right\|_{L i p} k$, and the roles of ' c_{1} ' and ' c_{2} ' being held by $c_{1} /\|\Phi\|_{\text {Lip }}^{2}$ and $c_{2}\left\|\Phi^{-1}\right\|_{\text {Lip }}^{2}$. Therefore, applying (24):

$$
\begin{equation*}
W_{2}\left(a \varphi_{\circ} \cdot \mu_{\circ}, \varphi_{\circ} \cdot \nu_{\circ}\right) \leqslant C(n)\|\Phi\|_{L i p}^{4}\left\|\Phi^{-1}\right\|_{L i p}^{4} \frac{c_{2}^{3 / 2} m_{2}^{3 / 2}}{c_{1}^{3 / 2} m_{1}^{3 / 2}} W_{2}\left(a \mu_{\circ}, \nu_{\circ}\right) \tag{26}
\end{equation*}
$$

But the optimal transportation plan from $a \mu$ to ν, with $\operatorname{cost} W_{2}(\mu, \nu)^{2}$, can be pushed forward by Φ into a (not optimal in general) transportation plan from $a \mu_{\circ}$ to ν_{\circ}, whose cost will then be $\leqslant\|\Phi\|_{L i p}^{2} W_{2}(\mu, \nu)^{2}$; so $W_{2}\left(a \mu_{\circ}, \nu_{\circ}\right) \leqslant\|\Phi\|_{L i p} W_{2}(a \mu, \nu)$. Similarly $W_{2}(a \varphi \cdot \mu, \varphi \cdot \nu) \leqslant\left\|\Phi^{-1}\right\|_{L i p} W_{2}\left(a \varphi_{\circ} \cdot \mu_{\circ}, \varphi_{\circ} \cdot \nu_{\circ}\right)$. The announced result follows.

2.3 Proof of the main theorem

In the sequel we will shorthand $W_{2}(\mu, \nu)=: w$, and also $\varphi \cdot \mu=: \hat{\mu}$, resp. $\varphi \cdot \nu=: \hat{\nu}$. Let $g=: I d+S$ be a map achieving optimal transportation from ν to μ, i.e. such that $\mu=g_{*} \nu$ with $\int_{\mathbf{R}^{n}}|S(y)|^{2} d \nu(y)=w^{2}$. [ศ]

[^4]Our strategy will consist in transforming $\hat{\nu}$ into $a \hat{\mu}$ according to the following procedure:
(1) We apply the transportation plan g to $\hat{\nu}$; this transforms $\hat{\nu}$ into some measure $\hat{\mu}^{*}$. The measure $\hat{\mu}^{*}$ is not supported by B a priori, so we split it into $\hat{\mu}_{B}^{*}+\hat{\mu}_{\mathrm{c}}^{*}:=$ $\mathbf{1}_{B} \cdot \hat{\mu}^{*}+\mathbf{1}_{B^{c}} \cdot \hat{\mu}^{*}$.
(2) Denoting $a_{\mathrm{c}}:=\left\|\hat{\mu}_{\mathrm{c}}^{*}\right\|_{1} /\|\hat{\mu}\|_{1}$, we then transform $\hat{\mu}_{\mathrm{c}}^{*}$ into $a_{\mathrm{c}} \hat{\mu}$ according to an arbitrary transference plan.
(3) Finally, denoting $a_{B}:=\left\|\hat{\mu}_{B}^{*}\right\|_{1} /\|\hat{\mu}\|_{1}$, ${ }^{[\|]]}$we transform $\hat{\mu}_{B}^{*}$ into $a_{B} \hat{\mu}$ according to the optimal transference plan: the cost of this operation is $W_{2}\left(\hat{\mu}_{B}^{*}, a_{B} \hat{\mu}\right)$, which we bound above by $2\left\|\hat{\mu}_{B}^{*}-a_{B} \hat{\mu}\right\|_{\dot{H}^{-1}\left(a_{B} \hat{\mu}\right)}$ thanks to Theorem 1.

Then, denoting by $W_{2}(1)$, $W_{2}($ (2) $), W_{2}(3)$ the respective Wasserstein distances of these steps, we shall have $W_{2}(\hat{\nu}, a \hat{\mu}) \leqslant W_{2}(1)+\left(W_{2}(\text { (2) })^{2}+W_{2}(3)^{2}\right)^{1 / 2}$.

Let us begin with bounding the cost of Step (1). The squared cost of this step is

$$
\begin{align*}
\left.W_{2}(1)\right)^{2}=\int|S(y)|^{2} d \hat{\nu}(y) & =\int|S(y)|^{2} \varphi(y) d \nu(y) \\
& \leqslant \sup \varphi \times \int|S(y)|^{2} d \nu(y)=\sup \varphi \times w^{2} \leqslant c_{2} R^{2} w^{2} \tag{27}
\end{align*}
$$

whence $W_{2}(1) \leqslant c_{2}^{1 / 2} R w$.
Now consider Step (2). As $a_{\mathrm{c}} \hat{\mu}$ is supported by B, one has obviously

$$
\begin{equation*}
W_{2}((2))^{2} \leqslant \int(\operatorname{dist}(x, B)+2 R)^{2} d \hat{\mu}_{\mathrm{c}}^{*}(x)=\int_{B^{c}}(\operatorname{dist}(x, B)+2 R)^{2} d \hat{\mu}^{*}(x) \tag{28}
\end{equation*}
$$

From that we deduce that $W_{2}(2) \leqslant 2 c_{2}^{1 / 2} R w$ by the following computation:

$$
\begin{align*}
& \int_{B^{\mathrm{c}}}(\operatorname{dist}(x, B)+2 R)^{2} d \hat{\mu}^{*}(x)=\int_{g(y) \notin B}(\operatorname{dist}(g(y), B)+2 R)^{2} \varphi(y) d \nu(y) \\
& \leqslant c_{2} \int_{\substack{y \in B \\
g(y) \notin B}}(\operatorname{dist}(g(y), B)+2 R)^{2} \operatorname{dist}\left(y, B^{\mathrm{c}}\right)^{2} d \nu(y) \\
& \leqslant c_{2} \int_{\substack{y \in B \\
g(y) \notin B}}\left(R \operatorname{dist}(g(y), B)+2 R \operatorname{dist}\left(y, B^{\mathrm{c}}\right)\right)^{2} d \nu(y) \\
& \leqslant 4 c_{2} R^{2} \int_{\substack{y \in B \\
g(y) \notin B}}\left(\operatorname{dist}(g(y), B)+\operatorname{dist}\left(y, B^{\mathrm{c}}\right)\right)^{2} d \nu(y) \\
& \leqslant 4 c_{2} R^{2} \int|y-g(y)|^{2} d \nu(y)=4 c_{2} R^{2} w^{2} \tag{29}
\end{align*}
$$

[^5]Step (3) is the difficult one. We begin with observing that it is easy to bound the $L^{2}(B)$ distance between $\hat{\mu}_{B}^{*}$ and $\hat{\mu}$: indeed, denoting by $f=: I d+T$ the inverse map of $g^{[* *]}$,

$$
\begin{align*}
\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}\left(\mathbf{1}_{B} \cdot \mu\right)}^{2}= & \int_{B}\left(\frac{d \hat{\mu}^{*}(x)-\varphi(x) d \mu(x)}{d \mu(x)}\right)^{2} d \mu(x) \\
& =\int_{B}(\varphi(f(x))-\varphi(x))^{2} d \mu(x) \\
& \leqslant k^{2} \int_{\mathbf{R}^{n}}|x-f(x)|^{2} d \mu(x)=k^{2} \int|T(x)|^{2} d \mu(x)=k^{2} w^{2} \tag{30}
\end{align*}
$$

(where we used that $\left.d \hat{\mu}^{*}(x)=d \hat{\nu}(f(x))=\varphi(f(x)) d \nu(f(x))=\varphi(f(x)) d \mu(x)\right)$, so that

$$
\begin{equation*}
\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}(B)}^{2} \leqslant k^{2} m_{2} w^{2} \tag{31}
\end{equation*}
$$

Now we have to link $\|\cdot\|_{L^{2}(B)}$ with $\|\cdot\|_{\dot{H}^{-1}(\mu)}$. This is achieved by the following lemma, whose proof is postponed:

Lemma 13. Define $\hat{\lambda}$ to be the measure on B such that $\hat{\lambda}(d x):=\operatorname{dist}\left(x, B^{c}\right)^{2} \lambda(d x)$. Then, for any signed measure m on B having total mass zero:

$$
\begin{equation*}
\|m\|_{\dot{H}^{-1}(\hat{\lambda})} \leqslant C_{1}(n)^{1 / 2}\|m\|_{L^{2}(B)} \tag{32}
\end{equation*}
$$

where $C_{1}(n)$ is some absolute constant only depending on n. Moreover, taking $C_{1}(n):=((2 e+1) n-1) \vee 8 e$ fits.

Thanks to Theorem 1 and Lemma 13, we have that

$$
\begin{align*}
W_{2}(3) \leqslant 2\left\|a_{B} \hat{\mu}-\hat{\mu}_{B}^{*}\right\|_{\dot{H}^{-1}\left(a_{B} \hat{\mu}\right)} & \leqslant 2\left(a_{B} c_{1} m_{1}\right)^{-1 / 2}\left\|a_{B} \hat{\mu}-\hat{\mu}_{B}^{*}\right\|_{\dot{H}^{-1}(\hat{\lambda})} \\
& \leqslant 2 C_{1}(n)^{1 / 2}\left(a_{B} c_{1} m_{1}\right)^{-1 / 2}\left\|a_{B} \hat{\mu}-\hat{\mu}_{B}^{*}\right\|_{L^{2}(B)} \tag{33}
\end{align*}
$$

Next, we compute

$$
\begin{array}{r}
\left\|a_{B} \hat{\mu}-\hat{\mu}_{B}^{*}\right\|_{L^{2}(B)}=\left\|\frac{\left\|\hat{\mu}_{B}^{*}\right\|_{1}}{\|\hat{\mu}\|_{1}} \hat{\mu}-\hat{\mu}_{B}^{*}\right\|_{L^{2}(B)} \leqslant \frac{\left\|\hat{\mu}_{B}^{*}\right\|_{1}-\|\hat{\mu}\|_{1} \mid}{\|\hat{\mu}\|_{1}}\|\hat{\mu}\|_{L^{2}(B)}+\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}(B)} \\
\leqslant \frac{\|\hat{\mu}\|_{L^{2}(B)}}{\|\hat{\mu}\|_{1}}\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{1}+\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}(B)} \leqslant\left(\frac{\|\hat{\mu}\|_{L^{2}(B)}}{\|\hat{\mu}\|_{1}} \lambda(B)^{1 / 2}+1\right)\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}(B)} \\
\leqslant\left(\frac{c_{2} m_{2}}{c_{1} m_{1}} \frac{\lambda(B)^{1 / 2}\|\hat{\lambda}\|_{L^{2}(B)}}{\|\hat{\lambda}\|_{1}}+1\right)\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}(B)} \underset{[\dagger \dagger]}{\leqslant}\left(\sqrt{6} \frac{c_{2} m_{2}}{c_{1} m_{1}}+1\right)\left\|\hat{\mu}_{B}^{*}-\hat{\mu}\right\|_{L^{2}(B)} \\
\underset{(31)}{\leqslant}(\sqrt{6}+1) \frac{c_{2} m_{2}}{c_{1} m_{1}} k m_{2}^{1 / 2} w, \tag{34}
\end{array}
$$

so that, combining (33) and (34), we have got:

$$
\begin{equation*}
W_{2}(3) \leqslant(2 \sqrt{6}+2) C_{1}(n)^{1 / 2} a_{B}^{-1 / 2} \frac{c_{2} m_{2}^{3 / 2}}{c_{1} m_{1}^{3 / 2}} \frac{k}{c_{1}^{1 / 2}} w . \tag{35}
\end{equation*}
$$

[^6]Equation (35) is the kind of bound we were looking for, provided $a_{B} \lesssim 1$. Though this will be the case in practice (since we are mainly interested in cases where ν is close to μ and thus $\hat{\mu}^{*}$ is close to $\hat{\mu}$), this is not quite satisfactory yet. So, what can we do when $a_{B} \ll 1$, that is, when $\left\|\hat{\mu}_{B}^{*}\right\|_{1} \ll\|\hat{\mu}\|_{1}$? In fact that case is easier, because transportation between small measures has low cost, while w has to be large to make $\hat{\mu}_{B}^{*}$ very different from $\hat{\mu}$.

The computations are the following. First, it is obvious that

$$
\begin{equation*}
W_{2}(3)=W_{2}\left(\hat{\mu}_{B}^{*}, a_{B} \hat{\mu}\right) \leqslant 2 R\left\|\hat{\mu}_{B}^{*}\right\|_{1}^{1 / 2} \tag{36}
\end{equation*}
$$

Next, observing that $\varphi(f(x)) \geqslant \frac{c_{1}}{c_{2}} \varphi(x)-2 c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)|T(x)|,{ }^{[\ddagger \ddagger]}$ we compute that

$$
\begin{align*}
\left\|\hat{\mu}_{B}^{*}\right\|_{1}= & \int_{B} \varphi(f(x)) d \mu(x) \geqslant \int_{B}\left(\frac{c_{1}}{c_{2}} \varphi(x)-2 c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)|T(x)|\right) d \mu(x) \\
& \geqslant \frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1}-2 c_{1}\left(\int_{B} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)^{2} d \mu(x)\right)^{1 / 2}\left(\int_{B}|T(x)|^{2} d \mu(x)\right)^{1 / 2} \\
& =\frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1}-2 c_{1}\left\|\operatorname{dist}\left(\cdot, B^{\mathrm{c}}\right)^{2} \cdot \mu\right\|_{1}^{1 / 2} w \geqslant \frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1}-2 c_{1} m_{2}^{1 / 2}\|\hat{\lambda}\|_{1}^{1 / 2} w \tag{38}
\end{align*}
$$

whence

$$
\begin{equation*}
w \geqslant \frac{\left(\frac{c_{1}}{c_{2}}\|\hat{\mu}\|_{1}-\left\|\hat{\mu}_{B}^{*}\right\|_{1}\right)_{+}}{2 c_{1} m_{2}^{1 / 2}\|\hat{\lambda}\|_{1}^{1 / 2}}=\frac{\left(\frac{c_{1}}{c_{2}}-a_{B}\right)_{+}\|\hat{\mu}\|_{1}}{2 c_{1} m_{2}^{1 / 2}\|\hat{\lambda}\|_{1}^{1 / 2}} \geqslant \frac{m_{1}^{1 / 2}}{2 c_{1} m_{2}^{1 / 2}}\left(\frac{c_{1}}{c_{2}}-a_{B}\right)_{+}\|\hat{\mu}\|_{1}^{1 / 2} \tag{39}
\end{equation*}
$$

So,

$$
\begin{equation*}
W_{2}(3) \leqslant 2 R\left\|\hat{\mu}_{B}^{*}\right\|_{1}^{1 / 2}=2 R a_{B}^{1 / 2}\|\hat{\mu}\|_{1}^{1 / 2} \leqslant 4 R c_{1}^{1 / 2} \frac{m_{2}^{1 / 2}}{m_{1}^{1 / 2}} \frac{a_{B}^{1 / 2}}{\left(\frac{c_{1}}{c_{2}}-a_{B}\right)_{+}} w \tag{40}
\end{equation*}
$$

In the end, choosing either (35) if $a_{B} \geqslant c_{1} / 2 c_{2}$ or (40) if $c_{1} / 2 c_{2}$, and observing that $c_{1} \leqslant k R^{-1}$, one has always:

$$
\begin{equation*}
W_{2}(3) \leqslant\left((4 \sqrt{3}+2 \sqrt{2}) C_{1}(n)^{1 / 2} \vee 4 \sqrt{2}\right) \frac{c_{2}^{3 / 2} m_{2}^{3 / 2}}{c_{1}^{3 / 2} m_{1}^{3 / 2}} \frac{k}{c_{1}^{1 / 2}} w \tag{41}
\end{equation*}
$$

Remark 14. To bound $W_{2}(3)$ in the situation where $a_{B} \ll 1$, we could also have started from " $\varphi(f(x)) \geqslant \varphi(x)-k|T(x)|$ " (instead of " $\varphi(f(x)) \geqslant \frac{c_{1}}{c_{2}} \varphi(x)-$ $\left.2 c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)|T(x)|^{\prime \prime}\right)$ to get another bound analogous to (38). Following such an approach, the factor $\left(c_{2} / c_{1}\right)^{3 / 2}$ in (40) would be improved into $\left(c_{2} / c_{1}\right)$ in the analogous formula; however the dimensional factor would behave in $O(n)$ rather than in $O\left(n^{1 / 2}\right)$.

2.4 Proof of Lemma 13

It still remains to prove Lemma 13, whose statement we recall to be:

```
\({ }^{[\ddagger \ddagger]}\) This follows from the computation:
\[
\begin{align*}
& \varphi(f(x)) \geqslant c_{1} \operatorname{dist}\left(f(x), B^{\mathrm{c}}\right)^{2} \geqslant c_{1}\left(\operatorname{dist}\left(x, B^{\mathrm{c}}\right)-|T(x)|\right)_{+}^{2} \\
& \quad \geqslant c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)^{2}-2 c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)|T(x)| \geqslant \frac{c_{1}}{c_{2}} \varphi(x)-2 c_{1} \operatorname{dist}\left(x, B^{\mathrm{c}}\right)|T(x)| \tag{37}
\end{align*}
\]
```

Lemma. Denoting $\hat{\lambda}:=\operatorname{dist}\left(\cdot, B^{\mathrm{c}}\right)^{2} \cdot \lambda$, one has, for any signed measure m on B having total mass zero:

$$
\begin{equation*}
\|m\|_{\dot{H}^{-1}(\hat{\lambda})} \leqslant(((2 e+1) n-1) \vee 8 e)^{1 / 2}\|m\|_{L^{2}(B)} \tag{42}
\end{equation*}
$$

—In the sequel, " $((2 e+1) n-1) \vee 8 e$ " will be shorthanded into " $C_{1}(n)$ ".
Remark 15. The bound (42) is within a constant factor of being optimal, uniformly in n, as one sees by f in (45) to be linear.

Proof of the lemma. We begin with translating the lemma into a functional analysis statement by a duality argument. Recall the duality definition of $\|m\|_{\dot{H}^{-1}(\hat{\lambda})}$ from $\S 1$:

$$
\begin{equation*}
\|m\|_{\dot{H}^{-1}(\hat{\lambda})}:=\sup \left\{|\langle f, m\rangle| \mid\|f\|_{\dot{H}^{1}(\hat{\lambda})} \leqslant 1\right\} \tag{43}
\end{equation*}
$$

There is a similar duality formula for $\|m\|_{L^{2}(B)}$:

$$
\begin{equation*}
\|m\|_{L^{2}(B)}=\sup \left\{|\langle f, m\rangle|\| \| f \|_{L^{2}(B)} \leqslant 1\right\} \tag{44}
\end{equation*}
$$

where, for f a function, $\|f\|_{L^{2}(B)}$ has its usual meaning, namely $\|f\|_{L^{2}(B)}:=$ $\left(\int_{B} f(x)^{2} d \lambda(x)\right)^{1 / 2}$. Since m is assumed to have total mass zero, $|\langle f, m\rangle|$ does not change when one adds a constant to f. On the other hand, when f describes the set $\left\{\left\|f_{0}+a\right\| \mid a \in \mathbf{R}\right\},\|f\|_{L^{2}(B)}$ is minimal when a is such that f has zero mean on B, while the value of $\|f\|_{\dot{H}^{1}(\hat{\lambda})}$ remains constant. ${ }^{*}{ }^{*}$ As a consequence, we can restrict the supremum in (43) and (44) to those f having zero mean on B. Thus, the lemma will be implied ${ }^{[\dagger]}$ by proving that

$$
\begin{equation*}
\left\langle f, \mathbf{1}_{B} \cdot \lambda\right\rangle=0 \quad \Rightarrow \quad\|f\|_{L^{2}(B)} \leqslant C_{1}(n)^{1 / 2}\|f\|_{\dot{H}^{1}(\hat{\lambda})} \tag{45}
\end{equation*}
$$

Going back to the definitions of $\|\cdot\|_{\dot{H}^{-1}(\hat{\lambda})}$ and $\|\cdot\|_{L^{2}(B)}$, relaxing the condition on f to be centred by projecting it orthogonally in $L^{2}(B)$ onto the subspace of centred functions, and denoting by P the uniform probability measure on B, Equation (45) turns into:

$$
\begin{equation*}
\forall f \quad \operatorname{Var}_{P}(f) \leqslant C_{1}(n) \int \operatorname{dist}\left(x, B^{\mathrm{c}}\right)^{2}|\nabla f(x)|^{2} d P(x) \tag{46}
\end{equation*}
$$

which we recognize to be a weighted Poincaré inequality.
To prove (46), the first key idea (inspired by [Bobkov, 2003]) is to separate radial and spherical coordinates. This is, considering the bijection

$$
\begin{align*}
\varphi:(0, R) \times \mathbb{S}^{n-1} & \rightarrow B \backslash\{0\} \tag{47}\\
(r, \theta) & \mapsto r \theta
\end{align*}
$$

(the origin of space being set at the center of B), we introduce the measure $\tilde{P}:=$ $\varphi^{-1}{ }_{*} P$, which is obviously the product measure $\tilde{P}_{r} \otimes \tilde{P}_{\theta}$, where \tilde{P}_{r} is the probability measure on $(0, R)$ such that $d \tilde{P}_{r}(r):=n R^{-n} r^{n-1} d r$, resp. \tilde{P}_{θ} is the uniform measure

[^7]on the sphere \mathbb{S}^{n-1}. With this notation, we perform can a change of variables to see that (46) is equivalent to proving that, for all $g \in L^{2}(\tilde{P})$:
\[

$$
\begin{equation*}
C_{1}(n)^{-1} \operatorname{Var}_{\tilde{P}}(g) \leqslant \int_{0}^{R} \int_{\mathbb{S}^{n-1}}(R-r)^{2}\left(\left|\nabla_{r} g(r, \theta)\right|^{2}+r^{-2}\left|\nabla_{\theta} g(r, \theta)\right|^{2}\right) d \tilde{P}_{r}(r) d \tilde{P}_{\theta}(\theta), \tag{48}
\end{equation*}
$$

\]

where ∇_{r} and ∇_{θ} denote the gradient along resp. the r coordinate and the θ coordinate. ${ }^{[\ddagger]}$ We will denote the right-hand side of (48) by $\mathcal{E}(g, g)$.

Because $\tilde{P}=\tilde{P}_{r} \otimes \tilde{P}_{\theta}$, we know that $L^{2}(\tilde{P})$ can be seen as (the closure of) the tensor product of $L^{2}\left(\tilde{P}_{r}\right)$ and $L^{2}\left(\tilde{P}_{\theta}\right)$:

$$
\begin{equation*}
L^{2}(\tilde{P})=\operatorname{cl}\left(L^{2}\left(\tilde{P}_{r}\right) \stackrel{\perp}{\otimes} L^{2}\left(\tilde{P}_{\theta}\right)\right) \tag{49}
\end{equation*}
$$

where the symbol ' $\stackrel{\perp}{\otimes}$ ' means that the Hilbertian structure of $L^{2}(\tilde{P})$ is compatible with the Hilbertian structures of $L^{2}\left(\tilde{P}_{r}\right)$ and $L^{2}\left(\tilde{P}_{\theta}\right)$-i.e., that $\left\langle h_{\mathrm{a}} \otimes u_{\mathrm{a}}, h_{\mathrm{b}} \otimes u_{\mathrm{b}}\right\rangle_{L^{2}(\tilde{P})}=$ $\left\langle h_{\mathrm{a}}, h_{\mathrm{b}}\right\rangle_{L^{2}\left(\tilde{P}_{r}\right)} \times\left\langle u_{\mathrm{a}}, u_{\mathrm{b}}\right\rangle_{L^{2}\left(\tilde{P}_{\theta}\right)}$. Now consider the spherical harmonics Y_{0}, Y_{1}, \ldots, which by definition are an orthonormal basis, in $L^{2}\left(\tilde{P}_{\theta}\right)$, of eigenfunctions of the Laplace-Beltrami operator Δ on \mathbb{S}^{n-1}; and call $\ell_{0}, \ell_{1}, \ldots$ the associated eigenvalues, which are known to be such that (up to permuting indices) $Y_{0} \equiv 1$ with $\ell_{0}=0$, and $\ell_{i} \leqslant-(n-1) \forall i \neq 0$ (see for instance [Seeley, 1966]). By construction, $L^{2}\left(\tilde{P}_{\theta}\right)=\operatorname{cl}\left(\oplus_{i \in \mathbf{N}}\left(\mathbf{R} \cdot Y_{i}\right)\right)$; therefore, one has that

$$
\begin{equation*}
L^{2}(\tilde{P})=\operatorname{cl}\left(\bigoplus_{i \in \mathbf{N}}^{\perp} L^{2}\left(\tilde{P}_{r}\right) \cdot Y_{i}\right): \tag{50}
\end{equation*}
$$

in other words, the functions of $L^{2}(\tilde{P})$ are those of the form

$$
\begin{equation*}
g(r, \theta)=\sum_{i \in \mathbf{N}} h_{i}(r) Y_{i}(\theta) \tag{51}
\end{equation*}
$$

with $\sum_{i}\left\|h_{i}\right\|_{L^{2}\left(\tilde{P}_{r}\right)}^{2}<\infty$, and the correspondence is bijective. An interesting point is that, then, one has:

$$
\begin{equation*}
\operatorname{Var}_{\tilde{P}}(g)=\operatorname{Var}_{\tilde{P}_{r}}\left(h_{0}\right)+\sum_{i \neq 0}\left\|h_{i}\right\|_{L^{2}\left(\tilde{P}_{r}\right)}^{2} \tag{52}
\end{equation*}
$$

On the other hand, one has

$$
\begin{equation*}
\mathcal{E}(g, g)=-\langle L g, g\rangle_{L^{2}(\tilde{P})} \tag{53}
\end{equation*}
$$

where

$$
\begin{equation*}
(L g)(r, \theta):=(R-r)^{2} \Delta_{r} g+\left((n-1) \frac{(R-r)^{2}}{r}-2(R-r)\right) \mathbf{e}_{r} \cdot \nabla_{r} g+\frac{(R-r)^{2}}{r^{2}} \Delta_{\theta} g \tag{54}
\end{equation*}
$$

From (54) we see that, since the Y_{i} are eigenfunctions of Δ_{θ}, all the $L^{2}\left(\tilde{P}_{r}\right) \cdot Y_{i}$ are invariant by L, and that one has:

$$
\begin{equation*}
\mathcal{E}(g, g)=\sum_{i \in \mathbf{N}} \int_{0}^{R}\left((R-r)^{2}\left|\nabla h_{i}(r)\right|^{2}-\ell_{i} \frac{(R-r)^{2}}{r^{2}} h_{i}(r)^{2}\right) \tilde{P}_{r}(d r) \tag{55}
\end{equation*}
$$

[^8]So, proving (48) becomes equivalent to proving that both following formulas hold for all $h \in L^{2}\left(\tilde{P}_{r}\right)$:

$$
\begin{gather*}
\operatorname{Var}_{\tilde{P}_{r}}(h) \leqslant C_{1}(n) \int_{0}^{R}(R-r)^{2}|\nabla h(r)|^{2} \tilde{P}_{r}(d r) \tag{56}\\
\|h\|_{L^{2}\left(\tilde{P}_{r}\right)}^{2} \leqslant C_{1}(n) \int_{0}^{R}\left((R-r)^{2}|\nabla h(r)|^{2}+(n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2}\right) \tilde{P}_{r}(d r) \tag{57}
\end{gather*}
$$

Let us start with (56). In all the sequel of the proof, we introduce

$$
\begin{equation*}
b:=1-n^{-1} \tag{58}
\end{equation*}
$$

By the Cauchy-Schwarz inequality, one has, for all $r \in(b R, R)$:

$$
\begin{align*}
&(h(r)-h(b R))^{2}=\left(\int_{b R}^{r} h^{\prime}(s) d s\right)^{2} \leqslant\left(\int_{b R}^{r}(R-s)^{-3 / 2} d s\right) \times \int_{b R}^{r}(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \\
& \leqslant 2\left((R-r)^{-1 / 2}-(R-b R)^{-1 / 2}\right) \int_{b R}^{r}(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \\
& \leqslant 2(R-r)^{-1 / 2} \int_{b R}^{r}(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \tag{59}
\end{align*}
$$

Integrating and using Fubini's formula, it follows that

$$
\begin{align*}
& \int_{b R}^{R}(h(r)-h(b R))^{2} d \tilde{P}_{r}(r) \leqslant \\
& \quad 2 \int_{s=b R}^{R}\left(\int_{r=s}^{R} n R^{-n}(R-r)^{-1 / 2} r^{n-1} d r\right)(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \\
& \leqslant
\end{align*} \begin{array}{r}
2 \int_{s=b R}^{R}\left(\int_{r=s}^{R} n R^{-n}\left(b^{-1} s\right)^{n-1}(R-r)^{-1 / 2} d r\right)(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \\
=2 b^{-(n-1)} \int_{s=b R}^{R}\left(\int_{r=s}^{R}(R-r)^{-1 / 2} d r\right)(R-s)^{3 / 2}|\nabla h(s)|^{2} d \tilde{P}_{r}(s) \\
 \tag{60}\\
=4 b^{-(n-1)} \int_{s=b R}^{R}(R-s)^{2}|\nabla h(s)|^{2} d s
\end{array}
$$

One can apply the same line of reasoning for $r \in(0, b R)$: the (unweighted this time) Cauchy-Schwarz inequality then yields $(h(r)-h(b R))^{2} \leqslant(b R-r) \times$ $\int_{r}^{b R}|\nabla h(s)|^{2} d s$, whence:

$$
\begin{align*}
& \int_{0}^{b R}(h(r)-h(b R))^{2} d \tilde{P}_{r}(r) \leqslant \int_{s=0}^{b R}\left(\int_{r=0}^{s} n R^{-n}(b R-r) r^{n-1} d r\right)|\nabla h(s)|^{2} d s \\
& \leqslant b R^{-(n-1)} \int_{s=0}^{b R}\left(\int_{r=0}^{s} n r^{n-1} d r\right)|\nabla h(s)|^{2} d s=b R \int_{0}^{b R}|\nabla h(s)|^{2} s^{n} d s \\
& \leqslant b n^{-1} R^{2} \int_{0}^{b R}|\nabla h(s)|^{2} d \tilde{P}_{r}(s) \leqslant b(1-b)^{-2} n^{-1} \int_{0}^{b R}(R-s)^{2}|\nabla h(s)|^{2} d \tilde{P}_{r}(s) . \tag{61}
\end{align*}
$$

Summing (60) and (61), we get that

$$
\begin{equation*}
\int_{0}^{R}(h(r)-h(b R))^{2} d \tilde{P}_{r}(r) \leqslant\left(4 b^{-(n-1)} \vee b(1-b)^{-2} n^{-1}\right) \int_{0}^{s}(R-s)^{2}|\nabla h(s)|^{2} d \tilde{P}_{r}(s) \tag{62}
\end{equation*}
$$

where $\left(4 b^{-(n-1)} \vee b(1-b)^{-2} n^{-1}\right)$ can itself be bounded by $((n-1) \vee 4 e)$. The left-hand-side of (62) being an upper bound for $\operatorname{Var}_{\tilde{P}_{r}}(h)$, this proves (56).

Now we turn to (57). For $r \in(b R, R)$ we have, similarly to (59), that

$$
\begin{equation*}
(h(r)-h(b r))^{2} \leqslant 2(R-r)^{-1 / 2} \int_{b r}^{r}(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \tag{63}
\end{equation*}
$$

so that

$$
\begin{equation*}
h(r)^{2} \leqslant 2 h(b r)^{2}+4(R-r)^{-1 / 2} \int_{b r}^{r}(R-s)^{3 / 2}|\nabla h(s)|^{2} d s \tag{64}
\end{equation*}
$$

Then, integrating and applying Fubini's formula:

$$
\begin{align*}
& \int_{b R}^{R} h(r)^{2} d \tilde{P}_{r}(r) \leqslant 2 \int_{b R}^{R} h(b r)^{2} d \tilde{P}_{r}(r)+ \\
& \tag{65}\\
& 4 \int_{s=b^{2} R}^{R}\left(\int_{r=s \vee b R}^{b^{-1} s \wedge R} n R^{-n} r^{n-1}(R-r)^{-1 / 2} d r\right)(R-s)^{3 / 2}|\nabla h(s)|^{2} d s
\end{align*}
$$

By change of variables, the first term of the right-hand side of (65) is equal to $2 b^{-n} \int_{b^{2} R}^{b R} h(s)^{2} d \tilde{P}_{r}(s)$, which we can bound by

$$
\begin{align*}
2 b^{-(n-2)} \frac{(1-b)^{-2}}{n-1} \int_{b^{2} R}^{b R}(n-1) \frac{(R-r)^{2}}{r^{2}} & h(s)^{2} d \tilde{P}_{r}(s) \\
& \leqslant 2 n e \int_{0}^{R}(n-1) \frac{(R-r)^{2}}{r^{2}} h(s)^{2} d \tilde{P}_{r}(s) \tag{66}
\end{align*}
$$

The second term of the right-hand side of (65) is itself bounded by

$$
\begin{align*}
& 4 b^{-(n-1)} \int_{s=b^{2} R}^{R}\left(\int_{r=s}^{R}(R-r)^{-1 / 2} d r\right)(R-s)^{3 / 2}|\nabla h(s)|^{2} d \tilde{P}_{r}(s) \\
& \leqslant 8 e \int_{0}^{R}(R-s)^{2}|\nabla h(s)|^{2} d \tilde{P}_{r}(s) \tag{67}
\end{align*}
$$

This way, we have bounded $\int_{b R}^{R} h(r)^{2} d \tilde{P}_{r}(r)$.
On the other hand, it is trivial that, for $r \leqslant b R$,

$$
\begin{equation*}
h(r)^{2} \leqslant \frac{b^{2}}{(n-1)(1-b)^{2}} \times(n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2} \tag{68}
\end{equation*}
$$

whence:

$$
\begin{equation*}
\int_{0}^{b R} h(r)^{2} d \tilde{P}_{r}(r) \leqslant(n-1) \int_{0}^{R}(n-1) \frac{(R-r)^{2}}{r^{2}} h(r)^{2} d \tilde{P}_{r}(r) \tag{69}
\end{equation*}
$$

Combining (66), (67) and (69), we finally get the wanted bound (57).
Acknowledgement. The technical tools for the above proof were provided to me by Franck BARTHE, which I warmly thank for his much precious help.

References

Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math., 84(3):375-393, 2000.
S. G. Bobkov. Spectral gap and concentration for some spherically symmetric probability measures. In Geometric aspects of functional analysis, volume 1807 of Lecture Notes in Math., pages 37-43. Springer, Berlin, 2003.

Dario Cordero-Erausquin, Robert J. McCann, and Michael Schmuckenschläger. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb. Invent. Math., 146(2):219-257, 2001.

Grégoire Loeper. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. (9), 86(1):68-79, 2006.
F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal., 173(2):361-400, 2000.
R. T. Seeley. Spherical harmonics. The American Mathematical Monthly, 73(4): 115-121, 1966.

Xavier Tolsa. Mass transport and uniform rectifiability. Geom. Funct. Anal., 22(2): 478-527, 2012.

Cédric Villani. Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, 2003. ISBN 0-8218-3312-X.

Cédric Villani. Optimal Transport: Old and New, volume 338 of Grundlehren der Mathematischen Wissenschaften. Springer, 2009. ISBN 978-3-540-71049-3.

[^0]: *Supported by the Austrian Science Fund (FWF) under grant P25815.

[^1]: ${ }^{[*]}$ Beware that here $d \mu$ denotes a small measure on M, not the value of μ on a small area.

[^2]: ${ }^{[\dagger]}$ Beware that here '.' stands for a measure, not for a function: otherwise the formula would be false. -When f is a function, $\|f\|_{\dot{H}^{-1}(\mu)}$ stands for the $\dot{H}^{-1}(\mu)$ norm of the measure having density f w.r.t. μ.

[^3]: ${ }^{[\ddagger]}$ Note that in the case μ is a positive measure on \mathbf{R}^{n}, then $\|\mu\|_{1}$ is noting but $\mu\left(\mathbf{R}^{n}\right)$.

[^4]: ${ }^{[\S]}$ For instance, with the estimates of this article, one finds that $C(n):=47 n^{1 / 2}$ fits-though this may be strongly suboptimal.
 ${ }^{[\boldsymbol{~}]}$ Actually such an g does not always exist, as it can occur that the optimal transportation plan from ν to μ "splits points" if ν is not regular enough. However it would suffice to use the general

[^5]: formalism of transportation plans to handle that case: we do not do it here to keep notation light, but this is straightforward. Also note that it is not obvious that the infimum in (2) is attained: again, that is not a real problem as our proof still works by considering a sequence of transportation plans approaching optimality.
 ${ }^{[\mid l]}$ Observe that $a_{B}+a_{c}=a$.

[^6]: ${ }^{[* *]}$ For f to exist, g should be bijective, which is not always true stricto sensu; but we can safely carry out the reasoning with pretending so, by the same argument as in Footnote [$\mathbb{T}]$ on page 6.
 ${ }^{[\dagger \dagger]}$ This step comes from the computation $\lambda(B)^{1 / 2}\|\hat{\lambda}\|_{L^{2}(B)} /\|\hat{\lambda}\|_{1}=\left(\int_{0}^{1} r^{n-1} d r\right)^{1 / 2} \times$ $\left(\int_{0}^{1}(1-r)^{4} r^{n-1} d r\right)^{1 / 2} /\left(\int_{0}^{1}(1-r)^{2} r^{n-1} d r\right)=(6(1+n)(2+n) /(3+n)(4+n))^{1 / 2} \leqslant \sqrt{6} \forall n$.

[^7]: ${ }^{[*]}$ Here we implicitly assume that $\int_{B}|f(x)| d \lambda(x)<\infty$, which is legit since an approximation argument allows to restrict the suprema in (43) and (44) to those f having a \mathcal{C}^{∞} continuation on $\operatorname{cl}(B)$.
 ${ }^{[\dagger]}$ Actually there is even equivalence.

[^8]: ${ }^{[\ddagger]}$ In the latter case, we have to use the Riemannian definition of the gradient on \mathbb{S}^{n-1}.

