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Abstract

Carne’s bound is a sharp inequality controlling the transition probabilities
for a discrete reversible Markov chain (§ 1). Its ordinary proof (§ 2) uses spec-
tral techniques which look as efficient as miraculous. Here we present a new
proof, comparing a “drift” for ways “out” and “back”, to get the gaussian part of
the bound (§ 3), and using a conditioning technique to get the flight factor (§ 5).
Moreover we show how our proof is more “supple” than Carne’s one and may
generalize (§ 4.2).

1 Introduction
1.1 The Markov chain
Let V be a finite or countable set of points. Let us consider an irreducible Markov
chain (Xt)t∈N on V , with transition kernel (p(x, y))x,y∈V , and whose law is denoted
by Px when starting at x. That chain is supposed to be reversible, i.e. we suppose
that there exists a measure µ on V such that, for all x ∈ V 0 < µ(x) < ∞, and

∀x, y ∈ V µ(x)p(x, y) = µ(y)p(y, x). (1.1)

By irreducibility, µ is then uniquely determined up to a multiplicative factor; in the
sequel, we shall suppose it fixed. Note that we do not demand µ to be finite.

Then one may associate to the kernel a (non-oriented) graph (V,E) with vertices
set V by defining the set of edges through

{x, y} ∈ E ⇔ p(x, y) 6= 0. (1.2)

(A priori that definition should determine an oriented graph, but actually p(x, y) 6=
0 ⇔ p(y, x) 6= 0 by reversibility). As usual, we shall write z ∼ z′ to mean that
{z, z′} ∈ V (1). The graph distance, denoted by d, will stand for the length of the
shortest path(s) in E joining two points. Speaking in terms of probability, one has:

d(x, y) = inf
{
t ∈ N ; pt(x, y) 6= 0

}
, (1.3)

where pt denotes the t-th convolution power of the kernel p.
This paper aims at explaining by probabilistic arguments an inequality due to

Carne to sharply bound pt(x, y) above when d(x, y) &
√

t. Indeed to the best of our
knowledge, all the methods developed so far to get that kind of bounds used spectral
analysis techniques [1, 2]. We shall also show how our probabilistic approach allows
us to generalize Carne–Varopoulos type bounds for more “flexible” distances than
the graph distance.

(1)Look out for the fact that ∼ is not an equivalence relation.
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1.2 Carne’s bound and its history
In 1985, N. Th. Varopoulos [1] was the first to give a concentration result bounding
pt(x, y) above for a reversible Markov chain, whose leading term was exp

(
−d(x,y)2

Ct

)
,

C > 0 being an explicit constant depending on the transition kernel p. His method
introduced a time-continuous Markov process on the cabled graph associated to
(V,E), and studied the spectral properties of that process in an L2 space. Moreover
that proof required extra assumptions about the transition kernel.

The same year, T. K. Carne [2], by a simpler spectral method, got a finer result
under the general assumptions stated in § 1.1:

Theoreme 1.1 (Carne 1985). Suppose the hypotheses of § 1.1 are satisfied. Denote
by P the L2(µ)-operator associated to the transition kernel p and let |P | stand for its
norm, which is always 6 1 (see a more precise definition in § 2.1). Then:

pt(x, y) 6 2
(

µ(y)
µ(x)

)1/2

|P |t exp
(
−d(x, y)2

2t

)
. (1.4)

My work was motivated by two goals: first, find a proof of theorem 1.1 which
would be more natural than the original proof of Carne, then, adapt Carne–
Varopoulos type bounds to distances which depend continuously on the transition
kernel (see § 4.2).

2 Carne’s proof
We give here the proof of [2] as it was exposed in [3].

2.1 Norm of the transition kernel
Let us first give a precise definition of P :

Definition 2.1. P is the operator induced by P on L2(µ) through:

Pf(x) = Ex[f(X1)] =
∑
y∼x

p(x, y)f(y), (2.1)

Then we define |P | as the operator norm of P in L2(µ), i.e. |P | =
sup‖f‖L2(µ)=1 ‖Pf‖L2(µ). Note that P is self-adjoint by reversibility of µ, and |P | 6 1
by Jensen’s inequality.

A more intrinsic defintion of |P | is given by the following classical

Lemma 2.2 ([3, chap. 5-2]). For any x ∈ V ,

|P | = lim sup
t−→∞

(
pt(x, x)

)1/t = sup
t>1

(
pt(x, x)

)1/t
. (2.2)

2.2 Chebychev’s polynomials
Since Pnf(x) = Ex[f(Xn)], one can write

pt(x, y) =
〈

δx

µ(x)
, P tδy

〉
L2(µ)

=
|P |t

µ(x)

〈
δx,

(
P

|P |

)t

δy

〉
L2(µ)

. (2.3)

The trick then consists in decomposing the polynomial Zt in the basis of Cheby-
chev’s polynomials. The following results are classical:
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Lemma 2.3. For any k ∈ Z, there exists a unique polynomial Qk(Z) satisfying

∀θ ∈ C Qk(cos θ) = cos(kθ), (2.4)

called the k-th (first type) Chebychev polynomial. It satisfies:

1. deg Qk = |k|;

2. |x| 6 1 ⇒ |Q(x)| 6 1;

3. ∀t ∈ N Zt = 1
2t

∑
k∈Z

(
t

(t+k)/2

)
Qk(Z), where by convention

(
t
p

)
= 0 whenever

p /∈ {0, 1, . . . , t}.

By property 3 in Lemma 2.3, formula (2.3) gives

pt(x, y) =
|P |t

2tµ(x)

∑
k∈Z

(
t

(t + k)/2

)〈
δx, Qk

(
P

|P |

)
δy

〉
L2(µ)

. (2.5)

The linear operator P
|P | on L2(µ) is self-adjoint and its norm is 1 by construction;

so it decomposes onto a countable orthonormal basis of eigenvectors as

P

|P |

 ∑
λ∈Spec(P/|P |)

aλvλ

 =
∑

λ∈Spec(P/|P |)

λaλvλ, (2.6)

where vλ is the eigenvector associated to the eigenvalue λ, the eigenvalues being
counted with multiplicity. By definition of |P | we have Spec

(
P
|P |

)
⊂ [−1, 1]. So

Qk

(
P

|P |

) ∑
λ∈Spec(P/|P |)

aλvλ

 =
∑

λ∈Spec(P/|P |)

Qk(λ)aλvλ, (2.7)

where the Qk(λ) are all of absolute value less than or equal to 1 by lemma 2.3,
property 2. Then, the operator norm of Qk

(
P
|P |

)
on L2(µ) is at most 1, so to write:〈

δx, Qk

(
P

|P |

)
δy

〉
L2(µ)

6 ‖δx‖L2(µ) · ‖δy‖L2(µ) =
√

µ(x)µ(y). (2.8)

Now, we notice that for |k| < d(x, y), Qk

(
P
|P |

)
δy is a linear combination of

the Puδy, 0 6 u < d(x, y), by property 1 in Lemma 2.3; then Qk

(
P
|P |

)
δy is

a function supported by the z ∈ V satisfying d(z, y) < d(x, y), in particular〈
δx, Qk

(
P
|P |

)
δy

〉
L2(µ)

= 0. In the end,

pt(x, y) =
|P |t

2tµ(x)

∑
|k|>d(x,y)

(
t

(t + k)/2

)〈
δx, Qk

(
P

|P |

)
δy

〉
L2(µ)

(2.8)
6

|P |t

2tµ(x)

√
µ(x)µ(y)

∑
|k|>d(x,y)

(
t

(t + k)/2

)

6 2|P |t
(

µ(y)
µ(x)

)1/2 1
2t

∑
k>d(x,y)

(
t

(t + k)/2

)
(2.9)

(where the last inequality is an equality as soon as d(x, y) > 0).
To conclude, it only remains to prove the relation

1
2t

∑
k>d(x,y)

(
t

(t + k)/2

)
6 exp(−d(x, y)2/2t). (2.10)
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To do that, we notice that, if X is a random variable equidistributed on
{−1, 1}, then, the law of X∗t (which denotes the t-th convolution power of X) is
1
2t

∑
k∈Z

(
t

(t+k)/2

)
δk, so

1
2t

∑
k>d(x,y)

(
t

(t + k)/2

)
= P

(
X∗t > d(x, y)

)
. (2.11)

Now, we check by direct computation that for all λ > 0, E
[
eλX

]
6 eλ2/2, hence

E
[
eλX∗t

]
6 etλ2/2, and then by Chebychev’s inequality:

P
(
X∗t > d(x, y)

)
= P

(
eλX∗t

> eλd(x,y)
)

6
etλ2/2

eλd(x,y)
, (2.12)

hence we get (2.10) by taking λ = d(x, y)/t, which ends the proof.

3 The Gaussian factor
As told before, this article presents a new, probabilistic proof of Carne’s bound. In
this section, only the Gaussian part of the bound will be considered. The funda-
mental estimate is the

Theoreme 3.1. Let P be a Markov chain as described in § 1.1; let t > 2; let x 6= y ∈
V ; then

pt(x, y) 6

(
µ(y)
µ(x)

)1/2

exp

(
− (d(x, y)− 1)2

2(t− 1)

)
. (3.1)

The following immediate corollary yields a more pleasant formula:

Corollary 3.2. For t > 1 and x, y ∈ V ,

pt(x, y) 6
√

e

(
µ(y)
µ(x)

)1/2

exp
(
−d(x, y)2

2t

)
. (3.2)

Remark 3.3. The first factor in the bound (3.2) is slightly better than that of (1.4),
but actually one could replace the 2 by a

√
e in the proof of § 2 by refining the bound

(2.10).

Proof. Denote d = d(x, y). First, note that by reversibility of the chain, one has

pt(y, x) =
µ(x)
µ(y)

pt(x, y); (3.3)

so to prove (3.1) it suffices to show:

pt(x, y) pt(y, x) 6 exp

(
− (d− 1)2

t− 1

)
. (3.4)

Now, rather than reasoning on the graph, which is a “complicated” object, we
shall introduce a function ξ : V −→R which measures how much the random walk
X is closer to x or to y. ξ must satisfy:

Assumption 3.4.

• ξ(x) = 0; ξ(y) = d;

• ξ is 1-Lipschitz, i.e. for z ∼ v we have |ξ(v)− ξ(z)| 6 1.
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Such a map ξ always exists since, for instance, the map d(x, ·) always satisfies
assumption 3.4. Each point of V tends to make ξ increase or decrease, depending
on the values of the transition kernel. Let us denote by m(z) the expected value for
the variation of ξ after the particle having visited z, i.e.

m(z) = Ez [ξ(X1)]− ξ(z). (3.5)

Now, let (Mu)u>1 be the process defined by:

Mu = ξ(Xu)− ξ(X1)−
u−1∑
s=1

m(Xs) =
u−1∑
s=1

(ξ(Xs+1)− ξ(Xs)−m(Xs)) ; (3.6)

obviously M is a martingale starting at 0. Let us look at the chain starting at x. On
the event {Xt = y}, one trivially has ξ(Xt)− ξ(X1) > d− 1, hence

Ex [Mt|Xt = y] > d− 1− Ex

[
t−1∑
u=1

m(Xu)
∣∣∣Xt = y

]
. (3.7)

One may carry out the same reasoning starting at y, which gives:

Ey [Mt|Xt = x] 6 −(d− 1)− Ey

[
t−1∑
u=1

m(Xu)
∣∣∣Xt = x

]
. (3.8)

What can we see? If the terms Ex

[∑t−1
u=1 m(Xu)

∣∣Xt = y
]
, resp.

Ey

[∑t−1
u=1 m(Xu)

∣∣Xt = x
]

were not present in (3.7) and (3.8), these formulae
would reduce to Ex [Mt|Xt = y] > d − 1, resp. Ey [Mt|Xt = x] 6 −(d − 1), so that we
would observe a large deviation phenomenon on martingales, which would yield
a control respectively on pt(x, y) and pt(y, x). Unfortunately, that phenomenon
seems to be wiped out because of the terms m(Xs). The key idea then consists
in noticing that, by reversibility, these m(Xs) are the same for the “way out” as
for the “way back”; subsequently, if the m(Xs) tend to make the right hand side
of (3.7) diminish (which would damp the large deviation phenomenon), then they
tend to make the right hand side of (3.8) increase, which this time translates into
a strengthening of the large deviation phenomenon. So, pt(x, y) and pt(y, x) cannot
be large simultaneously, which will lead us to (3.4).

So, we consider Xx, Xy two independent chains with respective laws Px and
Py; let Px⊗y be their joint law. The respective realizations of (Mu)u>1 for the paths
starting at x and at y are denoted by (Mx

u )u>1 and (My
u )u>1. By reversibility,

∀u ∈ {1, . . . , t− 1} Ex

[
m(Xu)

∣∣Xt = y
]

= Ey

[
m(Xt−u)

∣∣Xt = x
]
. (3.9)

Hence by combining (3.7) and (3.8),

Ex⊗y

[
Mx

t −My
t

∣∣Xx
t = y et Xy

t = x
]

> 2(d− 1). (3.10)

It remains to control the deviations of Mx
t −My

t . We remark that this random
variable may be interpreted as the final value of a 2(t− 1) steps martingale, whose
steps satisfy the assumptions of the following lemma:

Lemma 3.5. Let (Ft)t∈N be a filtration; let (Xt)t>1 be an adapted real-valued process
with E[Xt+1|Ft] = 0(2). We suppose that, for all t ∈ N, Law(Xt+1|Ft) is supported by
an interval of length 2 almost surely. Then, letting u > 0 be a fixed time, we have for
all λ ∈ R:

E

[
exp

(
λ

u∑
t=1

Xt

)]
6 exp

(
u

λ2

2

)
. (3.11)

(2)In other words, the Xt ’s are the increments of a martingale.
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Proof. The proof relies on Hoeffding’s inequality, whose statement is recalled below:

Lemma 3.6 (Hoeffding). Let X be a centered real-valued random variable, sup-
ported by an interval of length 2, then

∀λ ∈ R E
[
eλX

]
6 eλ2/2. (3.12)

That point being taken for granted, we prove lemma 3.5 by induction on u:

• For u = 0 the result is trivial.

• Let u > 1; suppose the result to be true for u− 1. Let λ ∈ R; we write

E

[
exp

(
λ

u∑
t=1

Xt

)]
= E

[
exp

(
λ

u−1∑
t=1

Xt

)
E
[
eλXu |Fu−1

]]

6 E

[
exp

(
λ

u−1∑
t=1

Xt

)]
︸ ︷︷ ︸
6e(u−1)λ2/2 by induction

·
∥∥E [eλXu |Fu−1

]∥∥
∞︸ ︷︷ ︸

6eλ2/2 by (3.12)

6 euλ2/2. (3.13)

To conclude, it only remains to us to prove the following measure concentration
lemma:

Lemma 3.7. Let X be a centered real-valued random variable satisfying for some
k > 0:

∀λ ∈ R E[eλX ] 6 ekλ2/2. (3.14)
If A is an event such that

E[X|A] > C (3.15)
for some C > 0, then

P(A) 6 exp
(
−C2

2k

)
. (3.16)

Proof. To lighten notations, let us denote p = P(A). Let us fix λ > 0, then we have

E
[
eλX |A

]
=

E
[
1AeλX

]
P(A)

(3.14)
6

1
p
ekλ2/2. (3.17)

It follows, by Jensen’s inequality, that

E[X|A] 6
1
λ

ln
(

1
p
ekλ2/2

)
, (3.18)

hence by assumption (3.15):
1
λ

ln
(

1
p
ekλ2/2

)
> C, (3.19)

whence finally
p 6 e−Cλ+kλ2/2. (3.20)

Then it suffices to take λ = C/k to get the announced result.

Now we conclude the proof of Theorem 3.1. Lemma 3.5 permits us to control the
Laplace transform of Mx

t −My
t under Px⊗y:

∀λ ∈ R Ex⊗y

[
eλ(Mx

t −My
t )
]

6 e(t−1)λ2
, (3.21)

and Formula (3.10) then gives, via Lemma 3.7:

Px⊗y(Xx
t = y et Xy

t = x) 6 exp

(
− (d− 1)2

t− 1

)
, (3.22)

i.e. (3.4).
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4 Generalization to a larger class of distances
4.1 Statement of the generalized theorem
Now we will show that the reasoning made above can in fact adapt to a whole class
of distances. So let us consider a new distance on V , which we will also call d —to
avoid confusions, the graph distance that we had defined by (1.3) will be denoted
dG from now on. We have:

Theoreme 4.1. Suppose that d is built so that, if ξ : V −→R is any 1-Lipschitz
function with respect to d, one has, for all x ∈ V :

• ∣∣Ex [ξ(X1)]− ξ(x)
∣∣ 6 B ; (4.1)

•
∀λ > 0 Ex

[
eλ{ξ(X1)−Ex[ξ(X1)]}

]
6 eAλ2

, (4.2)

for some constants A and B independent of ξ. Then, for all x, y ∈ V , one has

pt(x, y) 6

(
µ(y)
µ(x)

)1/2

exp

(
− (d(x, y)−B)+

2

4At

)

6 eB/2A

(
µ(y)
µ(x)

)1/2

exp
(
−d(x, y)2

4At

)
. (4.3)

Remark 4.2. We can already point out that, in the case when the distance is dG,
it is impossible to get anything better than A = 1/2 and B = 1. Subsequently, the
result will be worsened by a

√
e factor compared to (3.2) —which remains negligible

compared to the exponential part of the bound—: as we will see later, it is due to
the difference in treating the first steps, since the specific argument that we have
used for dG in the proof of Theorem 3.1 may not generalize.

Proof. We follow again the proof of theorem 3.1: denote d = d(x, y), let ξ satisfy
assumption 3.4, define m by (3.5) and let Px⊗y be the joint law of two independent
chains of respective laws Px and Py; we want to bound Px⊗y[Xx

t = y et Xy
t = x]

above to conclude by formula (3.3).
The first difference lies in the defintion of M : now, the martingale starts at time

0. So it is defined by:

Mu = ξ(Xu)− ξ(X0)−
u−1∑
s=0

m(Xs) =
u−1∑
s=0

(
ξ(Xs+1)− ξ(Xs)−m(Xs)

)
. (4.4)

Then we get:  Ex [Mt|Xt = y] = d− Ex

[∑t−1
u=0 m(Xu)

∣∣∣Xt = y
]
,

Ey [Mt|Xt = x] = −d− Ey

[∑t−1
u=0 m(Xu)

∣∣∣Xt = x
] (4.5)

When we want to combine these two formulae as we did in (3.10), we observe that
all the terms E[m(Xu)] will cancel pairwise, except the terms corresponding to the
first steps, i.e. to u = 0 in the two respective formulae. But we know exactly what
these terms are, since under Px, we have X0 = x a.s. (by definition!), resp. X0 = y
a.s. under Py. Thus

Ex⊗y [Mx
t −My

t |Xx
t = y et Xy

t = x] = 2d−m(x) + m(y) > 2d− 2B. (4.6)
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Taking into account assumption (4.2) —which plays here the role played before by
Hoeffding’s inequality—, we copy off the proof of Lemma 3.5 to get:

∀λ > 0 Ex⊗y

[
eλ(Mx

t +My
t )
]

6 e2Atλ2
, (4.7)

and it only remains to conclude by Lemma 3.7(3).

4.2 More flexible distances
Now we will show how one may build distances statisfying Theorem 4.1, such
that the metric structure of V continuously depends on the transition kernel. The
method developed below is certainly neither the best nor the most elegant, but it
has the advantage to be of relative pedagogical simplicity.

We keep on the principle of putting a length to each edge, but that time all the
edges will not have the same size: indeed we will put a larger length to the edges
that are more difficult to visit, in order to ensure that the metric structure of the
graph will not be too much perturbed when we add a very “unlikely” edge.

Let α > 0 be an arbitrary parameter. To each couple (x, y) ∈ V ×V , we associate
a length `(x, y) such that:

∀a > 0 Px (`(x, X1) > 1 + a) 6 e−a2/α, (4.8)

and we define the length of the edge [xy] by |[xy]| = min{`(x, y), `(y, x)}. Then, for
any 1-Lipschitz function ξ on V , we have:

Claim 4.3.

∀x ∈ V ∀a > 0 Px (|ξ(X1)− ξ(x)| > 1 + a) 6 e−a2/α. (4.9)

Now we give a formula for `(x, y) satisfying (4.8). First we define what we will
call the β-entropy of a probability law:

Definition 4.4. Let β ∈]0, 1]; let p be a probability measure on a discrete space X .
We call β-entropy of p the (possibly infinite) number:

Hβ(p) =
∑
x∈X

p(x)1−β (4). (4.10)

A transition kernel p on V being given, we will also denote, for x ∈ V , Hβ(x) =
Hβ (p(x, ·)).

The β-entropy permits us to control the probability that the observed event is
rare:

Claim 4.5. Let β ∈]0, 1]; let P be a probability law on a discrete state space X . We
suppose Hβ(p) < ∞. Then, for all $ ∈]0, 1], one has:

P (p(x) 6 $) 6 Hβ(p)$β . (4.11)

Proof. Use the identity Hβ(p) = E[p(x)−β ] and the fact that the map $ 7→ $−β is
decreasing, then apply Markov’s inequality.

So, one may choose the following expression for `(x, y) to satisfy (4.8), where we
set that, for a < 0, a1/2 = 0:

`(x, y) = 1 +
√

α
(
β ln(p(x, y)−1)− lnHβ(x)

)1/2

. (4.12)

Now, we want to show that (4.9) permits us to get (4.1) and (4.2) indeed. Let us
begin with an easy observation:

(3)If it occurs that B > d, Lemma 3.7 cannot be applied and we may only bound pt(x, y)pt(y, x) above
by 1; this explains the positive part appearing in (4.3).

(4)For β = 1 we set by continuity Hβ(p) = #{x ∈ X ; p(x) > 0}.
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Claim 4.6. Let ξ be a 1-Lipchitz function on V for a distance d built as above. Then
there exists a random variable Y whose repartition map satisfies ∀a > 0 P(Y >
1 + a) = e−a2/α, i.e. Y has a law with density

dP(Y = y) = 1y>1
2(y − 1)

α
e−(y−1)2/αdy, (4.13)

such that one has:
Px-p.s. |ξ(X1)− ξ(x)| 6 Y. (4.14)

So, we easily find that we can take B = E[Y ] = 1 +
√

π
2 α into (4.1).

To get a formula for A in (4.2), things are a bit more complicated. The tool which
we will use is the

Lemma 4.7. Let Y be a positive random variable whose Laplace tranform Ŷ (λ) =
E
[
eλY

]
is supposed to be finite for all λ > 0, and let us denote Y = E[Y ]. Let X be

a real-valued random variable satisfying |X| 6 Y a.s.; let us denote X = E[X] and
X̃ = X − E[X]. Then the Laplace transform of X̃ satisfies:

∀λ ∈ R ̂̃
X(λ) 6 e|λ|Y Ŷ (|λ|)− 2|λ|Y . (4.15)

Remark 4.8. The bound (4.15) is of quite poor quality close to 0, as it may be
particularily striking in the case Y ≡ 1, where we get the bound e2|λ| − 2|λ|, while
we know (Hoeffding’s lemma 3.6) that eλ2/2 would work. In fact, we can compute
that in a neighborhood of 0, the right hand side of (4.15) takes the form:

1 +
(
E[Y 2] + 3E[Y ]2

)λ2

2
+ o(λ2), (4.16)

while a variance calculation proves that in fact,

̂̃
X(λ) 6 1 + E[Y 2]

λ2

2
+ o(λ2). (4.17)

Proof. We may restrict ourselves to the case λ > 0, the case λ 6 0 being then treated
by using the result for −X.
We write ̂̃

X(λ) = E
[
eλX̃ − λX̃

]
. (4.18)

But, since |X| 6 Y , we have |X| 6 Y , hence X̃ ∈ [−Y − Y , Y + Y ]. And since, on an
interval of the form [−a, a], the map x 7→ eλx−λx takes its maximum at a, it follows
that ̂̃

X(λ) 6 E
[
eλ(Y +Y ) − λ(Y + Y )

]
= eλY Ŷ (λ)− 2λY . (4.19)

Now we have the following control on the Laplace transform of the random vari-
able Y defined by (4.13):

Proposition 4.9. If Y is a random variable whose law is given by (4.13), then for
λ > 0 one has:

E
[
eλY

]
6

(
1 +

√
πα

2
λ +

α2

4
λ2

)
eλ+α2λ2/4. (4.20)

Moreover, that bound is sharp close to 0, by which we mean that, if we rewrite (4.20)
under the form E[eλY ] 6 f(λ), we have E[Y ] = d

dλ
∣∣λ=0

E[eλY ] = f ′(0) = 1 +
√

π
2 α.

9



Proof. We begin with noticing that we can write Y = 1 + αZ, where Z is a random
variable with law

dP(Z = z) = 1z>02ze−z2
dz. (4.21)

Then it suffices to prove that

∀λ > 0 E
[
eλZ
]

6

(
1 +

√
π

2
λ +

λ2

4

)
eλ2/4. (4.22)

To do that, we write:

E
[
eλZ
]

= eλ2/4

∫ ∞

0

2ze−(z−λ/2)2dz =
t=z−λ/2

eλ2/4

∫ ∞

−λ/2

(2t + λ)e−t2dt︸ ︷︷ ︸
I(λ)

, (4.23)

where I(0) = 0 and, by the theorem of differenciation under the integral,

I ′(λ) =
∫ ∞

−λ/2

e−t2dt 6

√
π

2
+

λ

2
, (4.24)

whence I(λ) 6 1 +
√

π
2 λ + λ2

4 , and (4.20).

From that we deduce the existence of a suitable value for A:

Proposition 4.10. For all α > 0, there exists a constant A(α) < ∞ such that, if d
satisfies condition (4.9) for the value α, then (4.2) is satisfied for the value A(α).

Proof. For Y with law (4.13), denoting Y = E[Y ] = 1 +
√

π
2 α, Proposition 4.9 shows

that ln
(
eλY E[eλY ]−2λY

)
/λ2 is bounded for λ

>−→ 0 and λ−→∞. By continuity, this
function is thus bounded on the whole half-line [0,+∞). Lemma 4.7 then gives the
existence of A.

Remark 4.11. We have not found any simple bound for A(α), but, for a given value
of α, it is easy to compute numerically the maximum of the map λ 7→ ln(eλY E[eλY ]−
2λY )/λ2, which gives a suitable value for A.

4.3 A concrete example
We shall illustrate the preceding subsection by showing how our generalization
gives some results in cases when the usual Carne bound is irrelevant.

Here we consider V to be the set of vertices of an inifinite 3-tree. The tree
distance is denoted by dA, which will not be the same as the graph distance dG.
Let L be an integer devised to become large and ε > 0 a real number devised to
become small. We consider as the Markov chain on V the process which, from point
x, jumps on each neighbor of x with probability (1 − ε)/3, and, with probability ε,
chooses uniformly an arrival point in the (closed) ball centered on x with radius L.
As one may check immediately, that chain is reversible and its invariant measure
is the counting measure. Let us sum up: our process looks much like the simple
random walk on a 3-tree, but sometimes the mobile may jump by roughly L units.
We would like to say that, even if L is large, it suffices for ε to be small enough to
get an exponential bound where L does not appear.

If we naively apply formula (1.4) to this transition kernel, we will not get any-
thing interesting: indeed, small as ε might be, the graph distance is the same:

∀x, y ∈ G dG(x, y) =
⌈

dA(x, y)
L

⌉
. (4.25)

10



Then, bounding below dG by dA/L, and merely bounding |P | by 1(5), Carne’s bound
yields

pt(x, y) 6 2 exp
(
−dA(x, y)

2tL2

)
. (4.26)

Concretely, if L = 17 and ε = 1/2230
, it will give a bound with a dA(x, y)/578t in the

exponential, which is strongly worse than the dA(x, y)/2t of the case ε = 0. Yet it
is obvious that the influence of large jumps should be nearly zero: the bound (4.26)
thus must be improvable!

So we will apply the techniques exposed in § 4.2. Here we have chosen arbitrar-
ily α = 1 and β = 1/2. We suppose that L is large enough; in fact our computations
will be valid as soon as L > 2. Let us denote by N = 3 · 2L − 2 the cardinality of a
ball of radius L. We have:

H1/2(x) = 3
(

1− ε

3
+

ε

N

)1/2

+ (N − 3)
( ε

N

)1/2

6
√

3 +
√

Nε1/2, (4.27)

hence H1/2(x) 6 2 for ε 6 1/(42 · 2L). So, if we bound over H1/2(x) by 2, we get that
for 2 6 dA(x, y) 6 L, one has:

`(x, y) > 1 +
(
ln(N/ε)/2− ln 2

)1/2
, (4.28)

in particular `(x, y) > 1 +
√

ln(ε−1)/2.
Our observation is that, if ε is small enough, d coincides with dA: indeed one has

`(x, y) = 1 for x ∼ y, `(x, y) = ∞ if dA(x, y) > L, and `(x, y) > L for 2 6 dA(x, y) 6 L,
as soon as:

ε 6 e−2L2
(4.29)

—which is however a quite strong condition. (Note that for L large enough, condi-
tion (4.29) implies that ε 6 1/(42 · 2L) indeed.)

Numerical computations for α = 1 give A = 8.09 . . ., resp. B = 1.88 . . .; so we
have for ε 6 e−2L2

pt(x, y) 6
9
8

exp
(
−dA(x, y)2

33t

)
. (4.30)

Although that bound undoubtedly improves Carne’s bound (4.26) in “extreme”
cases like that mentioned above, and even if it is certainly possible to get some
better results by a more subtle choice of α and β, I find that bound rather disap-
pointing in the sense that we still remain far from Carne’s bound for the smallest
values of ε. Anyway, Theorem 4.1 is theoretically interesting and may have better
applications; in particular Lemma 4.7 can certainlty be improved.

5 The flight factor
5.1 Frame of the proof
The Gaussian bound (3.2) has got a disadvantage with respect to Carne’s bound
(1.4): in the case when |P | < 1, it does not show the exponential decreasing of
pt(x, y) in the variable t. In fact, Lemma 2.2 implies pt(x, y)pt(y, x) 6 p2t(x, x) 6
|P |2t, whence

pt(x, y) 6

(
µ(y)
µ(x)

)1/2

|P |t, (5.1)

but that is not enough to get again (1.4). The present section precisely aims at
doing this. Here we will exclusively focus on the case when d = dG, cf. Remark 5.8
below.

(5)Actually, here we could do better, but in this subsection we are only interested in the Gaussian part
of the bound.
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Let x, y ∈ V . For u a time devised to go to infinity, denote by

Ru = {∃s > u ; Xs = x} (5.2)

the event which tells that the particle comes back at x at least once after time u.
The strategy of our proof then consists in looking at our Markov chain conditioned
to the event Ru. Why this? Well, the fact that |P | < 1 expresses a possibility
for the particle to “flee to infinity”. That flight is responsible for the exponential
decay with respect to t of the quantity pt(x, y)pt(y, x) introduced in (3.4), which
measures the probability that the particle, starting at x, goes to y at time t and
then comes back to x at time 2t. Conditioning with respect to Ru then aims, in a
way, at preventing the particle from going to infinity, which will give us a Markov
chain for which |P | = 1, where the bound (3.2) will be relevant. Then it will remain
to show that this conditioning selects sufficiently well the cases when the particle
makes a return trip to get back a factor |P |t in (3.2).

Our proof will use a kind of density argument: in a first step we will add some
more assumptions on our Markov chain to carry out the reasoning, then in a sec-
ond step we will prove that we can get rid of these extra assumptions by slightly
perturbing the original Markov chain.

5.2 Proof under extra assumptions
We will use the following notation:

Definition 5.1. We denote by τx the hitting time of x by a walk on V , i.e. τx =
inf{t > 0 ; Xt = x}. For all z ∈ V , we denote:

R(z) = Ez

[
1τx<∞|P |−τx

]
. (5.3)

In this first part of the proof, we add to the assumptions of § 1.1 the following
conditions:

Assumption 5.2.

1. V is finite;

2. There exists a cemetery point ∂ ∈ V such that p(∂, ·) = δ∂ . We will denote Ṽ for
V r {∂};

3. The chain P is aperiodic on Ṽ .

Remark 5.3. Under the assumption 5.2, the chain will just be required to be irre-
ducible and reversible on Ṽ ; moreover the definition of |P | will be that given by the
formula (2.2) of lemma 2.2, for arbitrary x ∈ Ṽ .

Assumption 5.2 permits to obtain sharp results about the recurrence behaviour
of the chain:

Lemma 5.4. Suppose we have an irreducible and reversible Markov chain satisfy-
ing Assumption 5.2. Then:

1. There exist two constants 0 < c1 6 c2 < ∞ such that

∀t > 0 c1|P |t 6 Px(RT ) 6 c2|P |t. (5.4)

2. Px(Rt+1)/Px(Rt) −→
t−→∞

|P |.

3. For all z ∈ Ṽ , R(z) < ∞.

12



The proof of this lemma, which is rather technical, is postponed to the Appendix.
Now we are armed to prove Carne’s bound for a Markov chain satisfying As-

sumption 5.2. Let us fix t > 0; we have the key proposition:

Proposition 5.5. The law of (Xs)06s62t under Px(·|Ru) converges when u−→∞
(for the total variation norm on V {0,...,2t}) to the law P′x of the Markov chain on Ṽ
starting at x, with transition probabilities:

∀z, v ∈ Ṽ p′(z, v) =
R(v)p(z, v)∑

w∼z
R(w)p(z, w)

(6). (5.5)

Proof. It is true in a general framework that P(·|Ru) is a time-inhomogeneous
Markov chain with

P
(
Xs+1 = v

∣∣Xs = z and Ru

)
=

Ss+1,u(v)p(z, v)∑
w∼z

Ss+1,u(w)p(z, w)
, (5.6)

where we let Ss+1,u(z) = P(Ru|Xs+1 = z). Our attack will consist in proving that,
for all s ∈ {0, . . . , 2t− 1}, for all z ∈ V , we have Ss+1,u(z)/Px(Ru−(s+1)) −→

u−→∞
R(z).

To begin with, let us notice that Ss+1,u(z) = Pz(Ru−(s+1)), which we shall denote
by Su−(s+1)(z); then what we want to prove can be written:

∀z ∈ Ṽ
Su(z)

Px(Ru)
−→

u−→∞
R(z). (5.7)

The idea consists in splitting the probability space according to the value of τx,
thanks to the strong Markov property:

Su(z) =
u∑

s=0

Pz(τx = s)Px(Ru−s) +
∑

s>u+1

Pz(τx = s), (5.8)

whence
Su(z)

Px(Ru)
=

u∑
s=0

Pz(τx = s)
Px(Ru−s)
Px(Ru)

+
∑

s>u+1

Pz(τx = s)
Px(Ru)

. (5.9)

Let us fix an arbitrarily small ε > 0. Since
∑

s Pz(τx = s)|P |−s converges (cf. Lemma
5.4-3), we may introduce a time u0 for which one has

∑
s>u0

Pz(τx = s) 6 ε. Then,
for u > u0 one has on the one hand,

u∑
s=u0+1

Pz(τx = s)
Px(Ru−s)
Px(Ru)

+
∑
s>u

Pz(τx = s)
Px(Ru)

lemma 5.4-1
6

c2 ∨ 1
c1

∑
s>u0

Pz(τx = s)|P |−s =
c2 ∨ 1

c1
ε, (5.10)

on the other hand,

u0∑
s=0

Pz(τx = s)
Px(Ru−s)
Px(Ru)

lemma 5.4-2−→
u−→∞

u0∑
s=0

Pz(τx = s)|P |−s. (5.11)

It follows that
lim sup
u−→∞

∣∣∣∣R(z)− Su(v)
Px(Ru)

∣∣∣∣ 6 (1 +
c2 ∨ 1

c1

)
ε, (5.12)

hence (5.7) by letting ε−→ 0.

(6)That defines a Markov chain on Ṽ indeed because R(∂) = 0.
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Now we want to look at the chain P′. First, P′ is clearly irreducible. Then, one
has:

Proposition 5.6. The chain P′ is reversible, and its invariant measure is:

∀z ∈ Ṽ µ′(z) =
{

R(z)2µ(z) if z 6= x;
R(x)R+(x)µ(x) if z = x,

(7) (5.13)

where R+(x) is defined by:

Definition 5.7. We denote by τ+
x the return time to x, i.e.:

τ+
x = inf{s > 1 ; Xs = x}. (5.14)

Then R+(x) is defined by:

R+(x) = Ex

[
1τ+

x <∞|P |
−τ+

x

]
. (5.15)

Proof. Let z, v ∈ Ṽ with z 6= x. We can lighten the expression of p′(z, v), since by
Markov’s property,

R(z) =
∑
w∼z

p(z, w)Ew

[
1τx<∞|P |−(τx+1)

]
= |P |−1

∑
w∼z

p(z, w)R(w), (5.16)

thus (5.5) can be rewritten as

p′(z, v) =
p(z, v)R(v)
|P |R(z)

. (5.17)

In the case when z = x, the same argument leads to

p∗(x, v) =
p(x, v)R(v)
|P |R+(x)

. (5.18)

So, it only remains to use (5.17), (5.18) and the reversibility of µ under P to get the
reversibility of µ′ under P′.

Now we are ready to end the proof. We observe that, by Markov’s property,
pt(x, y)pt(y, x) = Px(Xt = y and X2t = x), which we will denote by Px(A). For
u > 2t, Bayes’ formula gives:

Px(A)
Px(A|Ru)

=
Px(Ru)

Px(Ru|A)
Markov=

Px(Ru)
Px(Ru−2t)

, (5.19)

hence, letting u go to infinity:
Px(A)
P′x(A)

= |P |2t. (5.20)

Now, the Markov chain P′ satisfies the assumptions of theorem 3.1, hence P′x(A) 6
e·exp

(
−d(x, y)2/t

)
, so Px(A) 6 e|P |2t exp

(
−d(x, y)2/t

)
, and finally we get the desired

formula:

pt(x, y) 6
√

e

(
µ(x)
µ(y)

)1/2

|P |t exp
(
−d(x, y)2

2t

)
. (5.21)

Remark 5.8. The reasoning carried out above cannot apply to other distances than
dG: indeed, the distance which appears in (5.21) in fact comes as the distance asso-
ciated to the process P′. When one works with the graph distance, that distance is
the same for P and for P′, but this is no more true if d depends in a more subtle way
on the transition kernel.

(7)The careful reader may have noticed that R(x) = 1; we let that factor appear for ease of understand-
ing.
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5.3 The density argument
Now, we want to get rid of Assumption 5.2. We will proceed in two steps: first we
will just relax Assumption 5.2-3, then we will deal with the general case.

Relaxing the aperiodicity condition

We consider a finite set V with a transition law (p(x, y))x,y∈V , such that there ex-
ists a cemetery point ∂ ∈ V satisfying Assumption 5.2-2. We suppose that the
Markov chain defined by p is irreducible and reversible on Ṽ = V r {∂}, with a
reversible measure µ. We denote by n the cardinality of Ṽ , and by M the ma-
trix

((
p(y, x)

))
x,y∈Ṽ

. The following lemma gives an algebraic characterization of the
value |P | defined in (2.2):

Lemma 5.9 ([3, chap. 5-2]). |P | is the spectral radius of M .

For ε ∈ [0, 1[, let pε be the transition kernel defined by:

∀x, y ∈ V pε(x, y) =
{

p(x, x) + ε(1− p(x, x)) if y = x;
(1− ε)p(x, y) if y 6= x. (5.22)

The Markov chain Pε generated by pε is an irreducible reversible chain whose graph
and reversible measure are the same as for p = p0, and which satisfies thye whole
of Assumption 5.2 as soon as ε > 0. Thus, for x, y ∈ Ṽ , t > 0 and ε > 0, we have

pt
ε(x, y) 6

√
e

(
µ(y)
µ(x)

)1/2

|Pε|t exp
(
−d(x, y)2

2t

)
. (5.23)

To conclude, we just have to notice that pt
ε(x, y), resp. Pε, are functions of ε

continuous at 0. Indeed, the finite-sized matrix Mε varies continuously with ε,
thus its spectral radius |Pε| also varies continuously, as well as pt

ε(x, y) which is the
coefficient number (y, x) of M t

ε.

Infinite graphs

Now we turn to the general case, i.e. we consider a chain that merely satisfies the
assumptions of § 1.1. Let us give a mark ν(z) > 0 to each vertice z of V , in such a
way that for all ε > 0, #{z ∈ V ; ν(z) > 0} is finite.

Let us fix x, y ∈ V , and let us take ε > 0 arbitrarily small (we shall always
suppose ε < ν(x), ν(y) to avoid certain problems). We define a finite set Vε equipped
with a transition kernel (pε(z, v))z,v∈Vε

through the following way:

Definition 5.10. Vε is obtained by identifying all the points with ν-mass less than
ε to a cemetery point ∂:

Vε = {z ∈ V ; ν(z) > ε} ∪ {∂}. (5.24)

From now on we will denote the points of V in the same way as their images on Vε.
Then pε is the kernel p projected on Vε, with the requirement that ∂ is a cemetery
point:

∀z, v ∈ Vε pε(z, v) =


p(z, v) if z, v ∈ Ṽε;
0 if z = ∂ and v ∈ Ṽε;
1 if z = v = ∂;∑

ν(w)<ε p(z, w) if z ∈ Ṽε and w = ∂.

(5.25)

15



Then the chain Pε satisfies points 1 and 2 of Assumption 5.2, and it is reversible
with measure µ∣∣Ṽε

. This chain may not be irreducible, but we can suppose that such

is the case by keeping only the irreducible component of Ṽε containing x.
So the relation (5.21) is satisfied for Vε equipped with Pε; it only remains to

prove that pt
ε(x, y) −→

ε−→ 0
pt(x, y), resp. |Pε| −→

ε−→ 0
|P |.

Let us deal immediately with the operator norm. The very construction of pε

ensures that for all z, v ∈ Ṽε, we have pt
ε(z, v) 6 pt(z, v). Taking z = v = x, the

characterization (2.2) of |P | immediately gives that |Pε| 6 |P |, which is enough for
us (but convergence when ε−→ 0 is also true).

Now, we observe that the law of the t first steps of the chain generated by pε

converges to the law of the initial chain in the sense of total variation. Indeed,
given the way how Vε and pε are constructed respectively from V and p, we have a
canonical map which associates a walk on V(ε) to a walk on V , so that the law Px

maps into the law Pε
x. That map is defined as follows: the points of the walk on V

are sent onto their projections on Vε until the image walk hits ∂, and from that time
on the walk stays at ∂. In particular, if a realization of the original chain stays in
Ṽε up to time t, its image by our map is kept safe on {0, . . . , t}, and so∥∥∥∥Pε

x
∣∣V {0,...,t}

ε
− Px

∣∣V {0,...,t}

∥∥∥∥
TV

6 Px

(
∃u ∈ {0, . . . , t} Xu /∈ Ṽε

)
6

t∑
u=0

Px (ν(Xu) < ε) DCV−→
ε−→ 0

0. (5.26)

In particular, pt
ε(x, y) −→

ε−→ 0
pt(x, y), and so (5.21) is satisfied for V equipped with p,

QED.

A Appendix: Finite sub-Markov chains
This appendix aims at proving Lemma 5.4. Let us recall that in that lemma, we
consider a sub-Markov chain on a finite graph Ṽ , given by a kernel p, which is
irreducible and aperiodic (the fact that the chain is reversible is not used in the
proof of lemma 5.4). Denote by n the cardinality of Ṽ .

The study of the chain may be expressed into matricial terms: we introduce the
matrix

M =
((

p(v, z)
))

z,v∈Ṽ
. (A.1)

Then the aperiodicity condition translates into the existence of a time t0 such that,
for all t > t0, M t0 has strictly positive coefficients (actually t0 = n2 would always
do). On the other hand, Lemma 5.9 above permits us to consider |P | as the spectral
radius of M .

So we have in hand all the assumptions to apply the strongest form of the
Perron–Frobenius theorem, whose general statement and proof the reader can find
in [4, chap. 5]:

Proposition A.1 (Perron–Frobenius). |P | is a simple eigenvalue of M , and all
the other eigenvalues of M have an absolute value strictly less than |P |. Moreover,
the eigenvector v associated to the eigenvalue |P | has all its entries strictly positive.

Now, let us begin with proving point 1 of Lemma 5.4, and in a first step
let us prove the second inequality. Markov’s strong property gives us the over-
muliplicativity relation:

∀t, u > 0 Px(Rt+u) > Px(Rt)Px(Ru). (A.2)
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We deduce that, for all t > 1, one has Px(Rt)1/t 6 lim supu−→∞ Px(Ru)1/u. More-
over, if |P | < 1, we have, for all t > 1,

P(Rt) 6
∑
u>t

pu(x, x)
(2.2)
6
∑
u>t

|P |u =
|P |t

1− |P |
, (A.3)

hence lim supu−→∞ Px(Ru)1/u 6 |P |, that last relation being also trivially true in
the case when |P | = 1. Finally, the second inequality of (5.4) is satisfied for t > 1
with c2 = 1, the case t = 0 being trivial.

For the lower bound, we will only show that there exists a constant c3 > 0 such
that one has, for t large enough:

pt(x, x) > c3|P |t, (A.4)

the first inequality of (5.4) then will follow for t large enough, and the case when t
is small then will be dealt with by finiteness, thanks to noticing that irreducibility
ensures that Px(Rt) > 0 for all t ∈ N. To prove (A.4), let us consider the eigenvector
v = (vi)i∈Ṽ associated to the eigenvalue |P |. We shall keep in mind that, by Propo-
sition A.1, vx > 0. Denote v = maxi vi; the relation M tv = |P |tv then gives for all
t > 0:

|P |tvx =
∑
z∈Ṽ

pt(z, x)vz, (A.5)

hence
max
z∈Ṽ

pt(z, x) >
vx

nv
|P |t. (A.6)

Let now t0 be such that one has ∀z, v ∈ Ṽ pt0(z, v) > 0 (such a t0 exists by aperiod-
icity, as we noticed it supra), and let us denote η = minz,v∈Ṽ pt0(z, v) > 0. For t > t0,
by (A.6) we can fix z1 such that pt−t0(z1, x) > vx|P |t−t0/nv. It follows that

pt(x, x) >
ηvx

nv
|P |t−t0 , (A.7)

hence (A.4) with c3 = ηvx/nv|P |t0 .
Now, let us look at the fine behaviour of the sequence Px(Rt) when t−→∞. By

Markov’s property,
Px(Rt) =

∑
z∈Ṽ

pt(x, z)Pz(R0), (A.8)

subsequently to prove property 2 in Lemma 5.4, we just have to show that we have
pt+1(x, z)/pt(x, z) −→

t−→∞
|P | for all z ∈ Ṽ . More precisely, we will show that there

exists a constant c4(z) > 0 such that pt(x, z)/|P |t −→
t−→∞

c4(z).

pt(x, z) can be rewritten in matricial terms as TδzM
tδx. Now, by A.1, if Ṁ stands

for the matrix of the projection on Rv relatively to the sum of the characteristic
spaces for the eigenvalues of M other than |P |:

1
|P |t

M t −→
t−→∞

Ṁ. (A.9)

Subsequently, pt(x, z)/|P |t tends to the value c4(z) = TδyṀδx when t tends to infin-
ity. The non-nullity of c4(z) then is a consequence of point 1 which we have proved
a few lines above: indeed, taking again the notations t0 and η used above, we have
by Markov’s property:

∀t > t0 pt(x, z) > pt−t0(x, x)pt0(x, z) > c2|P |t−t0η, (A.10)

hence c4 > c2 > 0.
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Point 3 may be the most subtle. In fact we will prove that for all z in Ṽ , Pz(τx = t)
decreases exponentially with an exponential decay factor strictly less than |P |. More
precisely, we will estimate the decay factor of Pz(τx > t and τ∂ > t) = Pz

(
(∀u ∈

{0, . . . , t− 1})(Xu 6= x, ∂)
)
. In other words, we have to look at the decay speed of the

sub-Markov chain associated to the transition kernel p, but restricted to Ṽ r{x}. In
matricial words, it is the spectral radius of the matrix M∗, which is the matrix M
where the x-th line has been replaced by zeroes. Let us denote by |P ∗| its spectral
radius. The weak form of Perron–Frobenius theorem (cf. [4]) claims that there
exists a |P ∗|-eigenvector v∗ with positive or zero entries for M∗. Each entry of M∗

is less than or equal to the corresponding entry of M , and moreover M∗ 6= M ; since
M is the matrix of an irreducible aperiodic chain, it follows that, for t sufficiently
large, each entry of (M∗)t is strictly less than the correponding entry of M t. So, for
t sufficiently large:

|P ∗|tv∗ = (M∗)t
v∗ < M tv∗, (A.11)

which means that each entry of |P ∗|tv∗ is strictly less than the corresponding entry
of M tv∗. Now let us reason by contradiction by supposing that |P ∗| > |P |, then
(A.11) shows that we can find t1 > 0 and ρ1 > |P | such that M t1v∗ > ρt1

1 v∗, hence
by iterating:

lim sup
t−→∞

∣∣M tv∗
∣∣1/t

> ρ1 > |P |. (A.12)

But that is absurd, since the spectral radius of M is actually |P |. This implies that
|P ∗| < |P |, as we wanted.

Further readings and acknowledgements
The use of the martingales introduced in § 3 can actually be seen as a discrete
variant of the forward/backward martingale decomposition technique of Lyons and
Weian [5], as was pointed out to me by Laurent Saloff-Coste. In fact, paper [6] gives
a bound for continuous diffusions whose spirit is quite close to that of (3.1).

The present work was launched by informal discussions with my colleagues
Yann Ollivier and Vincent Beffara, who usefully encouraged and helped me when
necessary.
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