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Abstract

We show how to construct error-correcting codes from flag varieties on a finite field
Fq. We give some examples. For some codes, we give the parameters and give the
weights and the number of codewords of minimal weight.
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1 Introduction

I will study some error-correcting codes constructed from flag varieties over a
finite field Fq. After V. Goppa, the consideration of codes constructed from
algebraic curves is now classical. Thanks to Y. Manin [8], we can consider
codes built from higher dimensional algebraic varieties.

Some of such codes have already been studied. Among others, projective Reed-
Muller codes have been studied by G. Lachaud [6] and A. Sørensen [14], codes
on grassmannians by D. Nogin [9], and G. Lachaud and S. Ghorpade [3], codes
on hermitian hypersurfaces by I.M. Chakravarti [1], and J.W.P. Hirschfeld,
M. Tsfasman and S. Vladut [5], Reed-Muller codes on complete intersec-
tions by Duursma, Renteria and Tapia-Recillas [2]. In [7], G. Lachaud has
given some general bounds for the parameters of codes associated with multi-
dimensional varieties, in particular complete intersections. S. Hansen has stud-
ied codes from higher-dimensional varieties, especially Deligne-Lusztig vari-
eties [4].

Flag varieties are examples of varieties having a large number of points over
a finite field and can therefore be used as guinea-pigs for trying to construct
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efficient codes. Indeed they can be viewed as sets of rational points of Deligne-
Lusztig varieties and these varieties have the maximal number of rational
points relatively to their geometrical structure, which is given for instance
by their Betti numbers (cf. [10] and [11]). Moreover the flag varieties have a
large group of automorphism, therefore the associated codes provides many
symmetries.

This paper is organized as follows. We first define a flag variety, then we
show how to embed a flag variety into a projective space and we get the
code construction by the method of M. Tsfasman and S. Vladut [15]. Then in
sections 4 and 5, we give examples, and we conclude in the last section by a
comparison of the codes obtained with Reed-Muller codes of order 2.

2 Flag Varieties

A flag over a finite field Fq is a sequence X of strictly embedded subspaces
Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vis of dimension i1, i2, . . . , is of an m-dimensional vector
space V = (Fq)

m. A flag variety of type (i1, i2, . . . , is) is the variety of all flags
X = {(Vi1 , Vi2 , . . . , Vis)} with (i1, i2, . . . , is) given.

Equivalently we can describe it as the set G/P where G = GL(m,Fq) and P is
a parabolic subgroup (that is a subgroup consisting of upper triangular matri-
ces in blocks or of conjugates of such a matrix). The variety of (Vi1 , Vi2 , . . . , Vis)
with Vi1 ⊂ Vi2 ⊂ · · · ⊂ Vis is isomorphic to the variety G/P with

P =




M1 ∗ ∗ · · · ∗
0 M2 ∗ · · · ∗
0 0 M3 · · · ∗
· · · · · · · · · · · · · · ·
0 0 0 · · · Ms+1




such that

Mr ∈ GL(dimVir − dimVir−1 ,Fq) = GL(ir − ir−1,Fq)

for 2 ≤ r ≤ s + 1, with Vis+1 = V = (Fq)
m. The group G acts transitively on

the set of flags {(Vi1 , Vi2 , . . . , Vis)}. The stabilizer of the flag

{(
〈e1, e2, · · · , ei1〉, 〈ei1+1, ei1+2, · · · , ei2〉, · · · , 〈eis+1, eis+2, · · · , em〉

)}

is the subgroup P where (ei)1≤i≤m is the canonical basis of the vector space V .
In that case, we shall say that P is a parabolic subgroup of type (i1, i2, . . . , is).

As an example, we can take P of type (l) with l ≤ m. The flag variety is
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the variety of all flags X = {(Vl)}, that is the grassmannian Gr(l,m) of l-
subspaces of V .

3 Code Construction

3.1 General Construction

We construct a code C in a usual way by embedding X into a projective space
and evaluating the linear forms on X as is described in the book of Tsfasman
and Vladut [15], chapter 1.1.

We build thus a [n, k]-projective system X −→ Pk−1 which gives rise to an
associated code by the following process. Let x1, . . . , xn be the images of the
elements of X into Pk−1 and let y1, . . . , yn be their liftings in the vector space
minus the origin E× = (Fk

q)
×.

We defines a map from linear forms f on E to n-uplets of elements of Fq by

ev : E∗−→ (Fq)
n

f �−→ (f(y1), . . . , f(yn))

whose image is the code C. The length of C is equal to n. The dimension
of C is equal to k − dim ker ev. The minimum distance of C is equal to the
minimum for all the f in #X −#(X ∩ ker f) where ker f is an hyperplane of
Pk−1 not containing X.

3.2 The Flag case

Let P be a parabolic subgroup of G, G1 be a subgroup of G and P1 = P ∩G1.
We embed X = G/P and the subset X1 = G1/P1 into a projective space PN

by a sequence of 3 embeddings that we will describe.

A flag (Vi1 , Vi2 , . . . , Vis) is a sequence of subspaces Vil which are elements of
the grassmannian Gr(il,m). We deduce from this fact a morphism from the
flag variety X = G/P to the product of grassmannians Gr(i1,m) × · · · ×
Gr(is,m). One can embed each grassmannian Gr(il,m) into the projective

space P(
∧l Vil) = Prl

where rl =
(

m
il

)
− 1 thanks to the Plücker embedding

([13], p. 42), which is obtained from the map which sends a basis f1, . . . , fil

of Vil to the exterior product f1 ∧ · · · ∧ fil of
∧il V and noticing that different
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basis give proportional elements of
∧il V , therefore they give the same point

in Prl
.

Then we can embed the product of projective spaces Pr1×· · ·×Prs into another
projective space Pr with r = (r1 + 1)(r2 + 1) . . . (rs + 1) − 1 by the Segré
embedding which corresponds to the mapping of the elements (v1, . . . , vs) of
the product of the vector spaces Vr1+1 × . . . × Vrs+1 to the tensor product
v1⊗ . . .⊗vs which is an element of the vector space Vr+1. Indeed the following
diagram is commutative and defines a mapping from Pr1 × · · · × Prs to Pr

where we denote V × the vector space V minus the origin:

(v1, . . . , vs) ∈ V ×
r1+1 × . . .× V ×

rs+1 −→ Pr1 × · · · × Prs

↓ ↓ ↓
v1 ⊗ . . .⊗ vs ∈ (Vr1+1 ⊗ . . .⊗ Vrs+1)

× −→ Pr .

One can embed further the projective space Pr into another projective space
by means of the Veronèse embedding of order h which sends Pr to PN with N =(

r+h
h

)
− 1. This embedding comes from the map Vr+1 −→ VN+1 which sends

the element of coordinates (u1, u2, . . . , ur+1) to the element of coordinates
(. . . , uj1

1 u
j2
2 · · ·ujr+1

r+1 , . . .) of VN+1, with j1 + j2 + · · ·+ jr+1 = h.

If we restrict ourselves to the subgroup G1 of G and we take P1 = P ∩G1 and
X1 = G1/P1 we get the following diagram.

GL(m)/P

↓
Gr(i1,m)× · · · ×Gr(is,m)

↓
Pr1 × · · · × Prs

↓
Pr

↓
PN

⊃ G1/P1 = {x1, x2, . . . , xn}
�

�
⊃ PN ← V ×

N+1 � {y1, y2, . . . , yn}

(1)

For f ∈ VN+1(Fq)
∗ let ev : f �−→ (f(y1), . . . f(yn)). The image of ev is a code

[#X , N + 1− dim ker ev , #X −max #(X ∩H)]

where X = G1/P1 and H runs over the set of hyperplanes of PN .
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4 Examples

4.1 Reed-Muller projective codes

We take the matrices P =
(
a ∗
0 M

)
where a ∈ F

×
q , the ∗ denotes any element

of (Fq)
m−1, and M is a square matrix of order m−1. The diagram (1) simplifies

to
GL(m)/P

↓
Pm−1

↓
PN

� {x1, x2, . . . , xn}
�

←− VN+1 − {0}

We thus obtain a code of order h whose parameters are, when ev is injective
that is when h ≤ q (cf. Lachaud [6]):

[
qm − 1

q − 1
,

(
h + m− 1

h

)
, (q − h + 1)qm−2

]

where h is the order of the Veronese embedding. When ev is not injective, the
parameters are more intricate (cf. Sørensen [14]).

4.2 Codes on Grassmannian

We take the matrices P =
(
M1 ∗
0 M2

)
where M1 stands for a square matrix

of order l, and M2 stands for a square matrix of order m− l. We now get the
diagram

GL(m)/P

↓
Gr(l,m)

↓
PN

= {x1, x2, . . . , xn}
�

←− VN+1 − {0}
where N =

(
m
l

)
− 1.

Nogin has computed the parameters of the code that we obtain ([9]):

[
(qm − 1)(qm − q) · · · (qm − ql−1)

(ql − 1)(ql − q) · · · (ql − ql−1)
,

(
m

l

)
, q(m−l)l

]
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4.3 Codes on hermitian hypersurfaces

Consider the subgroup G1 = U(m + 1,Fq2) of the group G = GL(m + 1,Fq2)
with m ≥ 2. The subgroup U(m+1,Fq2) is the unitary group for the hermitian
form on F

m+1
q2

〈x, y〉 = x0y
q
m + x1y

q
n−1 + · · ·+ xmy

q
0

We take the parabolic subgroup

P =




a ∗ . . . ∗
0
...
0

(
GL(m)

)



where a ∈ F
×
q2 , the ∗ denote the coefficients of matrix in GL(m + 1) which

are allowed to take any value in Fq2 , and P1 = U(m+ 1,Fq2) ∩ P . We get the
following diagram

GL(m + 1)/P

↓
Pm

Véronèse ↓
PN(Fq2)

⊃ U(m + 1)/P1 = {x1, x2, . . . , xn}
�

�
⊃ PN(Fq2) ← VN+1(Fq2)− {0}

Letting h ≤ q2− q be the order of Véronèse’s embedding, we get the codes Ch

on Fq2 with parameters

[
(qm+1 − (−1)m+1)(qm − (−1)m)

(q2 − 1)
,

(
m + h

h

)
, d

]

where a bound for the minimal distance d can be easily computed by the
general construction (3.1) and Proposition 2.3 in [7] which gives a bound for
the number of rational points over Fq2 of an hyperplane section of the set
G1/P1. We get

d ≥ (qm+1 − (−1)m+1)(qm − (−1)m)

(q2 − 1)
− (q + 1)h

q2m−2 − 1

q2 − 1
=

(qm+1 − (−1)m+1)(qm − (−1)m)− (q + 1)h(q2m−2 − 1)

q2 − 1

≥ q2m−1 + (1− h)q2m−3 − hq2m−4 + (1− h)q2m−5 − · · ·

For h = 1, Chakravarti ([1]) has actually computed the exact minimum dis-
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tance

d =




q2m−1 for m odd

q2m−1 − qm−1 for m even
.

For h = 2 and m = 3, we get the code with parameters

[(q2 + 1)(q3 + 1), 10,≥ q5 − q3 − q2 − 2q − 1].

By a conjecture of Sørensen (cf. [7], [14]), the parameters would be

[(q2 + 1)(q3 + 1), 10,≥ q5 − q3 − q2 + q].

For h = 2 and m = 4, we get the code with parameters

[(q5 + 1)(q2 + 1), 15,≥ q7 − q5 − 2q4 − 2q3 − q2 − 2q − 1].

This is better than the bound obtained by other methods by S. Hansen ([4],
Remark 5.23).

4.4 Codes on Deligne-Lusztig variety on the group SU(5)

As before, we consider the subgroup G1 = U(5,Fq2) of the group
G = GL(5,Fq2). The subgroup U(5,Fq2) is the unitary group for the her-
mitian form on (Fq2)5

〈x, y〉 = x0y
q
4 + x1y

q
3 + x2y

q
2 + x3y

q
1 + x4y

q
0 .

We now take the parabolic subgroup

Q =




∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗




and Q1 = U(m+1,Fq2)∩Q. The variety G1/Q1 can be viewed as the Deligne-
Lusztig variety on the group SU(5) (cf. [11]).
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The diagram (1) simplifies to:

GL(5)/Q

↓
Gr(2, 5)

Plücker ↓
P9

⊃ G1/Q1 = {x1, x2, . . . , xn}
�

�
= P9(Fq2) ←− V10(Fq2)− {0} .

We get a code with parameters

[(q5 + 1)(q3 + 1), 10, q8 − q6] on Fq2

whose weights are q8 − q6, q8 − q6 + q5 − q3, q8 − q6 + q5, q8 − q6 + q5 + q3, q8.
(Cf. [12]). For q = 2 we get a code [297, 10, 192] on F4 whose weights are
256, 232, 224, 216, 192.

5 One more Example

5.1 The Flag Variety of type (1,m− 2)

Let us consider the variety of flags X = {(V1, Vm−1)} made up by the lines V1

and the hyperplanes Vm−1. We identify by duality the hyperplanes Vm−1 with
the elements V ⊥

m−1 of the projective space associated to the dual V ∗.

The following diagram is commutative and defines the Segré embedding from
Pm−1 × P

∗
m−1 to Pm2−1:

(a, β) ∈ V × × (V ∗)× −→ (V ⊗ V ∗)×

↓ ↓ ↓
(V1, V

⊥
m−1) ∈ Pm−1 × P

∗
m−1 −→ Pm2−1 .

The flag (V1, Vm−1) is in X if and only if 〈V1, V
⊥
m−1〉 = 0. Therefore a point x in

Pm2−1 is in the image of X if and only if it is the image of (a, β) ∈ V ×× (V ∗)×

with β(a) = 0. Two elements (a, β) and (a′, β′) of V × × (V ∗)× give the same
image in X if and only if a′ ∈ F

×
q a and β′ ∈ F

×
q β. Let us denote by a⊗ β the

image of (a, β) under the application V × × (V ∗)× −→ Pm2−1. Let us define a
linear form Tr on V ⊗ V ∗ by Tr(a⊗ β) = β(a).
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5.2 The Code

We consider the code C associated to the embedding X −→ Pm2−1. Let us
choose a lifting of X into V × × (V ∗)×: a⊗ β �−→ (a, β). The codewords are
the sequences (f(a⊗ β))(a,β) for (a, β) in the image of this given lifting and

f ∈ {x ∈ V ⊗ V ∗ | Tr(x) = 0}∗ = {x ∈ V ⊗ V ∗}∗/Fq Tr .

Theorem 1 The code C is a code

[
(qm − 1)(qm−1 − 1)

(q − 1)2
,m2 − 1, q2m−3 − qm−2

]
.

The weights of C are given by

w = qm−2
(
qm − 1−

∑
λ∈Fq

(qaλ − 1)
) /

(q − 1)

where the (aλ)λ∈Fq
are integers submitted to the following conditions:

0 ≤ aλ and
∑

λ∈Fq

aλ ≤ m.

Proof — The proof of this theorem is a consequence of the following proposi-
tions.

5.3 Computation of the Length of the Code C

Proposition 2 The length of the code C is n = (qm−1 − 1)(qm − 1)/(q− 1)2.

Proof — Let us count the number of elements (a, β) ∈ V × × (V ∗)× such that
β(a) = 0. We have

{(a, β) ∈ V × × (V ∗)× | β(a) = 0} =
⋃
β �=0

((a, β) | a ∈ β⊥ − {0}) .

Therefore

#{(a, β) ∈ V × × (V ∗)× | β(a) = 0} = (qm−1 − 1)(qm − 1) .
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5.4 Computation of the Weights

We assimilate (V ⊗ V ∗)∗ to End(V, V )

(V ⊗ V ∗)∗ −→ End(V, V )

f �−→ ef

where ef is defined by the condition f(a⊗ β) = β(ef (a)) with a ∈ V , β ∈ V ∗,
for f ∈ (V ⊗ V ∗)∗. So we have eTr = IdV .

The weight of an element ev(f) ∈ C is

wf = #{(a, β) ∈ V × × (V ∗)× | f(a⊗ β) �= 0, β(a) = 0}/(q − 1)2 .

Let Ef be the image of the endomorphism ef . We have

{(a, β) ∈ V × × (V ∗)× | f(a⊗ β) = 0, β(a) = 0}

= {(a, β) ∈ V × × (V ∗)× | β(ef (a)) = 0, β(a) = 0}

=
⋃
β

{(a, β) ∈ V × × (V ∗)× | ef (a) ∈ β⊥, a ∈ β⊥}

=
⋃

β∈(E⊥
f

)×

{(a, β) | a ∈ β⊥ − {0}} ∪

⋃
β /∈E⊥

f

(
{(a, β) | a ∈ e−1

f β⊥ ∩ β⊥} − {0}
)
. (2)

Lemma 3 The following equivalences are true.

β ∈ E⊥
f ⇐⇒ tef (β) = 0

e−1
f β⊥ = β⊥ ⇐⇒ ∃λ ∈ F

×
q

tef (β) = λβ .

Proof — One has tef (β) = β ◦ ef and the first equivalence is trivial.

For the second, e−1
f β⊥ = β⊥ implies β⊥ ∩ Ef = ef (β

⊥), whence
β(ef (β

⊥)) = 0 or tef (β)(β⊥) = 0, which means that there exists λ such that
tef (β) = λβ.

If λ �= 0, tef (β) = λβ implies that for all x in V , ef (x) ∈ β⊥ =⇒ β(x) = 0
hence e−1

f (β⊥) ⊂ β⊥ and e−1
f (β⊥) = β⊥ for dimension reasons.
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If λ = 0, tef (β) = 0 implies that ef (V ) ⊂ β⊥ therefore V ⊂ e−1
f (ef (V )) ⊂

e−1
f (β⊥) hence V = e−1

f (β⊥).

Proposition 4 The weight of codeword ev(f) in C is given by

wf = qm−2(qm − 1− Sf )/(q − 1)

where Sf =
∑

λ∈Fq

(qaλ − 1) where aλ is the dimension the eigenspace of tef for

the eigenvalue λ.

Proof — The decomposition (2) and the equivalence in lemma 3 yield

{(a, β) ∈ V × × (V ∗)× | f(a⊗ β) = 0, β(a) = 0} =⋃
λ∈Fq

⋃
β∈fλ
β �=0

((
β⊥ − {0}

)
, β

)
∪

⋃
other β �=0

((
e−1

f β⊥ ∩ β⊥ − {0}
)
, β

)
.

where fλ is the space of eigenvectors of tef for the eigenvalue λ. If β is not an
eigenvector of ef and if β �= 0, the codimension of e−1

f β⊥ ∩ β⊥ in V is 2 by
lemma 3. Hence

#{(a, β) ∈ V × × (V ∗)× | f(a⊗ β) = 0, β(a) = 0} =

Sf (q
m−1 − 1) + (qm − Sf − 1)(qm−2 − 1) .

where Sf is the number of nonzero eigenvectors of tef belonging to an eigen-
value in Fq.

Sf =
∑

λ∈Fq

#(fλ − {0}) =
∑

λ∈Fq

(qaλ − 1)

with aλ = dim fλ. We have 0 ≤ aλ and
∑

aλ ≤ m.

So the weights are given by

wf = #{(a, β) ∈ V × × (V ∗)× | f(a⊗ β) �= 0, β(a) = 0}/(q − 1)2 =

qm−2(qm − 1− Sf )/(q − 1) .

Remark 5 For any f , the integers aλ are only submitted to the following
conditions: 0 ≤ aλ and

∑
aλ ≤ m.

5.5 Computation of the Dimension of the Code C

Proposition 6 The dimension of the code C is k = m2 − 1.
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Proof — A linear form belongs to the kernel of ev : f �−→ (f(x1), . . . , f(xn))
if and only if wf = 0 which means Sf = qm − 1 that is tef ∈ FqId. Therefore
k = m2 − 1.

5.6 Computation of the Minimal Distance of the Code C

Proposition 7 The minimal distance of the code C is d = q2m−3 − qm−2.

Proof — The minimal distance corresponds to wf �= 0 minimum. This is
equivalent to Sf �= qm − 1 maximum; that is tef �= FqId has a maximal
number of eigenvectors that is (qm−1 − 1) + (q − 1) nonzero eigenvectors.

In this case, one has

#{(a, β) ∈ V × × (V ∗)× | f(a⊗ β) �= 0, β(a) = 0} = (q2m−3 − qm−2)(q − 1)2 .

5.7 Computation of the Number of Codewords of Minimum Weight

Proposition 8 The number of codewords of minimum weight is (qm−1)qm−1.

Proof — We have to compute the number of ef with (qm−1 − 1) + (q − 1)
nonzero eigenvectors. Such an ef is semi-simple (the eigenvectors generate V ).
It may be defined by its eigenspace of dimension 1 (let us call it U1) belonging
to the eigenvalue λ1, and its eigenspace of dimension m− 1 (let us call it U2)
belonging to the eigenvalue λ2.

The set of possible line U1 corresponds to the projective space Pm−1. For every
U1, the set of subspace of dimension m − 1 such that U1 ∩ U2 = 0 (that is
U1 �⊂ U2), is equal to the set of linear forms ψ on V such that ψ(U1) �= 0.
Therefore it corresponds to the affine space Am−1 of dimension m− 1.

So there are #(Pm−1×Am−1) systems of eigenspace of ef belonging to q(q−1)
systems of distinct eigenvalues (λ1, λ2).

We find therefore #Pm−1 × #Am−1 × q(q − 1) = (qm − 1)qm−1q possibilities
for ef ∈ EndV . Two functions ef and eg coincide on

{(a, β) ∈ V × × (V ∗)× | β(a) = 0}

if and only if f − g ∈ Fq Tr.

So we find (qm − 1)qm−1 possibilities for the f in

f ∈ {x ∈ V ⊗ V ∗ | Tr(x) = 0}∗ .
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6 Comparison with other classes of codes

6.1 The code associated to the Flag Variety of type (1,m− 2)

We can compare this code to Reed-Muller codes.

6.1.1 m = 3

For m = 3, the flag variety is X = GL(3)/B where B is a Borel subgroup of
GL(3). We get a code

[q3 + 2q2 + 2q + 1, 8, q3 − q]

whose weights are, for q ≥ 3: q3 + q2 + q, q3 + q2, q3 + q2 − q, q3 + q2 − 2q, q3,
q3 − q.

It is comparable to the projective Reed-Muller code of order 2 which has for
parameters

[q3 + q2 + q + 1, 10, q3 − q2].

6.1.2 m = 4

For m = 4, the flag variety is X = GL(4)/P where P is the following subgroup
of GL(4):

P =



∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗


 .

We get a code

[q5 + 2q4 + 3q3 + 3q2 + 2q + 1, 15, q5 − q2]

whereas the projective Reed-Muller code of order 2 has for parameters

[q5 + q4 + q3 + q2 + q + 1, 21, q5 − q4].

6.2 The codes on Deligne-Lusztig varieties on the group SU(5)

For q a square, we obtain a code on Fq with parameters

[q4 +
√
q5 +

√
q3 + 1, 10, q4 − q3]
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as the projective Reed-Muller code of order 2 has for parameters

[q4 + q3 + q2 + q + 1, 15, q4 − q3].
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