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APN functions.

Vectorial Boolean functions are useful in private key
cryptography for designing block ciphers.
Two main attacks on these ciphers are differential attacks
and linear attacks.
An important criterion on Boolean functions is a high
resistance to the differential cryptanalysis.
Kaisa Nyberg has introduced the notion of almost perfect
nonlinearity (APN) to characterize those functions which
have the better resistance to differential attacks.
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APN functions

Let us consider a vectorial Boolean function f : Fm
2 −→ Fm

2 .

If we use the function f in a S-box of a cryptosystem, the
efficiency of differential cryptanalysis is measured by the
maximum of the cardinality of the set of elements x in Fm

2 such
that

f (x + a) + f (x) = b

where a and b are elements in Fm
2 and a 6= 0.

Definition

The function f is said to be APN (almost perfect nonlinear)
if for every a 6= 0 in Fm

2 and b ∈ Fm
2 ,

there exists at most 2 elements x of Fm
2 such that

f (x + a) + f (x) = b.
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APN power functions
Up to now, the study of APN functions was especially devoted
to the power functions.

The following functions f (x) = xd are APN on F2m , where d is
given by:

d = 2h + 1 where gcd(h,m) = 1 (Gold functions).
d = 22h−2h + 1 where gcd(h,m) = 1 (Kasami functions).

and other functions with exponent d depending on m
d = 2(m−1)/2 + 3 with m odd ( Welch functions).
d = 2(m−1)/2 + 2(m−1)/4 − 1, where m ≡ 1 (mod 4),
d = 2(m−1)/2 + 2(3m−1)/4 − 1, where m ≡ 3 (mod 4) (Niho
functions).
d = 2m − 2, for m odd; (inverse function)
d = 24m/5 + 23m/5 + 22m/5 + 2m/5 − 1, where m is divisible
by 5 (Dobbertin functions).

One conjectured for a long time that the Gold and Kasami
functions are the only ones where d is independent from m and
which give APN functions for an infinity of values of m.
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APN power functions

Janwa, McGuire, Wilson, Jedlicka worked on this conjecture.

Fernando Hernando and Gary McGuire proved recently the
following theorem:

Theorem

The Gold and Kasami functions are the only monomials where
d is odd and which give APN functions for an infinity of values
of m.
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Other APN functions

In 2005, Edel, Kyureghyan and Alexander Pott have proved that
the function

F210 −→ F210

x 7−→ x3 + ux36

where u is a suitable element in the multiplicative group F∗210

was APN and not equivalent to power functions.

A number of people (Budaghyan, Carlet, Felke, Leander,
Bracken, Byrne, Markin, McGuire, Dillon. . . ) showed that
certain quadratic polynomials were APN and not equivalent to
known power functions.
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New Conjecture

G. McGuire proposed the following conjecture.

Conjecture

The Gold and Kasami functions are the only APN functions
which are APN on infinitely many extensions of their field of
definition.

We will give some results toward this conjecture.
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Toward the classification of APN functions

Some results toward the classification of APN functions given
by polynomials have been proved by

Berger, Canteaut, Charpin, Laigle-Chapuy,
Byrne and McGuire,
Brinkman and Leander,
Voloch . . .

They prove results mainly on quadratic functions or binomials.

We will give here some bound on the degree of a Boolean
polynomial not to be almost perfect nonlinear.
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Result on monomials

To solve the problem of APN monomials Janwa and Wilson
studied the following curve:

xd + yd + 1 + (x + y + 1)d

(x + y)(x + 1)(y + 1)
= 0

Proposition (Anne Canteaut)

Suppose that this curve is absolutely irreducible over F2. The
mapping x 7−→ xd is not APN over Fq, q ≥ 32, if

d ≤ q1/4 + 4.5
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Equivalent polynomials

A q-affine polynomial is a polynomial whose monomials are of
degree 0 or a power of 2.

Proposition

The class of APN functions is invariant by addition of a q-affine
polynomial.

We choose for f a polynomial mapping from F2m in itself

which has no term of degree a power of 2
and with no constant term.
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Characterization of APN polynomials

Let q = 2m and let f be a polynomial mapping of Fq in itself. We
can rephrase the definition of an APN function.

Proposition

The function f : Fq −→ Fq is APN if and only if the surface

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2) = 0

has all of its rational points contained in the surface

(x0 + x1)(x2 + x1)(x0 + x2) = 0.
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A first bound for the degree of an APN polynomial

Theorem

Let f be a polynomial mapping from Fq to Fq, d its degree.

Suppose that the surface X with affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.

Then, if 9 ≤ d < 0.45q1/4 + 0.5 , f is not APN.
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Sketch of proof

The number of rational points on the surface X is bounded.
From an improvement of Lang-Weil’s bound by
Ghorpade-Lachaud, we deduce

|#X (Fq)− q2 − q − 1| ≤ (d − 4)(d − 5)q3/2 + 18d4q.

If f is APN and d too large, then the surface X has too
many rational points to be contained in the surface
(x0 + x1)(x2 + x1)(x0 + x2) = 0.
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Irreducibility of X

Criterion for the surface X to be irreducible.

Proposition

Let f be a polynomial of Fq to itself, d its degree. Let us
suppose that the curve X∞ with homogeneous equation

xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible. Then the surface X of affine equation

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is absolutely irreducible.

The curve X∞ is the intersection of the surface X with the plane
at infinity.
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Irreducibility of X∞
F. Hernando and G. McGuire have studied the curve X∞.

Proposition

The curve X∞ of degree d is absolutely irreducible for
d odd of the form d = 2i`+ 1 with ` odd;
` does not divides 2i − 1;

Proposition

The curve X∞ of degree d has an irreducible component
defined over F2 for

d = 2j(2i`+ 1) with ` odd;
where ` 6= 1 or 2i − 1;

We conjecture that the bound for f to be APN is also true in this
case.
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A second bound

We can improve the bound for some cases.

Theorem

Let f be a polynomial mapping from Fq to Fq, d its degree.
Let us suppose that d is not a power of 2 and that the surface X

f (x0) + f (x1) + f (x2) + f (x0 + x1 + x2)

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

has only a finite number of singular points.
Then if 10 ≤ d < q1/4 + 4, f is not APN.

The number of rational points on the surface X is bounded from
an improvement of a theorem of Deligne on Weil’s conjectures
by Ghorpade-Lachaud.
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Singular points on X

Proposition

Let f be a polynomial mapping from Fq to Fq, d its degree. Let
us suppose that the curve X∞ of equation

xd
0 + xd

1 + xd
2 + (x0 + x1 + x2)

d

(x0 + x1)(x2 + x1)(x0 + x2)
= 0

is smooth.
Then the surface X has only a finite number of singular points.

Janwa and Wilson have studied the curve X∞ and have
deduced a certain number of cases where it is nonsingular.

In particular the condition is satisfied if d = 2l + 1 and l is a
prime number congruent to ±3 modulo 8.
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Some perspective – The conjecture on APN function

We have shown that many polynomials cannot be APN

if their degrees are too large with respect to the number of
variables

It is a consequence of bounds of the Weil type on some
surfaces on finite fields.

To prove the conjecture on APN function we have

to prove the bound for several classes of degrees not Gold
or Kasami;
to study polynomials of Gold or Kasami degree.

For small degrees, it works.
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Some perspective – Differentially 4-uniform functions

Let δ be the maximum of the cardinality of the set of elements x
in Fm

2 such that
f (x + a) + f (x) = b

where a and b are elements in Fm
2 and a 6= 0.

To study Boolean functions with δ = 4, 6 . . .
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Some perspective – Differentially 4-uniform function

The function f : Fq −→ Fq is differentially 4-uniform if and only
if the set of points (x , y , z, t) such that

S

{
f (x) + f (y) + f (z) + f (x + y + z) = 0
f (x) + f (y) + f (t) + f (x + y + t) = 0

is contained in the hypersurface
(x + y)(x + z)(x + t)(y + z)(y + t)(z + t)(x + y + z + t) = 0.

The surface S is reducible.
Can one get a nice bound?
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