
Fonctions booléennes cryptographiquement
robustes

Yves Aubry1 Gregor Leander2 Gary McGuire4

François Rodier3

1Imath – Toulon
2Technical University of Danemark

4Claude Shannon Institute for Discrete Mathematics, Coding and Cryptography
3IML – Marseille

1



Outline

1 APN functions

2 Bounds on APN polynomials
A first bound

3 Consequences
The conjecture on classification of APN fonctions
Computation of some examples
Functions x−1 + g(x)
Differentially 4-uniform functions

4 Conclusion

2



Boolean functions.

Vectorial Boolean functions are useful in private key cryptography
for designing block ciphers.
Two main attacks on these ciphers are differential attacks and
linear attacks.
An important criterion on boolean functions is a high resistance to
the differential cryptanalysis.
Kaisa Nyberg has introduced in 1993 the notion of differential
uniformity and almost perfect nonlinearity (APN) to characterize
those functions which have the better resistance to differential
attacks.
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APN functions
Let us consider a (vectorial) Boolean function f : Fm

2 −→ Fm
2 .

If we use the function f in a S-box of a cryptosystem, the efficiency of
differential cryptanalysis is measured by the maximum of the
cardinality of the set of elements x in Fm

2 such that

f (x + a)− f (x) = b

where a and b are elements in Fm
2 and a 6= 0.

Since this number is obviously even and is nonzero, its least value is 2.

Definition
The function f is said to be APN (almost perfect nonlinear)
if for every a 6= 0 in Fm

2 and b ∈ Fm
2 ,

there exists at most 2 elements x of Fm
2 such that

f (x + a) + f (x) = b.
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APN power functions
Up to now, the study of APN functions was especially devoted to the
power functions.

The following functions f (x) = xd are APN on F2m , where d is given by:

d = 2h + 1 where gcd(h,m) = 1 (Gold functions).
d = 22h − 2h + 1 where gcd(h,m) = 1 (Kasami functions).

and other functions with exponent d depending on m
I d = 2(m−1)/2 + 3 with m odd ( Welch functions).
I d = 2(m−1)/2 + 2(m−1)/4 − 1, where m ≡ 1 (mod 4),

d = 2(m−1)/2 + 2(3m−1)/4 − 1, where m ≡ 3 (mod 4) (Niho
functions).

I d = 2m − 2, for m odd; (inverse function)
I d = 24m/5 + 23m/5 + 22m/5 + 2m/5 − 1, where m is divisible by 5

(Dobbertin functions).

One conjectured for a long time that the Gold and Kasami functions
are the only ones where d is independent from m and which give APN
functions for an infinity of values of m.
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APN power functions

Janwa, McGuire, Wilson, Jedlicka worked on this conjecture.

Fernando Hernando and Gary McGuire proved recently the following
theorem:

Theorem
The Gold and Kasami functions are the only monomials where d is
odd and which give APN functions for an infinity of values of m.
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The function xd is APN if and only if the equation

xd + yd + zd + (x + y + z)d = 0

has only solutions such that (x + y)(x + z)(y + z) = 0.
If the curve

xd + yd + zd + (x + y + z)d

(x + y)(x + z)(y + z)
= 0

is irreductible, Weil’s inequality shows that it has too many rational
points if the field Fqn is too big.
To show that it is irreducible, one studies singular points.
In fact we show that if d is not a Gold or Kasami exponent, this
curve has an absolutely irreducible factor defined on F2, which is
enough.
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CCZ equivalence
Carlet, Charpin and Zinoviev have defined an equivalence relation
between Boolean functions.

For a function f of Fm
2 in itself we denote by Gf the graph of the

function f :
Gf = {(x , f (x)) | x ∈ Fm

2 }.

Definition
The functions f , f ′ : Fm

2 −→ Fm
2 are equivalent in the sense of

Carlet-Charpin-Zinoviev (CCZ equivalence)
if there exist a linear permutation L : F2m

2 −→ F2m
2 such that

L(Gf ) = Gf ′ .

Proposition
If f and f ′ are CCZ equivalent, then f is APN if and only if f ′ is.
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APN function not equivalent to a power function
First example:

In 2005, Edel, Kyureghyan and Pott proved that the function

F210 −→ F210

x 7−→ x3 + ωx36

where ω is a primitive cube root of unity in F∗210 was APN and not CCZ
equivalent to a power function.

A number of people (Budaghyan, Carlet, Felke, Leander, Bracken,
Byrne, Markin, McGuire, Dillon. . . ) showed that some polynomials
were APN and not CCZ equivalent to known power functions.

Dillon found an APN polynomial on F26 which was a permutation.
First APN permutation on an even number of variables.
Not CCZ equivalent to a power function.
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New Conjecture

G. McGuire proposed the following conjecture.

Conjecture
The Gold and Kasami functions are the only APN functions which are
APN on infinitely many extensions of their field of definition.

We will give some results toward this conjecture.
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Toward the classification of APN functions

Some results toward the classification of APN functions given by
polynomials have been proved

I by Berger, Canteaut, Charpin, Laigle-Chapuy
They prove that a large class of quadratic functions cannot be APN.

I by Byrne and McGuire
Many quadratic functions, are not APN functions over an extension
of the base field.

I by Brinkman and Leander,
APN functions with at most 5 variables are equivalent to power
functions.

I by Voloch
Many binomials are not APN functions over an extension of the
base field.

I . . .

We will give here some bound on the degree of a Boolean
polynomial not to be APN.
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Equivalent polynomials

An affine 2-polynomial is a polynomial whose monomials are of degree
0 or a power of 2.

Proposition

The class of APN functions is invariant by addition of an affine
2-polynomial.

We choose for f a polynomial mapping from F2m in itself

which has no term of degree a power of 2
and with no constant term.
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Characterization of APN polynomials

Let q = 2m and let f be a polynomial mapping of Fq in itself.
We can rephrase the definition of an APN function.

Proposition

The function f : Fq −→ Fq is APN if and only if the surface

f (x) + f (y) + f (z) + f (x + y + z) = 0

has all of its rational points contained in the surface

(x + y)(z + y)(x + z) = 0.
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A first bound for the degree of an APN polynomial

Lemma
Let us suppose that the degree d of f is not a power of 2 and d ≥ 5.
If f is APN and if the affine surface X

f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(z + y)(x + z)
= 0

is absolutely irreducible, then the corresponding projective surface has
at most 4((d − 3)q + 1) rational points.
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X : f (x)+f (y)+f (z)+f (x+y+z)
(x+y)(z+y)(x+z) = 0

Proof –

The intersection of the surface X with the plane x + y = 0 is a curve of
degree d − 3.

This curve has at most (d −3)q +1 rational points from Serre’s bound.

The same for the plane at infinity.

If f is APN, the surface X has no other rational points than those in the
union of the plane x + y = 0, z + y = 0 and x + z = 0 or the plane at
infinity.

So it has an most 4((d − 3)q + 1) rational points.
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A first bound for the degree of an APN polynomial

We have the following result:

Theorem (FR)

Let f be a polynomial mapping from Fq to Fq, d its degree.

Suppose that the surface X with affine equation

f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(z + y)(x + z)
= 0

is absolutely irreducible.

Then if
9 ≤ d < 0.45q1/4 + 0.5

f is not APN.
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Skech of proof

The surface X has a number of rational points bounded by a
bound à la Weil.

More exactly, thanks to an improvement of Lang-Weil’s bound by
Ghorpade-Lachaud, one deduce

|#X (Fq)− q2 − q − 1| ≤ (d − 4)(d − 5)q3/2 + 18d4q.

If f is APN and q too big, then the surface X has too many rational
points to be contained in the surface (x + y)(z + y)(x + z) = 0.
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Irreducibility of X

Criterion for the surface X to be irreducible.

Proposition
Let f be a polynomial of Fq to itself, d its degree. Let us suppose that d
is not a power of 2 and that the curve X∞ with homogeneous equation

xd + yd + zd + (x + y + z)d

(x + y)(z + y)(x + z)
= 0

is absolutely irreducible.
Then the surface X of affine equation

f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(z + y)(x + z)
= 0

is absolutely irreducible.
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Irreducibility of X
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X :
f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(z + y)(x + z)
= 0
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X∞

X∞ :
xd + yd + zd + (x + y + z)d

(x + y)(z + y)(x + z)
= 0

Proposition
X∞ absolutely irreducible ⇒ X absolutely irreducible
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Irreducibility of X∞

Janwa, McGuire and Wilson have studied the curve X∞ and have
deduced a certain number of cases where it is absolutely irreducible.

Proposition
The curve X∞ is absolutely irreducible for

d ≡ 3 (mod 4)

or
d ≡ 5 (mod 8) and d > 13.
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The conjecture on APN functions
Irreducibility of X∞
Let Fq the field of definition of f .
If the surface X is absolutely irreducible,has an irreducible component
defined over Fq
then the polynomial function f can be APN only for a finite number of
extensions.

Proposition
If X∞ has an irreducible component defined over F2 then X has an
irreducible component defined over Fq

F. Hernando and G. McGuire have studied the curve X∞.

Proposition
The curve X∞ of degree d has an irreducible component defined over
F2 for d odd, not equal to Gold or Kasami exponent.
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The conjecture on APN functions
Polynomials of odd degree d

Theorem (Aubry, McGuire, Rodier)
If the degree of the polynomial function f is d with d odd, not equal to
Gold or Kasami exponent, then f is not APN over Fqn for all n
sufficiently large.
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The conjecture on APN functions
Polynomials of degree d = 2e

Theorem (Aubry, McGuire, Rodier)
If the degree of the polynomial function f is 2e with e odd, and if f
contains a term of odd degree, then f is not APN over Fqn for all n
sufficiently large.

Let
φr =

x r + y r + zr + (x + y + z)r

(x + y)(z + y)(x + z)
.

The equation of X∞ is

φ2e(x , y , z) = φ2
e(x , y , z)(x + y)(z + y)(x + z) = 0

The component of X∞ which contains the line x + y = 0 in the plane at
infinity is defined over F2.
It corresponds to a component of X defined over Fq.
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The conjecture on APN functions
Polynomials of degree d = 4e

Theorem (FR)
If the degree of the polynomial function f is even such that deg(f ) = 4e
with e ≡ 3 (mod 4) and e ≥ 7, then f is not APN over Fqn for n large.

This case is far more intricate than the previous cases, because there
are some polynomials which are CCZ equivalent to monomials for
e = 3.
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The conjecture on APN functions
Polynomials of degree d = 4e
Sketch of proof. We have in this case:

φd(x , y , z) = φe(x , y , z)4((x + y)(x + z)(y + z))3

Let X0 a reduced absolutely irreducible component of X which
contains the line x + y = 0 in H∞.

By the symmetry of the 3 variables x , y and z,
and the action of the Galois group of the field of definition of X0
over Fq

one is reduced to the case where
there are three components X0, X1 and X2 which contain each of
the 3 lines, they are defined over the field Fq3 ,
X0, X1 and X2 are of the form (x + y)(x + z)(y + z) + P
where P is a polynomial of the form

P(x , y , z) = c1(x2 + y2 + z2) + c2(xy + xz + zy) + b(x + y + z) + d

Investigating these polynomials, one proves that it is impossible that
they divide φ for e 6= 3.
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The conjecture on APN functions
Polynomials of degree d = 4× 3

Theorem (FR)
If the degree of the polynomial f is 12, then

either f is not APN over Fqn for n large
or f is CCZ equivalent to the Gold function x3.

Let d ∈ Fq3 such that d + dq + dq2
= 0. The polynomials CCZ

equivalent to the Gold function x3 are the polynomial functions

f (x) = L(x3) or f (x) = L(x)3

with
L(x) = x4 + (d1+q + d1+q2

+ dq+q2
)x2 + d1+q+q2

x

and the polynomials composed with f and an affine permutation.
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The conjecture on APN functions
Polynôme de degré d = degré de Gold

Theorem (Aubry, McGuire, Rodier)

Suppose f (x) = xd + g(x) where
the degree of f is d = 2k + 1 and deg(g) ≤ 2k−1 + 1.
Suppose moreover that there exists a nonzero coefficient of x r in g
such that

x r + y r + zr + (x + y + z)r

(x + y)(z + y)(x + z)

is irreducible.
Then X is absolutely irreducible.

So, if 9 ≤ d < 0.45q1/4 + 0.5 , f is not APN.
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Computation of some examples

As we get explicit bounds, we could make some computations.

Theorem

Let f be a polynomial mapping from Fq to Fq, d its degree.

Suppose that the surface X is absolutely irreducible.

Then if
9 ≤ d < 0.45q1/4 + 0.5

f is not APN.
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A second bound

We can improve the bound for some cases.

Theorem (FR)
Let f be a polynomial mapping from Fq to Fq, d its degree.
Let us suppose that d is not a power of 2 and that the surface X

f (x) + f (y) + f (z) + f (x + y + z)

(x + y)(z + y)(x + z)
= 0

has only a finite number of singular points.
Then if

10 ≤ d < q1/4 + 4,

f is not APN.
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Improvement of Lang et Weil’s bound by Deligne and by
Ghorpade-Lachaud
Sufficient conditions so that there is only a finite number of
singular points has been given by Janwa et Wilson

Proposition
The surface X has only a finite number of singular points for the values
of d = 2l + 1 where

l is an odd integer such as there exists an integer r with 2r ≡ −1
(mod l).
l is a prime number larger than 17 such as the order of 2 modulo l
is (l − 1)/2.

In particular the first condition is satisfied if l is a prime number
congruent to ±3 modulo 8.
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Numerical examples

When the surface X is irreducible, the function f can be APN only if
m ≤ mmax where mmax is given by the following table.

d ≤ 7 9 10 12 15 17 21 23 29 36 41 49
mmax 15 16 17 18 19 20 21 22 23 24 25 26

When moreover the surface X has only a finite number of singularities,
the function f can be APN only if m ≤ mmax where mmax is given by the
following table.

d ≤ 7 9 10 12 13 15 17 20 23 26 30 36
mmax 6 9 10 11 12 13 14 15 16 17 18 19
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Polynomials of small degrees

For polynomials of small degrees (up to 9) we deduced with
Leander that there was no other APN functions than the ones
which are already known.
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Mappings x−1 + g(x)

Theorem (Leander, Rodier)
Let g be a polynomial mapping from Fq in itself, d its degree. Then, if
5 ≤ d < 0.45q1/4 − 4.5 , f = xq−2 + g is not APN.

Proof

The surface X is of degree q − 5.
We study instead the surface X ′

g(x) + g(y) + g(z) + g(x + y + z)

(x + y)(z + y)(x + z)
xyz(x + y + z) = 1

The surface X ′ is irreducible.
If f is APN then X ′(Fq) ≤ 8dq + 4.

Example

The functions xq−2 + axd for a 6= 0, exponents d up to 29 and not a
power of 2 are not APN.
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Differentially 4-uniform functions

Definition
The function f is said to be differentially 4-uniform
if for every a 6= 0 in Fm

2 and b ∈ Fm
2 ,

there exists at most 4 elements x of Fm
2 such that

f (x + a) + f (x) = b.
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Characterization of differentially 4-uniform functions
Let f be a polynomial mapping of Fq in itself. We have the following
result:

Theorem (Aubry, Rodier)

The function f : Fq −→ Fq is differentially 4-uniform if and only if the
set of points (x , y , z, t) such that

S
{

f (x) + f (y) + f (z) + f (x + y + z) = 0
f (x) + f (y) + f (t) + f (x + y + t) = 0

is contained in the hypersurface
(x + y)(x + z)(x + t)(y + z)(y + t)(z + t)(x + y + z + t) = 0.

The surface S is reducible.
Can one get a nice bound?
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Differentially 4-uniform function

One can get a conclusion for some functions.

Theorem (Aubry, Rodier)

Let f be a polynomial mapping from Fq to Fq, of degree d = 2r − 1.

Then, if 31 ≤ d < q1/8 + 2 , f has differential uniformity greater than 6.
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Conclusion
Criteria for Boolean functions

We have shown that many polynomials cannot be APN or differentially
4-uniform

if their degrees are too large with respect to the number of variables.

It is a consequence of bounds of the Weil type on some surfaces on
finite fields.
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Conclusion
The conjecture on APN functions

To prove the conjecture on APN functions we have

to prove the bound for several classes of degrees not Gold or
Kasami;
I mean d = 2i(2i`+ 1) with ` 6= 1 and ` 6= 2i − 1 and i ≥ 2.
to study polynomials of Gold or Kasami degree.
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Conclusion
Some perspectives

To get more numerical values
To study other Boolean functions with differential uniformity 4
To study polynomial functions of degree 10, . . .
To study polynomial functions of low degrees plus a quadratic
function.
Can one get better bounds on m and d by studying the special
form of the surface X (for instance the symmetry of the equation in
x , y , z)?
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