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APN functions.

Vectorial Boolean functions are useful in private key
cryptography for designing block ciphers.

Two main attacks on these ciphers are differential attacks
and linear attacks.
An important criterion on Boolean functions is a high
resistance to the differential cryptanalysis.
Kaisa Nyberg has introduced the notion of almost perfect
nonlinearity (APN) to characterize those functions which
have the better resistance to differential attacks.
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APN functions

Let us consider a vectorial Boolean function f : Fm
2 −→ Fm

2 .

If we use the function f in a S-box of a cryptosystem, the
efficiency of differential cryptanalysis is measured by the
maximum of the cardinality of the set of elements x in Fm

2 such
that

f (x + a) + f (x) = b

where a and b are elements in Fm
2 and a 6= 0.

Definition

The function f is said to be APN (almost perfect nonlinear)
if for every a 6= 0 in Fm

2 and b ∈ Fm
2 ,

there exists at most 2 elements x of Fm
2 such that

f (x + a) + f (x) = b.
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APN power functions
Up to now, the study of APN functions was especially devoted
to the power functions.

The following functions f (x) = xd are APN on F2m , where d is
given by:

d = 2h + 1 where gcd(h,m) = 1 (Gold functions).

d = 22h − 2h + 1 where gcd(h,m) = 1 (Kasami functions).
d = 2(m−1)/2 + 3 with m odd ( Welch functions).
d = 2(m−1)/2 + 2(m−1)/4 − 1, where m ≡ 1 (mod 4),
d = 2(m−1)/2 + 2(3m−1)/4 − 1, where m ≡ 3 (mod 4) (Niho
functions).
d = 2m − 2, for m odd; (inverse function)
d = 24m/5 + 23m/5 + 22m/5 + 2m/5 − 1, where m is divisible
by 5 (Dobbertin functions).

The Gold and Kasami functions are the only known where d is
independent from m and which give APN functions for an
infinity of values of m.
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CCZ equivalence

Carlet, Charpin and Zinoviev have defined an equivalence
relation between Boolean functions.

For a function f of Fm
2 in itself we denote by Gf the graph of the

function f :
Gf = {(x , f (x)) | x ∈ Fm

2 }.

Definition

The functions f , f ′ : Fm
2 −→ Fm

2 are equivalent in the sense of
Carlet-Charpin-Zinoviev (CCZ equivalence)
if there exist a linear permutation L : F2m

2 −→ F2m
2 such that

L(Gf ) = Gf ′ .

Proposition

If f and f ′ are CCZ equivalent, then f is APN if and only if f ′ is.
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Other APN functions

In 2005, Edel, Kyureghyan and Alexander Pott have proved that
the function

F210 −→ F210

x 7−→ x3 + ux36

where u is a suitable element in the multiplicative group F∗210

was APN and not CCZ equivalent to power functions.

A number of people (Budaghyan, Carlet, Felke, Leander,
Bracken, Byrne, Markin, McGuire, Dillon. . . ) showed that
certain quadratic polynomials were APN and not CCZ
equivalent to known power functions.
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Toward the classification of APN functions

Some results toward the classification of APN functions
given by polynomials have been proved

by Berger, Canteaut, Charpin, Laigle-Chapuy
They prove that a large class of quadratic functions cannot
be APN.

by Byrne and McGuire
Many quadratic functions, are not APN functions over an
extension of the base field.
by Brinkman and Leander,
APN functions with at most 5 variables are equivalent to
power functions.
by Voloch
Many binomials are not APN functions over an extension of
the base field.
. . .

I will give here some criteria for a Boolean function not to
be almost perfect nonlinear.
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Equivalent polynomials

A q-affine polynomial is a polynomial whose monomials are of
degree 0 or a power of 2.

Proposition

The class of APN functions is invariant by addition of a q-affine
polynomial.

We choose for f a polynomial mapping from F2m in itself which
has no term of degree a power of 2 and with no constant term.
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Characterization of APN polynomials
Let q = 2m and let f be a polynomial mapping of Fq in itself. We
can rephrase the definition of an APN function.

Proposition

The function f : Fq −→ Fq is APN if and only if the surface
f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2) = 0 has all of its rational
points contained in the surface (x0 + x1)(x2 + x1)(x0 + x2) = 0.

Corollary

Let us suppose that the degree d of f is not a power of 2 and
d ≥ 5.
If f is APN and if the affine surface X

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible, then the corresponding projective
surface has at most 4((d − 3)q + 1) rational points.
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f (x0)+f (x1)+f (x2)+f (x0+x1+x2)
(x0+x1)(x2+x1)(x0+x2)

= 0

Proof –

The intersection of the surface X with the plane x0 + x1 = 0 is a
curve of degree d − 3.

This curve has at most (d − 3)q + 1 rational points from Serre’s
bound.

The same for the plane at infinity.

If f is APN, the surface X has no other rational points than
those in the union of the plane x0 + x1 = 0, x2 + x1 = 0 and
x0 + x2 = 0 or the plane at infinity.

So it has an most 4((d − 3)q + 1) rational points.
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A first bound for the degree of an APN polynomial

Theorem

Let f be a polynomial mapping from Fq to Fq, d its degree.

Suppose that the surface X with affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.

Then, if 9 ≤ d < 0.45q1/4 + 0.5 , f is not APN.

15



Proof –

From an improvement of Lang-Weil’s bound by
Ghorpade-Lachaud, we deduce

|#X (Fq)− q2 − q − 1| ≤ (d − 4)(d − 5)q3/2 + 18d4q.

Hence

#X (Fq) ≥ q2 + q + 1− (d − 4)(d − 5)q3/2 − 18d4q.

Therefore, if

q2 + q + 1− (d − 4)(d − 5)q3/2 − 18d4q > 4((d − 3)q + 1),

then #X (Fq) > 4((d − 3)q + 1), so f is not APN.

This condition is true for

q1/2 > 13.51− 5d + 4.773d2
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Irreducibility of X

Criterion for the surface X to be irreducible.

Proposition

Let f be a polynomial of Fq to itself, d its degree. Let us
suppose that d is not a power of 2 and that the curve X∞ with
homogeneous equation

xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.
Then the surface X of affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.
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Proof – The curve X∞ with homogeneous equation

xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is the intersection of the surface X of affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

with the plane at infinity.
Since the curve X∞ is absolutely irreducible it is the same for
the surface X .
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Irreducibility of X∞

Janwa, McGuire and Wilson have studied the curve X∞ and
have deduced a certain number of cases where it is absolutely
irreducible.

Proposition

The curve X∞ is absolutely irreducible for

d ≡ 3 (mod 4)

or
d ≡ 5 (mod 8) and d > 13.
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A second bound

We can improve the bound for some cases.

Theorem

Let f be a polynomial mapping from Fq to Fq, d its degree.
Let us suppose that d is not a power of 2 and that the surface X

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

has only a finite number of singular points.
Then if 10 ≤ d < q1/4 + 4, f is not APN.
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Proof

From an improvement of a theorem of Deligne on Weil’s
conjectures by Ghorpade-Lachaud, we deduce that

|#X (Fq)−q2−q−1| ≤ (d−4)(d−5)q3/2+(d3−13d2+57d−82)q

If

q > d4 − 16d3 + 94d2 − 228d + 175 and d ≥ 6

then #X (Fq) > 4((d − 3)q + 1)
and so f is not APN.
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Singular points on X

Proposition

Let f be a polynomial mapping from Fq to Fq, d its degree. Let
us suppose that the curve X∞ of equation

xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is smooth.
Then the surface X has only a finite number of singular points.

Proof –

The curve X∞ is the intersection of the surface X with the plane
at infinity.
As X∞ is nonsingular, one can deduce that X has only a finite
number of singular points.
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Nonsingularity of X∞

Janwa and Wilson have studied the curve X∞ and have
deduced a certain number of cases where it is nonsingular.

Proposition

The curve X∞ is nonsingular for the values of d = 2l + 1 where
l is an odd integer such as there exists an integer r with
2r ≡ −1 (mod l).
l is a prime number larger than 17 such as the order of 2
modulo l is (l − 1)/2.

In particular the first condition is satisfied if l is a prime number
congruent to ±3 modulo 8.
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No third bound

One could ask the question whether the surface X may be
smooth. It would improve the bounds on the degree of APN
functions.

That is not the case.
Let

φ(x0, x1, x2) =
f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)

the affine equation of the surface X .
The singular points of this surface X are on the surfaces with
equation φ′xi

(x0, x1, x2) = 0.

Lemma

The polynomial x1 + x2 divides φ′x0
(x0, x1, x2).

Therefore the intersection of the line x0 = x1 = x2 with the
surface X is made of singular points of X .

24



No third bound

One could ask the question whether the surface X may be
smooth. It would improve the bounds on the degree of APN
functions. That is not the case.

Let

φ(x0, x1, x2) =
f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)

the affine equation of the surface X .
The singular points of this surface X are on the surfaces with
equation φ′xi

(x0, x1, x2) = 0.

Lemma

The polynomial x1 + x2 divides φ′x0
(x0, x1, x2).

Therefore the intersection of the line x0 = x1 = x2 with the
surface X is made of singular points of X .

24



No third bound

One could ask the question whether the surface X may be
smooth. It would improve the bounds on the degree of APN
functions. That is not the case.
Let

φ(x0, x1, x2) =
f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)

the affine equation of the surface X .
The singular points of this surface X are on the surfaces with
equation φ′xi

(x0, x1, x2) = 0.

Lemma

The polynomial x1 + x2 divides φ′x0
(x0, x1, x2).

Therefore the intersection of the line x0 = x1 = x2 with the
surface X is made of singular points of X .

24



Outline

1 APN functions

2 Characterization of APN polynomials

3 Lower bounds for the degree of an APN polynomial
A first bound
A second bound
No third bound

4 Other examples
Binomials
Polynomials of low degree
Numerical examples

5 Functions x−1 + g(x)

6 Conclusion

25



Binomials I

Improvement of a Proposition by Voloch

Proposition

Let f (x) = xd + ax r ,
where
a ∈ F∗q ,
r < d are integers, not both even, and not a power of 2
and such that (d − 1, r − 1) be a power of 2.

Then, if 9 ≤ d < 0,45q1/4 + 0,5 , f is not APN.

Example

For instance the binomial x36 + ax3 with a 6= 0 can be APN only
if m ≤ 24.
(It is APN for m = 10 and certain a).
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Binomials II
Extension of a lemma by Byrne and McGuire

Proposition

Let f (x) = xd + ax r , where a ∈ F∗q
3 ≤ r < d, are two integers.

Let φs be the polynomial
xs

0 + xs
1 + xs

2 + (x0 + x1 + x2)
s

(x0 + x1)(x2 + x1)(x0 + x2)

Let us suppose that (φd , φr ) = 1 and that
either φd decomposes in distinct factors on F2 and r ≥ 5;
or φr decomposes in distinct factors on F2.

Then, if 9 ≤ d < 0.45q1/4 + 0.5 , f is not APN.

Example

This proposition shows that the polynomial x13 + ax7 with a 6= 0
can be APN only if m ≤ 19, because the polynomial φ7 is
irreducible and does not divide φ13.

27



Binomials II
Extension of a lemma by Byrne and McGuire

Proposition

Let f (x) = xd + ax r , where a ∈ F∗q
3 ≤ r < d, are two integers.

Let φs be the polynomial
xs

0 + xs
1 + xs

2 + (x0 + x1 + x2)
s

(x0 + x1)(x2 + x1)(x0 + x2)

Let us suppose that (φd , φr ) = 1 and that
either φd decomposes in distinct factors on F2 and r ≥ 5;
or φr decomposes in distinct factors on F2.

Then, if 9 ≤ d < 0.45q1/4 + 0.5 , f is not APN.

Example

This proposition shows that the polynomial x13 + ax7 with a 6= 0
can be APN only if m ≤ 19, because the polynomial φ7 is
irreducible and does not divide φ13.

27



Polynomials of degree 3 or 5

It is enough to look at the polynomials of the form a5x5 + a3x3.

These polynomials are linear combination of two monomials of
the form x2i+1.

They cannot be APN except if a3 or a5 is zero.
In this case, they are Gold functions.
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Polynomials de degree 6

Proposition

Let f (x) = x6 + a5x5 + a3x3 be a polynomial of degree 6.

The polynomial f is APN if and only if a3 = a5 = 0.

Then it is equivalent to a Gold function.

Proof
The surface X is absolutely irreducible, except if a3 = a3

5.
The surface X has only isolated singularities if 0 6= a3 6= a3

5.
One deduce that f can be APN only if m ≤ 4.
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Polynomials of degree 7

Proposition

Let f be a polynomial of degree 7.

For m ≥ 3, the polynomial f can be APN only if it is
CCZ-equivalent to the polynomial x7 on F32.

Then it is equivalent to a Welsh function.

Proof –

The surface X has only isolated singularities.
One deduce that f can be APN only if m ≤ 6.
One deduce the proposition from the work of M. Brinkman and
G. Leander and with an exhaustive research for m = 6.
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Polynomials of degree 9

Proposition

Let f be a polynomial of degree 9.

The polynomial f cannot be APN for an infinity of m except if it
is equivalent to the alertpolynomial x9.
Then it is CCZ-equivalent to a Gold function.

Otherwise the polynomial f can be APN only for m = 6.
Then it is equal to a Dillon’s function f = x9 + a6x6 + a3x3 or to
a CCZ-equivalent function.

31



Proof –
One can limit our study to a few families of polynomials.

The function x9 is a Gold function.

The only other case where the surface X is reducible is when
f (x) = x9 + a6x6 + a3x3 with a3 = a2

6 6= 0.
Then X is a union of two degree 3 surfaces.

For most of the cases, the surface X has only a finite number of
singularities. The function f can only be APN if m ≤ 13.

An exhaustive search proves the proposition for the remaining
cases.
The only APN function we find is a function
f = x9 + a6x6 + a3x3 for m = 6 already obtained by Dillon.
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Numerical examples

When the surface X is irreducible, the function f can be APN
only if m ≤ mmax where mmax is given by the following table.

d ≤ 7 9 10 12 15 17 21 23 29 36 41 49
mmax 15 16 17 18 19 20 21 22 23 24 25 26

When moreover the surface X is has only a finite number of
singularities, the function f can be APN only if m ≤ mmax where
mmax is given by the following table.

d ≤ 7 9 10 12 13 15 17 20 23 26 30 36
mmax 6 9 10 11 12 13 14 15 16 17 18 19
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Mappings x−1 + g(x)

Proposition

Let g be a polynomial mapping from Fq in itself, d its degree.
Then, if 5 ≤ d < 0.45q1/4 − 4.5 , f = xq−2 + g is not APN.

Proof

The surface X is of degree q − 5.
We study instead the surface X ′

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0 +x1 +x2) = 1

The surface X ′ is irreducible.
If f is APN then X ′(Fq) ≤ 8dq + 4.

Example

The functions xq−2 + axd for a 6= 0, exponents d up to 29 and
not a power of 2 are not APN.
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Criteria for a Boolean functions

We have shown that many polynomials cannot be APN

if their degrees are too large with respect to the number of
variables

We have done that by using bounds of the Weil type on some
surfaces on finite fields.
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Some perspectives

Let δ be the maximum of the cardinality of the set of
elements x in Fm

2 such that

f (x + a) + f (x) = b

where a and b are elements in Fm
2 and a 6= 0.

To study Boolean functions with δ = 4, 6 . . .
To study polynomial functions of degree 10, . . .
To study polynomial functions of low degrees plus a
quadratic function.
Can one get better bounds on m and d by studying the
special form of the surface X (for instance the symmetry of
the equation in x0, x1, x2)?
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THANK YOU
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