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Abstract

We show how to construct error-correcting codes from flag varieties on a finite field
F,. We give some examples. For some codes, we give the parameters and give the
weights and the number of codewords of minimal weight.
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1 Introduction

I will study some error-correcting codes constructed from flag varieties over a
finite field IF,. After V. Goppa, the consideration of codes constructed from
algebraic curves is now classical. Thanks to Y. Manin [8], we can consider
codes built from higher dimensional algebraic varieties.

Some of such codes have already been studied. Among others, projective Reed-
Muller codes have been studied by G. Lachaud [6] and A. Sgrensen [14], codes
on grassmannians by D. Nogin [9], and G. Lachaud and S. Ghorpade [3], codes
on hermitian hypersurfaces by I.M. Chakravarti [1], and J.W.P. Hirschfeld,
M. Tsfasman and S. Vladut [5], Reed-Muller codes on complete intersec-
tions by Duursma, Renteria and Tapia-Recillas [2]. In [7], G. Lachaud has
given some general bounds for the parameters of codes associated with multi-
dimensional varieties, in particular complete intersections. S. Hansen has stud-
ied codes from higher-dimensional varieties, especially Deligne-Lusztig vari-
eties [4].

Flag varieties are examples of varieties having a large number of points over
a finite field and can therefore be used as guinea-pigs for trying to construct
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efficient codes. Indeed they can be viewed as sets of rational points of Deligne-
Lusztig varieties and these varieties have the maximal number of rational
points relatively to their geometrical structure, which is given for instance
by their Betti numbers (cf. [10] and [11]). Moreover the flag varieties have a
large group of automorphism, therefore the associated codes provides many
symmetries.

This paper is organized as follows. We first define a flag variety, then we
show how to embed a flag variety into a projective space and we get the
code construction by the method of M. Tsfasman and S. Vladut [15]. Then in
sections 4 and 5, we give examples, and we conclude in the last section by a
comparison of the codes obtained with Reed-Muller codes of order 2.

2 Flag Varieties

A flag over a finite field [F, is a sequence X of strictly embedded subspaces
Vi, CV;,, C--- CV, of dimension 4y, i3, ..., is of an m-dimensional vector
space V' = (F,)™. A flag variety of type (i1, 12, ..., 1) is the variety of all flags
X =A{(Vi,,Viy, ..., Vi) } with (1,140, ...,4s) given.

Equivalently we can describe it as the set G/P where G = GL(m,F,) and P is
a parabolic subgroup (that is a subgroup consisting of upper triangular matri-
ces in blocks or of conjugates of such a matrix). The variety of (V;,, Vi,, ..., Vi.)
with V;, C V;, C --- C V;, is isomorphic to the variety G/P with

M, =« * ... *
0 M2 * Xx

0 0 0 - M,
such that

M, € GL(dimV;, —dimV;,_,,F,) = GL(i, — i,_1,F,)

for 2 <r <s+1,withV; ,, =V = (F,)™. The group G acts transitively on
the set of flags {(Vi,, Vi,, ..., Vi.)}. The stabilizer of the flag

{((617627 e 7€i1>7 <6i1+176i1+2’ U 76i2>7 T <6is+17€is+Qv T em>)}

is the subgroup P where (¢;)1<;<m is the canonical basis of the vector space V.
In that case, we shall say that P is a parabolic subgroup of type (i1, is, . . ., is).

As an example, we can take P of type () with [ < m. The flag variety is



the variety of all flags X = {(V})}, that is the grassmannian Gr(l,m) of [-
subspaces of V.

3 Code Construction
3.1 General Construction

We construct a code C' in a usual way by embedding X into a projective space
and evaluating the linear forms on X as is described in the book of Tsfasman
and Vladut [15], chapter 1.1.

We build thus a [n, k]-projective system X — P,_; which gives rise to an
associated code by the following process. Let xq,...,z, be the images of the
elements of X into P,_; and let vy, ..., ¥y, be their liftings in the vector space
minus the origin E* = (F})*.

We defines a map from linear forms f on E to n-uplets of elements of [F, by

ev: E"— (F,)"

whose image is the code C'. The length of C is equal to n. The dimension
of C'is equal to k — dim ker ev. The minimum distance of C' is equal to the
minimum for all the f in #X — #(X Nker f) where ker f is an hyperplane of
Pr_1 not containing X.

3.2 The Flag case

Let P be a parabolic subgroup of G, G; be a subgroup of G and P, = PNG;.
We embed X = G/P and the subset X; = G1/P; into a projective space Py
by a sequence of 3 embeddings that we will describe.

A flag (V;,, Vi,, ..., Vi,) is a sequence of subspaces V;, which are elements of
the grassmannian Gr(i;, m). We deduce from this fact a morphism from the
flag variety X = G/P to the product of grassmannians Gr(i;,m) X --- X
Gr(is,m). One can embed each grassmannian G7(i;,m) into the projective
space P(A' Vi,) = P,, where r, = (Z‘) — 1 thanks to the Pliicker embedding
([13], p. 42), which is obtained from the map which sends a basis fi,..., f;
of Vj, to the exterior product fi A--- A f;, of A"V and noticing that different



basis give proportional elements of A%V, therefore they give the same point
in P,,.

Then we can embed the product of projective spaces P, x- - - x P, into another
projective space P, with r = (r; + 1)(ro + 1)...(rs + 1) — 1 by the Segré
embedding which corresponds to the mapping of the elements (vy,...,vs) of
the product of the vector spaces V,, 41 X ... X V, 41 to the tensor product
V1 ®...R®vs which is an element of the vector space V,., ;. Indeed the following
diagram is commutative and defines a mapping from P, x--- x P, to P,
where we denote V' the vector space V' minus the origin:

X X
(v1,...,05) €  VXgx...xVY%, — P, x--xP,

! ! !
N®..0vs € (Viy®...0V, )¢ — Py

One can embed further the projective space P, into another projective space
by means of the Veronese embedding of order A which sends P, to Py with N =
(H};h) — 1. This embedding comes from the map V,,; — Vi1 which sends
the element of coordinates (ui,us,...,u,41) to the element of coordinates
(ooultud? ) of Vivg, with iy + jo 4 -+ 4 jrpa = h

If we restrict ourselves to the subgroup GG; of G and we take P, = PN Gy and
X, = G/ P, we get the following diagram.

GL(m)/P D> G/~ = {z1,29, ..., 2, }

!
Gr(iy,m) x -+ x Gr(is,m)
!
P, x - x P, (1)

!
P,
!

]PN D ]P)N — V]\>[<+1 = {y17y27"'ayn}

For f € Vi1 (F))* let ev: f—— (f(y1),... f(yn)). The image of ev is a code
[#X , N+ 1—dimkerev, #X —max#(X N H)]

where X = G1/P; and H runs over the set of hyperplanes of Py.



4 Examples

4.1  Reed-Muller projective codes

We take the matrices P = ( ) where a € F, the * denotes any element

a *
0 M
of (F,)™™ !, and M is a square matrix of order m—1. The diagram (1) simplifies

t
? GL(m)/P > A{z1,29,...,2,}

]P)m—l J

Py —  Viu—{0}

We thus obtain a code of order h whose parameters are, when ev is injective
that is when h < ¢ (cf. Lachaud [6]):

qg" —1 h+m-—1 m—
q—l ) ( h ) ) (q_h+1)q 2

where h is the order of the Veronese embedding. When ev is not injective, the
parameters are more intricate (cf. Sgrensen [14]).

4.2 Codes on Grassmannian

. . Ml k
We take the matrices P = ( 0 M,

of order [, and M, stands for a square matrix of order m — [. We now get the
diagram

) where M, stands for a square matrix

GL(m)/P = {z1,22,...,%,}

Gr(l,m) l

Py —  Vnu—{0}
where N = (";) — 1.

Nogin has computed the parameters of the code that we obtain ([9]):

{@m—1Xf“—®~~@m—qFU’ (n)7qm4ﬂ

(¢ =1)(d"—q) (¢ —d") !



4.8  Codes on hermitian hypersurfaces

Consider the subgroup Gy = U(m + 1,F2) of the group G = GL(m + 1,F2)
with m > 2. The subgroup U(m+1,F;2) is the unitary group for the hermitian
form on IFZ;H

(z,y) = oy, + 1y 1 + -+ ¥
We take the parabolic subgroup
a k... ok
0
P=
. (GL(m))
0
where a € IFqXQ, the * denote the coefficients of matrix in GL(m + 1) which

are allowed to take any value in F2, and P, = U(m + 1,F;.2) N P. We get the
following diagram

GLm+1)/P> Um+1)/P = A{x1,22,...,%,}
|

- | l

Véronese |
Py (Fgz2) - P (Fg) — Vnia(Fg) — {0}

Letting h < ¢? — g be the order of Véroneése’s embedding, we get the codes C},
on [Fp> with parameters

(qm“—<—1()q’;l+_1)f«)zm—<—1)m> | (m;h) 7 d]

where a bound for the minimal distance d can be easily computed by the
general construction (3.1) and Proposition 2.3 in [7] which gives a bound for

the number of rational points over F, of an hyperplane section of the set
G1/P;. We get

(™ = ()™ = ()") Tt
= @ 1) AT
(" = (=)™ (@™ = (=1)™) = (¢ + Dh(g*" > - 1)
¢* —1

> q2m—1 + (1 _ h)qu—3 _ hq2m—4 + (1 _ h)q2m—5 .

For h = 1, Chakravarti ([1]) has actually computed the exact minimum dis-



tance
gt for m odd

q — ¢™ ! for m even

For h = 2 and m = 3, we get the code with parameters
(¢ +1)(¢° +1),10,> ¢° — ¢* — ¢" — 2 — 1].
By a conjecture of Sgrensen (cf. [7], [14]), the parameters would be

(> +1)(¢* +1),10,> ¢" — ¢* — ¢* +q].

For h = 2 and m = 4, we get the code with parameters
(¢ +1)(¢° +1),15,> ¢" — ¢" = 2¢" = 2¢° — ¢* — 2 — 1].

This is better than the bound obtained by other methods by S. Hansen ([4],
Remark 5.23).

4.4 Codes on Deligne-Lusztig variety on the group SU(5)

As before, we consider the subgroup G; = U(5,Fz) of the group
G = GL(5,Fpz). The subgroup U(5,F ) is the unitary group for the her-
mitian form on (Fp2)°

(z,y) = zoyi + x1y5 + T2y3 + T3y] + T4yl -

We now take the parabolic subgroup

* ok ok %k
* ok ok %k
Q=10 0 % x x
0 0 * % =%
0 0 * % =%

and Q1 = U(m+1,F,2)NQ. The variety G1/Q1 can be viewed as the Deligne-
Lusztig variety on the group SU(5) (cf. [11]).



The diagram (1) simplifies to:

GL(5)/Q > Gi/Q1 = {z1,22,...,2,}
!
Gr(2,5)
Plicker |
Py = PolFp) — VioF,)— {0} .

We get a code with parameters
[(¢°+1)(¢° +1),10,¢° —=¢°]  on  Fp

whose weights are ¢® — ¢, ¢® —¢®* +¢® — ¢, — ¢ +¢°, ¢® — ¢® + ¢ + ¢3, 5.
(Cf. [12]). For ¢ = 2 we get a code [297,10,192] on F, whose weights are
956, 232, 224, 216, 192.

5 One more Example

5.1 The Flag Variety of type (1, m — 2)

Let us consider the variety of flags X = {(V3, V},,_1)} made up by the lines V;
and the hyperplanes V,,,_;. We identify by duality the hyperplanes V,, ; with
the elements V- | of the projective space associated to the dual V*.

The following diagram is commutative and defines the Segré embedding from
Pro1 x P toPp2_q:

(a,) e Vix (V) — (VeVH)x
! l !
(‘/vl)VnJ{—l) € IP)m—l X ]P);kn_l I ]P)m2—1 .

The flag (Vi, V1) is in X if and only if (V;, V.2 ) = 0. Therefore a point x in
P,,2_1 is in the image of X if and only if it is the image of (a, 5) € V> x (V*)*
with B(a) = 0. Two elements (a,3) and (a’, 5') of V* x (V*)* give the same
image in X if and only if ¢’ € Fa and 3’ € Fy3. Let us denote by a ® 3 the
image of (a, 5) under the application V* x (V*)* — P2 ;. Let us define a
linear form Tr on V ® V* by Tr(a ® ) = ((a).



5.2 The Code

We consider the code C' associated to the embedding X — P,,2_;. Let us

choose a lifting of X into V* x (V*)*: a ® f —— (a, ). The codewords are

the sequences (f(a ® 3))(,p) for (a, ) in the image of this given lifting and
fe{lreVeV | |Tr(z) =0 ={zec VeV }/F,Tr .

Theorem 1 The code C is a code

{(qm -Dig" -1

-1 2m—3 _ m2:| )
Q-1 ,m”—1,q q

The weights of C' are given by

w=q"2(¢"=1= Y (@™ -1) /[ (g-1)

XelF,

where the (ax)ier, are integers submitted to the following conditions:

0<a, and Zakgm.
el

Proof — The proof of this theorem is a consequence of the following proposi-
tions.

5.8  Computation of the Length of the Code C

Proposition 2 The length of the code C isn = (g™ ' —1)(¢™ —1)/(q — 1)2.

Proof — Let us count the number of elements (a, 3) € V* x (V*)* such that
B(a) = 0. We have

{(a,; ) e V' x (V5)* [ B(a) = 0} = ﬁL#J ((a,8) a € p—{0}) .

Therefore

#{(a,8) € V> x (V) | Bla) =0} = (¢" = 1)(¢" — 1) .



5.4 Computation of the Weights

We assimilate (V ® V*)* to End(V, V)
(Ve VH* — End(V,V)
fr—es

where ey is defined by the condition f(a® ) = f(ef(a)) witha € V, g € V*,
for f € (V @ V*)*. So we have e, = Idy.

The weight of an element ev(f) € C' is

wy =#{(a,8) €V x (V)" | f(a® B) #0,B(a) = 0}/(¢ — 1)* .

Let E; be the image of the endomorphism e;. We have

{(a,8) e V* x (V)" | fla® B) =0,5(a) = 0}
= {(a,B) € V* x (V*)* | Bley(a)) =0, 8(a) = 0}
ZQKm@GV“XWﬂXMAMGﬁ%aEW}
U {@pB)|aep-—{0}}u

Be(EF)*

U {(@B lace'snpy—{0}) . (2

BeE}

Lemma 3 The following equivalences are true.

B € E; < "es(B) =0
e/'Br=pr <= INEF) 'ef(B) = A5 .

Proof — One has ‘ef(8) = 3o ey and the first equivalence is trivial.

For the second, e;lﬁL = (*+ implies gt N E; = ep(B*), whence
Bles(BL)) = 0 or tep(B8)(B+) = 0, which means that there exists A such that
fer(8) = AB.

If X # 0, ‘ey(8) = A3 implies that for all z in V, ef(z) € B+ = B(z) =0
hence e;'(6+) C B+ and e;'(6+) = §+ for dimension reasons.

10



If A =0, fey(8) = 0 implies that e;(V) C B+ therefore V C e;l(ef(V)) -
;' (B') hence V = e 1(81).

Proposition 4 The weight of codeword ev(f) in C is given by
wp=q""*(¢" —1-57)/(q—1)
where Sy = Z (g™ — 1) where ay, is the dimension the eigenspace of ‘e for
XelF,

the eigenvalue \.

Proof — The decomposition (2) and the equivalence in lemma 3 yield

{(0,8) € V* x (V)" | fla® §) = 0,5(a) = 0} =
U U (B =10).8)u U (5" 0o = {03).5) .

)\E]Fq BEfx other 37#0
520

where f) is the space of eigenvectors of ‘e for the eigenvalue A. If § is not an
eigenvector of ey and if B # 0, the codimension of e;lﬂL N ALt in Vis 2 by
lemma 3. Hence

where Sy is the number of nonzero eigenvectors of ‘e; belonging to an eigen-

value in F,.
Sp= Y #(H—{0h)=> (4™ —1)

XeF, xelFy
with a) = dim f\. We have 0 < ay and ) a, < m.

So the weights are given by

wy =#{(a,0) e V x (V)| fla® ) #0,6(a) = 0}/(¢ — 1)* =
" q" = 1—-S5)/(g—-1) .

Remark 5 For any f, the integers ay are only submitted to the following
conditions: 0 < ay and > ay < m.
5.5  Computation of the Dimension of the Code C

Proposition 6 The dimension of the code C is k = m? — 1.

11



Proof — A linear form belongs to the kernel of ev : f —— (f(x1),..., f(z,))
if and only if w; = 0 which means Sy = ¢ — 1 that is ‘e; € F Id. Therefore
k=m?—1.

5.6  Computation of the Minimal Distance of the Code C

Proposition 7 The minimal distance of the code C' is d = ¢*™ 3 — ¢™ 2.

Proof — The minimal distance corresponds to wy # 0 minimum. This is
equivalent to Sy # ¢™ — 1 maximum,; that is ‘e; # F,/Id has a maximal
number of eigenvectors that is (¢! — 1) + (¢ — 1) nonzero eigenvectors.

In this case, one has

#{(a,8) € V' x (V)| fla® B) #0,8(a) =0} = (¢""* —¢" ) (g — 1)* .
5.7  Computation of the Number of Codewords of Minimum Weight

Proposition 8 The number of codewords of minimum weight is (¢™—1)g™ .

Proof — We have to compute the number of e; with (¢ — 1) + (¢ — 1)
nonzero eigenvectors. Such an ey is semi-simple (the eigenvectors generate V).
It may be defined by its eigenspace of dimension 1 (let us call it U;) belonging
to the eigenvalue \;, and its eigenspace of dimension m — 1 (let us call it Uy)
belonging to the eigenvalue A,.

The set of possible line U; corresponds to the projective space P,,_;. For every
Uy, the set of subspace of dimension m — 1 such that U; N Us = 0 (that is
Uy ¢ Us), is equal to the set of linear forms ¢ on V such that ¢ (U;) # 0.
Therefore it corresponds to the affine space A,,_; of dimension m — 1.

So there are #(P,,—1 X A,,,_1) systems of eigenspace of ey belonging to ¢(q—1)
systems of distinct eigenvalues (Ay, Ag).

We find therefore #P,, 1 x #A,,_1 X q(¢ — 1) = (¢™ — 1)¢"™ *q possibilities
for ey € EndV. Two functions ey and e, coincide on

{(a,8) € V' x (V*)* | B(a) = 0}
if and only if f — g € F, Tr.
So we find (¢™ — 1)¢™ ! possibilities for the f in

fe{freVe V" |Tr(x) =0} .

12



6 Comparison with other classes of codes

6.1 The code associated to the Flag Variety of type (1,m — 2)

We can compare this code to Reed-Muller codes.

6.1.1 m=3

For m = 3, the flag variety is X = GL(3)/B where B is a Borel subgroup of
GL(3). We get a code

[¢* +2¢° +2¢+1,8,¢° — ¢

whose weights are, for ¢ > 3: @+ +q¢, @+, ¢+ —q, @+ ¢ —2q, ¢,
3
q —q.

It is comparable to the projective Reed-Muller code of order 2 which has for
parameters

¢® +¢*+q+1,10,¢° — ¢*.
6.1.2 m=4

For m = 4, the flag variety is X = G'L(4)/P where P is the following subgroup
of GL(4):

S ¥ X x
O ¥ % ¥
* X X X

o O O %

We get a code
[¢° +2¢" +3¢° + 3¢* + 2¢ + 1,15,¢" — ¢°]
whereas the projective Reed-Muller code of order 2 has for parameters

[@° +q"+ ¢+ +q+ 1,21, —q'].
6.2 The codes on Deligne-Lusztig varieties on the group SU(5)

For ¢ a square, we obtain a code on I, with parameters

¢ + 3+ 3 +1,10,¢" — ¢°]

13



as the projective Reed-Muller code of order 2 has for parameters

l¢" + ¢+ +q+1,15,¢" — .
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