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Boolean functions.

Vectorial Boolean functions are useful in private key cryptography
for designing block ciphers.

Two main attacks on these ciphers are differential attacks and
linear attacks.
An important criterion on boolean functions is a high resistance to
the differential cryptanalysis.
Kaisa Nyberg has introduced in 1993 the notion of almost perfect
nonlinearity (APN) to characterize those functions which have the
best resistance to differential attacks.
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APN functions

Let us consider a (vectorial) Boolean function f : Fm
2 −→ Fm

2 .

Definition
The function f is said to be APN (almost perfect nonlinear)
if for every a 6= 0 in Fm

2 and b ∈ Fm
2 ,

there exists at most 2 elements x of Fm
2 such that

f (x + a) + f (x) = b.
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APN power functions
Up to now, the study of APN functions was especially devoted to the
power functions.

The following functions f (x) = xd are APN on F2m , where d is given by:

d = 2h + 1 where gcd(h,m) = 1 (Gold functions).

d = 22h − 2h + 1 where gcd(h,m) = 1 (Kasami functions).

and other functions with exponent d depending on m

F. Hernando and G. McGuire proved recently the following :

Theorem
The Gold and Kasami functions are the only monomials where d is
odd and which give APN functions for an infinity of values of m.
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APN function not equivalent to a power function
First example:

In 2005, Edel, Kyureghyan and Pott proved that the function

F210 −→ F210

x 7−→ x3 + ωx36

where ω is a primitive cube root of unity in F∗210 was APN and not CCZ
equivalent to a power function.

A number of people (Budaghyan, Carlet, Felke, Leander, Bracken,
Byrne, Markin, McGuire, Dillon. . . ) showed that some polynomials
were APN and not CCZ equivalent to known power functions.

Dillon found an APN polynomial on F26 which was a permutation.
First APN permutation on an even number of variables.
Not CCZ equivalent to a power function.

7



APN function not equivalent to a power function
First example:

In 2005, Edel, Kyureghyan and Pott proved that the function

F210 −→ F210

x 7−→ x3 + ωx36

where ω is a primitive cube root of unity in F∗210 was APN and not CCZ
equivalent to a power function.

A number of people (Budaghyan, Carlet, Felke, Leander, Bracken,
Byrne, Markin, McGuire, Dillon. . . ) showed that some polynomials
were APN and not CCZ equivalent to known power functions.

Dillon found an APN polynomial on F26 which was a permutation.
First APN permutation on an even number of variables.
Not CCZ equivalent to a power function.

7



APN function not equivalent to a power function
First example:

In 2005, Edel, Kyureghyan and Pott proved that the function

F210 −→ F210

x 7−→ x3 + ωx36

where ω is a primitive cube root of unity in F∗210 was APN and not CCZ
equivalent to a power function.

A number of people (Budaghyan, Carlet, Felke, Leander, Bracken,
Byrne, Markin, McGuire, Dillon. . . ) showed that some polynomials
were APN and not CCZ equivalent to known power functions.

Dillon found an APN polynomial on F26 which was a permutation.
First APN permutation on an even number of variables.
Not CCZ equivalent to a power function.

7



APN function not equivalent to a power function
First example:

In 2005, Edel, Kyureghyan and Pott proved that the function

F210 −→ F210

x 7−→ x3 + ωx36

where ω is a primitive cube root of unity in F∗210 was APN and not CCZ
equivalent to a power function.

A number of people (Budaghyan, Carlet, Felke, Leander, Bracken,
Byrne, Markin, McGuire, Dillon. . . ) showed that some polynomials
were APN and not CCZ equivalent to known power functions.

Dillon found an APN polynomial on F26 which was a permutation.
First APN permutation on an even number of variables.
Not CCZ equivalent to a power function.

7



New Conjecture

G. McGuire proposed the following conjecture.

Conjecture
The Gold and Kasami functions (up to equivalence) are the only APN
functions which are APN on infinitely many extensions of their field of
definition.

We will give some results toward this conjecture.
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A bound for the degree of an APN polynomial
Let q = 2m and let f be a polynomial mapping of Fq in itself.

which has no term of degree a power of 2
and with no constant term.

We have the following result:

Theorem (FR)

Let f be a polynomial mapping from Fq to Fq, d its degree.

Suppose that the surface X with affine equation

f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(z + y)(x + z)
= 0

is absolutely irreducible.

Then f is not APN over Fqn for all n sufficiently large.
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Skech of proof

We can rephrase the definition of an APN function.

The function f : Fq −→ Fq is APN if and only if the surface

f (x) + f (y) + f (z) + f (x + y + z) = 0

has all of its rational points contained in the surface

(x + y)(z + y)(x + z) = 0.

The surface X has a number of rational points bounded by
Lang-Weil bound.

If f is APN and q too big, then the surface X has too many rational
points to be contained in the surface (x + y)(z + y)(x + z) = 0.

11



Skech of proof

We can rephrase the definition of an APN function.

The function f : Fq −→ Fq is APN if and only if the surface

f (x) + f (y) + f (z) + f (x + y + z) = 0

has all of its rational points contained in the surface

(x + y)(z + y)(x + z) = 0.

The surface X has a number of rational points bounded by
Lang-Weil bound.

If f is APN and q too big, then the surface X has too many rational
points to be contained in the surface (x + y)(z + y)(x + z) = 0.

11



Skech of proof

We can rephrase the definition of an APN function.

The function f : Fq −→ Fq is APN if and only if the surface

f (x) + f (y) + f (z) + f (x + y + z) = 0

has all of its rational points contained in the surface

(x + y)(z + y)(x + z) = 0.

The surface X has a number of rational points bounded

by
Lang-Weil bound.

If f is APN and q too big, then the surface X has too many rational
points to be contained in the surface (x + y)(z + y)(x + z) = 0.

11



Skech of proof

We can rephrase the definition of an APN function.

The function f : Fq −→ Fq is APN if and only if the surface

f (x) + f (y) + f (z) + f (x + y + z) = 0

has all of its rational points contained in the surface

(x + y)(z + y)(x + z) = 0.

The surface X has a number of rational points bounded by
Lang-Weil bound.

If f is APN and q too big, then the surface X has too many rational
points to be contained in the surface (x + y)(z + y)(x + z) = 0.

11



Skech of proof

We can rephrase the definition of an APN function.

The function f : Fq −→ Fq is APN if and only if the surface

f (x) + f (y) + f (z) + f (x + y + z) = 0

has all of its rational points contained in the surface

(x + y)(z + y)(x + z) = 0.

The surface X has a number of rational points bounded by
Lang-Weil bound.

If f is APN and q too big, then the surface X has too many rational
points to be contained in the surface (x + y)(z + y)(x + z) = 0.

11



Irreducibility of X

.

.................................................

..............................................

............................................

...........................................

..........................................

.........................................

........................................

.......................................
......................................

. ................................
...............................

..
...........................

.......

........................
...........

......................
..............

.....................
................

....................
...................

...................
...................

....
.

.................................................

..............................................

............................................

...........................................

..........................................

.........................................

........................................

.......................................
......................................

.

...........................................

.........................................

.........................................

........................................

........................................

........................................

X

X :
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(x + y)(z + y)(x + z)
= 0

aaaaaaaaaaaaaaa

H∞
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X∞

X∞ :
xd + yd + zd + (x + y + z)d

(x + y)(z + y)(x + z)
= 0

Proposition
X∞ absolutely irreducible ⇒ X absolutely irreducible
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Irreducibility of X∞

Janwa, McGuire and Wilson have studied the curve X∞ and have
deduced a certain number of cases where it is absolutely irreducible.

Proposition
The curve X∞ is absolutely irreducible for

d ≡ 3 (mod 4)

or
d ≡ 5 (mod 8) and d > 13.
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The conjecture on APN functions
Irreducibility of X∞

Let Fq the field of definition of f .
If the surface X is absolutely irreducible,
then the polynomial function f can be APN only for a finite number of
extensions.

Proposition
If X∞ has an irreducible component defined over F2 then X has an
irreducible component defined over Fq

Proposition (Hernando, McGuire)
The curve X∞ of degree d has an irreducible component defined over
F2 for d odd, not equal to Gold or Kasami exponent.
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The conjecture on APN functions
Polynomials of odd degree d

Theorem (Aubry, McGuire, Rodier)
If the degree of the polynomial function f is d with d odd, not equal to
Gold or Kasami exponent, then f is not APN over Fqn for all n
sufficiently large.

16



The conjecture on APN functions
Polynomials of degree d = 2e

Theorem (Aubry, McGuire, Rodier)
If the degree of the polynomial function f is 2e with e odd, and if f
contains a term of odd degree, then f is not APN over Fqn for all n
sufficiently large.

Let
φr =

x r + y r + zr + (x + y + z)r

(x + y)(z + y)(x + z)
.

The equation of X∞ is

φ2e(x , y , z) = φ2
e(x , y , z)(x + y)(z + y)(x + z) = 0

The component of X∞ which contains the line x + y = 0 in the plane at
infinity is defined over F2.
It corresponds to a component of X defined over Fq.

17



The conjecture on APN functions
Polynomials of degree d = 2e

Theorem (Aubry, McGuire, Rodier)
If the degree of the polynomial function f is 2e with e odd, and if f
contains a term of odd degree, then f is not APN over Fqn for all n
sufficiently large.

Let
φr =

x r + y r + zr + (x + y + z)r

(x + y)(z + y)(x + z)
.

The equation of X∞ is

φ2e(x , y , z) = φ2
e(x , y , z)(x + y)(z + y)(x + z) = 0

The component of X∞ which contains the line x + y = 0 in the plane at
infinity is defined over F2.
It corresponds to a component of X defined over Fq.

17



The conjecture on APN functions
Polynomials of degree d = 4e

Theorem (FR)
If the degree of the polynomial function f is even such that deg(f ) = 4e
with

e ≡ 3 (mod 4),
e 6≡ 1 (mod 7),
and e ≥ 7.

then f is not APN over Fqn for n large.

This case is far more intricate than the previous cases, because there
are some polynomials which are CCZ equivalent to monomials for
e = 3.
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Sketch of proof. We have in this case:

φd(x , y , z) = φe(x , y , z)4((x + y)(x + z)(y + z))3

Let X0 a reduced absolutely irreducible component of X which
contains the line x + y = 0 in H∞.

By the symmetry of the 3 variables x , y and z,
and the action of the Galois group of the field of definition of X0
over Fq

one is reduced to the case where
there are three components X0, X1 and X2 of φ, of the form
(x + y)(x + z)(y + z) + P where P is a polynomial of the form

P(x , y , z) = c1(x2 + y2 + z2) + c2(xy + xz + zy) + b(x + y + z) + d

Investigating these polynomials, one proves that
they may divide φ only if c1 = c2, b = 0, d = c3

1
in this case there is an irreducible subcomponent defined over Fq
among the components which contain the curves φe(x , y , z)4.
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The conjecture on APN functions
Polynomials of degree d = 4× 3

Theorem (FR)
If the degree of the polynomial f is 12, then

either f is not APN over Fqn for n large
or f is CCZ equivalent to the Gold function x3.

Let d ∈ Fq3 such that d + dq + dq2
= 0. The polynomials CCZ

equivalent to the Gold function x3 are the polynomial functions

f (x) = L(x3) or f (x) = L(x)3

with
L(x) = x4 + (d1+q + d1+q2

+ dq+q2
)x2 + d1+q+q2

x

and the polynomials composed with f and an affine permutation.
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The conjecture on APN functions
Gold degree

Theorem (Aubry, McGuire, Rodier)

Suppose f (x) = xd + g(x) where
the degree of f is d = 2k + 1 and deg(g) ≤ 2k−1 + 1.
Suppose moreover that there exists a nonzero coefficient of x r in g
such that

x r + y r + zr + (x + y + z)r

(x + y)(z + y)(x + z)

is irreducible.
Then X is absolutely irreducible.

So f is not APN over Fqn for n large.
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The conjecture on APN functions
Kasami degree

Theorem
Suppose f (x) = xd + g(x) where
the degree of f is d = 22k − 2k + 1 and deg(g) ≤ 22k−1 − 2k−1 + 1.
Suppose moreover that there exists a nonzero coefficient of x r in g
such that

x r + y r + zr + (x + y + z)r

(x + y)(z + y)(x + z)

is irreducible.
Then X is absolutely irreducible.

So f is not APN over Fqn for n large.
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Conclusion
Criteria for Boolean functions

We have shown that many polynomials cannot be APN

if their degrees are too large with respect to the number of variables.

It is a consequence of Lang-Weil bound on some surfaces on finite
fields.
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Conclusion
The conjecture on APN functions

To prove the conjecture on APN functions we have

to prove the bound for several classes of degrees not Gold or
Kasami;
I mean d = 2i(2i`+ 1) with ` 6= 1 and ` 6= 2i − 1 and i ≥ 2.

to study polynomials of Gold or Kasami degree.
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