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APN functions.

I Vectorial Boolean functions are useful in private key
cryptography for designing block ciphers.

I Two main attacks on these ciphers are differential attacks
and linear attacks.
An important criterion on Boolean functions is a high
resistance to the differential cryptanalysis.

I Kaisa Nyberg has introduced the notion of almost perfect
nonlinearity (APN) to characterize those functions which
have the better resistance to differential attacks.
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APN functions

Let us consider a vectorial Boolean function f : Fm
2 −→ Fm

2 .

Definition
The function f is said to be APN (almost perfect nonlinear)
if for every a 6= 0 in Fm

2 and b ∈ Fm
2 ,

there exists at most 2 elements x of Fm
2 such that

f (x + a) + f (x) = b.

If we use the function f in a S-box of a cryptosystem, they are
the best functions which resist best to differential cryptanalysis.
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APN power functions
Up to now, the study of APN functions was especially devoted
to the power functions.

The following functions f (x) = xd are APN on F2m , where d is
given by:

I d = 2h + 1 where gcd(h, m) = 1 (Gold functions).

I d = 22h−2h + 1 where gcd(h, m) = 1 (Kasami functions).

I and other functions with exponent d depending on m
I d = 2(m−1)/2 + 3 with m odd ( Welch functions).
I d = 2(m−1)/2 + 2(m−1)/4 − 1, where m ≡ 1 (mod 4),

d = 2(m−1)/2 + 2(3m−1)/4 − 1, where m ≡ 3 (mod 4) (Niho
functions).

I d = 2m − 2, for m odd; (inverse function)
I d = 24m/5 + 23m/5 + 22m/5 + 2m/5 − 1, where m is divisible

by 5 (Dobbertin functions).

One conjectured for a long time that the Gold and Kasami
functions are the only ones where d is independent from m and
which give APN functions for an infinity of values of m.
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APN power functions

Janwa, McGuire, Wilson, Jedlicka worked on this conjecture.

Fernando Hernando and Gary McGuire proved recently the
following theorem:

Theorem
The Gold and Kasami functions are the only monomials where
d is odd and which give APN functions for an infinity of values
of m.
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Other APN functions

In 2005, Edel, Kyureghyan and Alexander Pott have proved that
the function

F210 −→ F210

x 7−→ x3 + ux36

where u is a suitable element in the multiplicative group F∗210

was APN and not equivalent to power functions.

A number of people (Budaghyan, Carlet, Felke, Leander,
Bracken, Byrne, Markin, McGuire, Dillon. . . ) showed that
certain infinite families of quadratic polynomials were APN and
not equivalent to known power functions.
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Towards a full classification of all APN functions

One approach that already proved to be successful:
to show that certain polynomials are not APN for infinitely many
extensions of F2.

So here one first fixes a finite field Fq and a function f : Fq → Fq
given as a polynomial in Fq[x ] and ask the question:
Can this function be APN on infinitely many extensions of Fq?

There is a variety of classes of functions for which it can be
shown that each function is APN at most for a finite number of
extensions.

More precisely, we will give here some bound on the degree of
a Boolean polynomial not to be almost perfect nonlinear.
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Result on monomials

We will generalize this result on monomials by Anne Canteaut.

Proposition
Suppose that the curve

xd + yd + 1 + (x + y + 1)d

(x + y)(x + 1)(y + 1)
= 0

is absolutely irreducible over F2. The mapping x 7−→ xd is not
APN over Fq, q ≥ 32, if

d ≤ q1/4 + 4.5
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Equivalent polynomials

Proposition
The class of APN functions is invariant by addition of a q-affine
polynomial (that is a polynomial whose monomials are of
degree 0 or a power of 2).

We choose for f a polynomial mapping from F2m in itself

I which has no term of degree a power of 2
I and with no constant term.
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Characterization of APN polynomials

Let q = 2m and let f be a polynomial mapping of Fq in itself. We
can rephrase the definition of an APN function.

Proposition
The function f : Fq −→ Fq is APN if and only if the surface

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2) = 0

has all of its rational points contained in the surface

(x0 + x1)(x2 + x1)(x0 + x2) = 0.
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A first bound for the degree of an APN polynomial

Theorem
Let f be a polynomial mapping from Fq to Fq, d its degree.

Suppose that the surface X with affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.

Then if
9 ≤ d < 0.45q1/4 + 0.5

f is not APN.
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Sketch of proof

I The number of rational points on the surface X is bounded.

One has bound of Weil type for X (Fq).

Namely from an improvement of Lang-Weil’s bound by
Ghorpade-Lachaud, we deduce

|#X (Fq)− q2 − q − 1| ≤ (d − 4)(d − 5)q3/2 + 18d4q.

I If f is APN and d too large, then the surface X has too
many rational points to be contained in the surface
(x0 + x1)(x2 + x1)(x0 + x2) = 0.
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Irreducibility of X
Criterion for the surface X to be irreducible.

Proposition
Let f be a polynomial of Fq to itself, d its degree. Let us
suppose that the curve X∞ with homogeneous equation

xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.

Then the surface X of affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.

The curve X∞ is the intersection of the surface X with the plane
at infinity.
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Irreducibility of X∞

F. Hernando and G. McGuire have studied the curve X∞.

Proposition
The curve X∞ of degree d is absolutely irreducible for

I d odd of the form d = 2i` + 1 with ` odd;
I ` does not divides 2i − 1;

17



Irreducibility of X

Proposition
If f is of degree d then the bound for f to be APN is true for

I d odd of the form d = 2i` + 1 with ` odd;
I ` does not divides 2i − 1;

One can prove also some improvements.

Proposition
The bound for f to be APN is true for

I d = 2i` + 1 with ` odd;
I where ` 6= 1 or 2i − 1;
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A second bound
In most of the cases the surface X can be shown to have a
finite number of singular points

(that is points where the surface X
is not locally isomorphic to a manifold).

Theorem
Let f be a polynomial mapping from Fq to Fq, d its degree.
Let us suppose that d is not a power of 2 and that the surface X

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

has only a finite number of singular points.
Then if

10 ≤ d < q1/4 + 4

f is not APN.

This is due to an improvement of a theorem of Deligne on
Weil’s conjectures by Ghorpade-Lachaud
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Computation of some examples

As we get explicit bounds, we could make some computations.

For polynomials of small degrees (up to 9) we deduced that
there was no other APN functions than the ones which are
already known.
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Mappings x−1 + g(x)
We study the function

f (x) =

xq−2 + g(x) =

x−1 + g(x)

Proposition
Let g be a polynomial mapping from Fq in itself, d its degree.
Then if

5 ≤ d < 0.45q1/4 − 3.5

f is not APN.

Functions of this form are particularly interesting for
cryptography as important criteria for functions used in
symmetric ciphers are

I high algebraic degree
I balancedness

as is achieved by functions of this form.
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f (x) = xq−2 + g(x)

xf (x) = 1 + xg(x)

Proof

I The surface X is of degree q − 5.

I We study instead the surface X ′

g(x0) + g(x1) + g(x2) + g(x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
x0x1x2(x0+x1+x2) = 1

I The surface X ′ is irreducible.
Hence the number of rational points of X ′ is bounded
by Lang-Weil ang Ghorpade-Lachaud bound.

I If f is APN
then X ′(Fq) is contained in the union of 4 planes
and #X ′(Fq) ≤ 4dq + 4q + 8.
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Computer experiment

For the functions of the form x−1 + g(x) we deduced that there
was no other APN function for m ≥ 4

I for deg g ≤ 6
I or for g a monomial, up to degree 25.
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New Conjecture

G. McGuire proposed the following conjecture about APN
functions.

Conjecture
The Gold and Kasami power function (up to equivalence) are
the only APN functions which are APN on infinitely many
extensions of their field of definition.

We have given some results toward this conjecture.
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THANK YOU
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