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Notations

We fix a perfect field k. Since our aim is cryptographic applications of elliptic
curves, most of the time k will be a finite field.
An elliptic curve E is a smooth complete curve of genus 1 with a base point 0E .
This base point uniquely determine a structure of algebraic group on E .
If k is a finite field, every smooth complete curve of genus 1 has a rational point,
so is an elliptic curve.
An elliptic curve E/Fq over a finite field of characteristic p is said to be
supersingular if #E[p] = {0}. In this case #E[pn] = {0} for all n. Otherwise,
#E[pn] = pn for all n, and E is said to be ordinary.
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Complex elliptic curve

Over C: an elliptic curve is a torus E =C/Λ, where Λ is a lattice Λ=Z+τZ,
(τ �H).
Let ℘(z,Λ) =

∑

w�Λ\{0E }
1

(z−w)2
− 1

w2 be the Weierstrass ℘-function and

E2k (Λ) =
∑

w�Λ\{0E }
1

w2k be the Eisenstein series of weight 2k.

ThenC/Λ→ E , z 7→ (℘′(z,Λ),℘(z ,Λ)) is an analytic isomorphism to the elliptic
curve

y2 = 4x3− 60E4(Λ)− 140E6(Λ).
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Isogenies between elliptic curves

Definition

An isogeny is a (non trivial) algebraic map f : E1→ E2 between two elliptic curves
such that f (P +Q) = f (P )+ f (Q) for all geometric points P,Q � E1.

Example

If E is an elliptic curve, the multiplication by [m] is an isogeny.
If E : y2 = x3+ ax + b is an elliptic curve defined over a finite field Fq of
characteristic p, the Frobenius E → E (p), (x, y) 7→ (x p , y p ) is an isogeny.
Let E be the elliptic curve y2 = x3+ x over F17. Let f be the map
f (x, y) = (x, 4y). Is f an isogeny?

Remark

Isogenies are surjectives. In particular, if E is ordinary, any isogenous curve to E is also
ordinary.
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Isogenies and algebraic maps

Theorem

An algebraic map f : E1→ E2 is an isogeny if and only if f (0E1
) = f (0E2

)

Proof.

Over C: a bit of work on analytic functions.

Corollary

An algebraic map between two elliptic curves is either
trivial (i.e. constant)
or the composition of a translation with an isogeny.
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Equivalent isogenies

Two isogenies f1 : E1→ E2 and f2 : E ′1→ E ′2 are equivalent if the following diagram commutes:

E1 E2

E ′1 E ′2

f1

f2

∼ ∼

Let E1 : y2 = x3+ 4x + 2 and E2 : y2 = x3+ 8x + 7 be two elliptic curves over F17.

Let f1 : E1→ E1 be the isogeny given by

(
x9 − x8 + 8x7 − 2x6 − 6x5 + 5x4 + x3 − 4x2 + 2

x8 − x7 + 2x6 − 5x5 + 7x4 + 4x3 − 8x2 + 3x − 2
,

x12y + 7x11y + 8x10y − 2x9y + 6x8y + 5x7y + 8x6y + 2x5y + 7x4y − 6x3y − 7x2y + 5xy + 4y

x12 + 7x11 − 3x10 + 7x9 − 2x8 + 2x7 − 4x6 − 6x5 − 8x4 − 5x3 + 3x2 + 6x + 3
)

Let f2 : E1→ E2 be the isogeny given by

(
x9 + 3x7 − 5x6 + 4x5 − 5x4 − 3x3 + 6x2 − 2x + 6

−8x8 + 8x6 + 8x5 + 4x4 − 4x3 − 5x2 − 3x + 1
,

x12y + 3x10y − 2x9y − 5x8y − 8x7y − 4x6y − x5y − 7x4y + x3y − 6x2y − 2xy − 6y

−7x12 + 2x10 + 2x9 − 8x8 − 2x7 − 8x6 − x5 − 5x4 + 8x3 − 2x2 + 4x + 1
)

Is f1 equivalent to f2?
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Equivalent isogenies

f1 and f2 have the same degrees. But E1 ̸= E2!
But they have the same j -invariant ( j = 4), so they are isomorphics.

We could compose f2 with an isomorphism E2
∼→ E1 and test if it is equal to f1.

But even if the curves were equal, we could still compose with automorphisms.
So we have to construct “canonical” isogenies from f1 and f2.
Easier way: compute the kernels!

ker f1 = x4+ 8x2+ 8x + 6

ker f2 = x4+ 8x3+ 3x2+ 16x + 7

The kernel are different, hence the isogenies are not the same. (Since
Aut(E1) = {±1}).
Exercice: prove that f1 is equivalent to the multiplication by 3.
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Isogenies and kernels

Definition (Kernel)

The kernel ker f of an isogeny f : E1→ E2 is the set of geometric points P � E1 such
that f (P ) = 0E2

.

Definition (Degree)

The degree of an isogeny f is the degree of the extension field [k(E1) : f ∗k(E2)]. An
isogeny is separable iff #ker f = deg f .

The Frobenius is an inseparable isogeny of degree p.
Every isogeny is the composition of a separable isogeny with a power of the
Frobenius⇒ from now on we only focus on separable isogenies.

Theorem

There is a bijection between separable isogenies and finite subgroups of E:

( f : E1→ E2) 7→ ker f
(E1→ E1/G) 7→G
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Isogenies and multiplications

If H ⊂G are finite subgroups of E , then the isogeny E → E/G splits as
E → E/H → (E/H )/(G/H ).
In particular, for every (separable) isogeny f : E → E ′, there exists a
contragredient isogeny f ′ : E ′→ E such that f ′ ◦ f = [m], where m is the
exponent of ker f .

We can also identify f ′ as the dual isogeny f̂ of f (if m = deg f ):

0 K E E ′ 0

0 Ê Ê ′ K̂ 0

f

f̂
∼ ∼
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Algorithms for manipulating isogenies

1 Given a finite subgroup G ⊂ E , construct the isogeny E/G.

2 Given E1 and E2, test if they are isogenous. If so construct an (or all) isogenies
E1→ E2.

3 Given E and ℓ, find ℓ-isogenous curves to E (and iterate to construct the isogeny
graph).

4 Find cyclic rational subgroups of E (by using the correspondance between
isogenies and kernels).

Remark

Algorithm 4 can be obtained by combining algorithms 2 and 3: first compute all
ℓ-isogenous curves E ′, and from them compute the isogeny E → E ′ of degree ℓ, whose
kernel give a cyclic subgroup of E[ℓ].
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Destructive cryptographic applications

An isogeny f : E1→ E2 transports the DLP problem from E1 to E2. This can be
used to attack the DLP on E1 if there is a weak curve on its isogeny class (and an
efficient way to compute an isogeny to it).

Example

extend attacks using Weil descent [GHS02] (remember Vanessa’s talk!)

Transfert the DLP from the Jacobian of an hyperelliptic curve of genus 3 to the Jacobian
of a quartic curve [Smi09].
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Constructive cryptographic applications

One can recover informations on the elliptic curve E modulo ℓ by working over
the ℓ-torsion.
But by computing isogenies, one can work over a cyclic subgroup of cardinal ℓ
instead.
Since thus a subgroup is of degree ℓ, whereas the full ℓ-torsion is of degree ℓ2, we
can work faster over it.

Example

The SEA point counting algorithm [Sch95; Mor95; Elk97] (go to François’ talk for more
details).

The CRT algorithms to compute class polynomials [Sut09; ES10].

The CRT algorithms to compute modular polynomials [BLS09].
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Further applications of isogenies

Splitting the multiplication using isogenies can improve the arithmetic
(remember Laurent’s talk) [DIK06; Gau07].
The isogeny graph of a supersingular elliptic curve can be used to construct
secure hash functions [CLG09].
Construct public key cryptosystems by hiding vulnerable curves by an isogeny
(the trapdoor) [Tes06], or by encoding informations in the isogeny graph
[RS06].
Take isogenies to reduce the impact of side channel attacks [Sma03].
Construct a normal basis of a finite field [CL09].
Improve the discrete logarithm in F∗q by finding a smoothness basis invariant by
automorphisms [CL08].
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Class of isomorphisms of elliptic curves

Every elliptic curve has a Weierstrass equation:

y2+ a1xy + a3y = x3+ a2x2+ a4x + a6 (1)

with the discriminant∆E =−b2b8− 8b3− 27b2+ 9b2b4b6 ̸= 0.
(Here b2 = a2

1 + 4a2 , b4 = 2a4+ a1a3 , b6 = a2
3 + 4a6 ,

b8 = a2
1a6+ 4a2a6− a1a3a4+ a2a2

3 − a2
4 ).

The j -invariant of E is

jE =
(b 2

2 − 24b4)
3

∆E

Theorem

Two elliptic curves E and E ′ are isomorphics over k if and only if jE = jE ′ .
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The case of a finite field of characteristic p > 3

We can always write the Weierstrass equation as

y2 = x3+ ax + b .

The discriminant is −16(4a3+ 27b 2).
The j -invariant is

jE = 1728
4a3

4a3+ 27b 2
.
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Isomorphisms

The isomorphisms (over k) of isomorphisms of elliptic curves in Weierstrass
form are given by the maps

(x, y) 7→ (u2x + r, u3y + u2 s x + t )

for u, r, s , t � k, u ̸= 0.
If we restrict to elliptic curves of the form y2 = x3+ ax + b then s = t = 0.

Proposition

Let E/Fq and E ′/Fq be two ordinary elliptic curves such that jE = jE ′ . Then

E ≃ E ′ over Fq

⇔ E and E ′ are isogenous over Fq

⇔ #E = #E ′.
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Twists

A twist of an elliptic curve E/Fq is an elliptic curve E ′/Fq isomorphic to E over

Fq but not over Fq .

Every elliptic curve E : y2 = x3+ ax + b has a quadratic twist

E ′ : δy2 = x3+ ax + b

for any non square δ � Fq . E and E ′ are isomorphic over F2
q .

If E/Fq is an ordinary elliptic curve with jE ̸� {0,1728} then the only twist of E
is the quadratic twist. If jE = 1728, then E admits 4 twists. If jE = 0, then E
admits 6 twists.
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When are two elliptic curves isogenous?

Theorem (Tate)

Two elliptic curves over Fq are isogenous if and only if they have the same cardinal.

Proof.

If E and E ′ are isogenous, they have the same cardinal: use the dual isogeny and
look at the action of the Frobenius on E[ℓ] for ℓ not dividing the degree of the
isogeny.
The reciprocal is a theorem of Tate.
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Isogenies between two elliptic curves

In this slide, E1/Fq and E2/Fq are ordinary elliptic curves over Fq .

If E1 and E2 are isogenous, then any isogeny over Fq is in fact Fq -rational.

If f : E1→ E2 is an isogeny over Fq of prime degree, then there exist twists E ′1
and E ′2 of E1 and E2 such that f descends to an Fq -rational isogeny f : E ′1→ E ′2.

Either HomFq
(E1, E2) = {0} or HomFq

(E1, E2) is a free Z-module of rank 2.
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Computing explicit isogenies

If E1 and E2 are two elliptic curves given by Weierstrass equations, a morphism
of curve f : E1→ E2 is of the form

f (x, y) = (R1(x, y), R2(x, y))

where R1 and R2 are rational functions, whose degree in y is less than 2 (using
the equation of the curve E1).
If f is an isogeny, f (−P ) =− f (P ). If car k > 3 so we can assume that E1 and E2
are given by reduced Weierstrass forms, this mean that R1 depends only on x,
and R2 is y time a rational function depending only on x.
Let wE = d x/2y be the canonical differential. Then f ∗wE ′ = cwE , with c in k.
This show that f is of the form

f (x, y) =

 

g (x)

h(x)
, cy
�

g (x)

h(x)

�′!

.

h(x) give (the x coordinates of the points in) the kernel of f (if we take it prime
to g ).
If c = 1, we say that f is normalized.
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Isogeny from the kernel

Remark

Every isogeny is a composition of a multiplication by [m] and an isogeny with cyclic
kernel (we could even further reduce to a composition with cyclic kernels of prime orders).

Let E/k be an elliptic curve. Let G = 〈P 〉 be a rational finite subgroup of E . We
want to construct the isogeny E → E/G.
We need to find the Weierstrass coordinates X ,Y on k(E/G). But
k(E/G) = k(E)G are the rational functions on E invariants under translation by
a point of G.
Moreover the Weierstrass coordinates x and y on E are characterized (up to
isomorphism) by

v0E
(x) =−2 vP (x)¾ 0 if P ̸= 0E

v0E
(y) =−3 vP (y)¾ 0 if P ̸= 0E

y2/x3(0E ) = 1
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Vélu’s formula

Vélu constructs the isogeny E → E/G as

X (P ) = x(P )+
∑

Q�G\{0E }
(x(P +Q)− x(Q))

Y (P ) = y(P )+
∑

Q�G\{0E }
(y(P +Q)− y(Q)) .

The choices are made so that the formulas give a normalized isogeny.
Moreover by looking at the expression of X and Y in the formal group of E ,
Vélu recovers the equations for E/G.
For instance if E : y2 = x3+ ax + b = f (x) then E/G is

y2 = x3+(a− 5t )x + b − 7w

where t =
∑

Q�G\{0E }
f ′(Q), u = 2

∑

Q�G\{0E }
f (Q) and w =

∑

Q�G\{0E }
x(Q) f ′(Q).
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Complexity of Vélu’s formula

Even if G is rational, the points in G may live to an extension of degree up to
#G− 1.
Thus summing over the points in the kernel G can be expensive.
Let h(x) =

∏

Q�G\{0E }(x − x(Q)). The symmetry of X and Y allows us to
express everything in term of h.
For instance is E is given by a reduced Weierstrass equation y2 = f (x), we have

f (x, y) =

 

g (x)

h(x)
, y
�

g (x)

h(x)

�′!

, with

g (x)

h(x)
= #G.x −σ − f ′(x)

h ′(x)
h(x)
− 2 f (x)

�

h ′(x)
h(x)

�′
,

where σ is the first power sum of h (i.e. the sum of the x-coordinates of the
points in the kernel).
When #G is odd, h(x) is a square, so we can replace it by its square root.
The complexity of computing the isogeny is then O(M (#G)) operations in k.
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Computing isogenous curves from E

Let E be an elliptic curve and ℓ a prime number. We want to compute all
ℓ-isogenous elliptic curves to E .
Easy! Compute the rational cyclic subgroups of E[ℓ] and apply Vélu’s formulas.
These subgroups can be obtained as factors of the ℓ-division polynomial
∏

Q�E[ℓ]\{0E }(x − x(Q)).

But the division polynomial has degree (ℓ2− 1)/2 (if ℓ odd), and factorizing it
will cost O(ℓ3.63). We only want to compute isogenies of degree ℓ. Can we do
better?
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Modular polynomials

Here k = k.

Definition (Modular polynomial)

The modular polynomial ϕℓ(x, y) �Z[x, y] is a bivariate polynomial such that
ϕℓ(x, y) = 0⇔ x = j (E) and y = j (E ′) with E and E ′ ℓ-isogeneous.

Roots of ϕℓ( j (E), .)⇔ elliptic curves ℓ-isogeneous to E .
There are ℓ+ 1= #P1(Fℓ) such roots if ℓ is prime.
ϕℓ is symmetric.
The height of ϕℓ grows as O(ℓ).
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Rational roots of the modular polynomials

Theorem

Let E/Fq be an ordinary elliptic curve with j -invariant not equal to 0 or 1728.

Let ℓ be prime and j ′ be a root of ϕℓ( jE , ·) over Fqn .

Then j ′ corresponds to a Fqn -rational ℓ-isogeny E → E ′.

Proof.

There exist a Fq -isogeny between E and E ′ so a Fqn -isogeny on twists of E and E ′.
But with the hypothesis, the only twist of E is the quadratic one, so by applying a
quadratic twist to the isogeny, we find a Fqn -rational isogeny starting from E .

Corollary

We can use the modular polynomial ϕℓ to construct ℓ-isogeny graphs!
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Computing the modular polynomial

1 The complex analytic method: if we see τ 7→ j (τ) and τ 7→ j (τ/ℓ) as a modular
functions on H; then ϕℓ(·, j ) is the minimal polynomial of j (·/ℓ) in C( j ). One
can then recover the polynomial by computing the Fourrier coefficients of j and
j (·/ℓ) with high precision.

2 The CRT method: use Vélu’s formulas to compute ϕℓ mod p for small p and
the CRT to recover the full modular polynomial.

Remark

Using asymptotically fast algorithms, both algorithms are quasilinear in the size ℓ3

of ϕℓ, so the computations are memory bounded. But the CRT algorithm allow to
compute the specialization ϕℓ( j , ·) � Fp[x] directly and is the faster in practice.

To reduce the size of the coefficients, one use a different modular function in X ∗0 (ℓ)
than j (τ/ℓ).



Isogenies on elliptic curves — Algorithms for computing isogenies 30 / 66

Finding an isogeny between two isogenous elliptic curves

Let E and E ′ be ℓ-isogenous abelian varieties (we can check that ϕℓ( jE , jE ′) = 0.
We want to compute the isogeny f : E → E ′.
The explicit forms of isogenies are given by Vélu’s formula, which give
normalized isogenies. We first need to normalize E ′.
Over C, the equation of the normalized curve E ′ is given by the Eisenstein series
E4(ℓτ) and E6(ℓτ). We have j ′(ℓτ)/ j (ℓτ) =−E6(τ)/E4(τ). By differencing the
modular polynomial, we recover the differential logarithms.
We obtain that from E : y2 = x3+ ax + b , a normalized model of jE ′ is given by
the Weierstrass equation

y2 = x3+Ax +B

where A=− 1
48

J 2

jE ′ ( jE ′−1728) , B =− 1
864

J 3

j 2
E ′ ( jE ′−1728)

and J =− 18
ℓ

b
a
ϕ′(X )
ℓ
( jE , jE ′ )

ϕ′(Y )
ℓ
( jE , jE ′ )

jE .

Remark

E2(τ) is the differential logarithm of the discriminant. Similar methods allow to recover
E2(ℓτ), and from it σ =

∑

P�K\{0E } x(K).
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Finding the isogeny between the normalized models (I:
Stark’s method)

We need to find the rational function I (x) = g (x)/h(x) giving the isogeny
f : (x, y) 7→ (I (x), yI ′(x)) between E and E ′.
Over C the coordinates of the elliptic curve are given by the elliptic functions:
x =℘(z) and y =℘′(z).
We have to find I such that ℘E ′(z) = I ◦℘E (z).
Stark’s idea is to develop ℘E ′ as a continuous fraction in ℘E , and approximate I
as pn/qn .

This algorithm is quasi-quadratic ( eO(ℓ2)).
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Finding the isogeny between the normalized models (II:
Elkie’s method)

We need to find the rational function I (x) = g (x)/h(x) giving the isogeny
f : (x, y) 7→ (I (x), yI ′(x)) between E and E ′.
Plugging f into the equation of E ′ shows that I satisfy the differential equation

(x3+ ax + b )I ′(x)2 = I (x)3+AI (x)+B .

Using an asymptotically fast algorithm to solve this equation yields I (x) in time
quasi-linear ( eO(ℓ)).
Knowing σ gains a logarithmic factor.
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Finding an isogeny between two isogenous elliptic curves
(the case of small characteristic)

The preceding algorithm needs p > 8ℓ− 5 to solve the differential equation.

Idea in small characteristic: lift the curves toQq by taking lifts ejE and ejE ′ such

that ϕℓ(ejE , ejE ′) = 0 and apply the preceding algorithm.
Even if E ′ is normalized, we need the modular polynomial to lift E ′ and
normalize the lift.
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Finding an isogeny: total complexity

To summarize, we have the following algorithm to find an isogeny from E in large
characteristic:

Algorithm ([BMS+08])

1 Compute ϕℓ (cost eO(ℓ3))
2 Specialize on jE to obtain ϕℓ(X , jE ) (cost eO(ℓ2 log q))
3 Find a root jE ′ of ϕℓ(X , jE ) to obtain the j -invariant of a ℓ-isogenous curve E ′ (cost
eO(ℓ log2 q)).

4 Compute the normalized model for E ′ (cost eO(ℓ2 log q)).
5 Solve the differential equation (cost eO(ℓ log q)).
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Finding an isogeny: total complexity

With the adaptation in small characteristic still of total cost eO(ℓ3+ ℓ log2 q):

Algorithm ([LS08])

1 Compute ϕℓ(X , jE ) (cost eO(ℓ3+ ℓ2 log q)).
2 Lift jE and find a root ejE ′ in precision O(1+ log2 ℓ/ log q) (cost eO(ℓ log2 q)).
3 Compute the normalized model for eE ′ (cost eO(ℓ2 log q)).
4 Solve the differential equation inQq (cost eO(ℓ log q)).

5 Reduce in Fq (cost eO(ℓ log q)).
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Finding an isogeny between two isogenous elliptic curves
(the case of small characteristic): Couveigne’s algorithm

Another idea to compute the isogeny in the ordinary case comes from Couveigne:

Algorithm

1 Find generators P and P ′ of the cyclic groups E[pα] and E ′[pα] for pα << ℓ.
2 Interpolate the algebraic map f : E[pα]→ E ′[pα], i P 7→ i P ′.
3 Test if f is an isogeny.

[Cou94] works with formal groups.
[Cou96] use p-descent and towers of Artin-Schreier extensions. The best
implementation [Feo10a] has complexity eO(ℓ2).
But the complexity is exponential in log(p).
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Other algorithms to compute the isogeny

Lercier for p = 2: solve the differential equation using linear algebra. Cost
eO(ℓ3 log q) operations, in practice the fastest for p = 2.

Joux and Lercier: lift inQq with precision O(ℓ). Cost eO(ℓ2(1+ ℓ/p) log q);
useful for the intermediate case p ≈ log q .
When the degree ℓ is not known but only bounded by L. The naive method is to
apply one of the above algorithm for all ℓ≤ L. This increase the cost by a
degree 1 in L. However, Couveigne’s algorithm can be adapted to stay in eO(L2)
[Feo10b].
Subexponential algorithms for computing isogenies of large degree [JS10;
CJS10].
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The characteristic polynomial of the Frobenius

From now on k will represent a finite field: k = Fq .

There exist a unique polynomial χπ such that for every n prime to the
characteristic p, χπ mod n is the characteristic polynomial of the action of the
Frobenius π on E[n] (here π= FrFq

).

We have χπ(π) = 0, and #E = χπ(1).
We have χπ =X 2− tX + q where the trace t is such that |t |¶ 2pq (Hasse).
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The endomorphism ring

Definition

If E1 and E2 are elliptic curves, we note Homk (E1, E2) the Z-module of all
k-morphisms from E1 to E2. The endomorphism ring Endk (E) is then
Endk (E) =Homk (E , E).

We note End0
k (E) = Endk (E)⊗ZQ the endomorphism fraction ring.

Remark

Every non nul element of Homk (E1, E2) is an isogeny (possibly non separable).

End0
k (E1) is a division algebra, and Endk (E1) is an order in it.

If Homk (E1, E2) ̸= 0, then End0
k (E1) = End0

k (E2) and Homk (E1, E2) is a free
Z-module of the same rank as Endk (E1).

If E is the isogeny class of E, End0
k (E) does not depend on the curve E � E .

Endk (E) is either commutative of rank 2, or an order of rank 4 in a quaternion
algebra.
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The ordinary case

If E is ordinary, then
χπ is irreducible.

K = End0
k (E) is a quadratic imaginary field.

K is generated by π: K =Q(π).
Endk (E) is an order O in K .
For any extension k ′ of k we have Endk (E) = Endk ′(E) = Endk (E).

Remark

If k ′ is an extension of k of degree n, then the Frobenius of Ek ′ seen in K is πn .

From now on, we assume that E is ordinary, and we note O = Endk (E) and K the
quadratic imaginary field End0

k (E).
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Automorphisms and twist

The automorphisms of E are the inversible elements in O = End E .
All inversible elements are roots of unity.
We usually have O∗ = {±1} except in the following exceptions:

1 jE = 1728 ( p ̸= 2,3), in this case O is the maximal order inQ(i) and #O∗ = 4;
2 jE = 0 ( p ̸= 2,3), in this case O is the maximal order inQ(ip3) and #O∗ = 6;
3 jE = 0 ( p = 3), in this case E is supersingular and #O∗ = 12;
4 jE = 0 ( p = 2), in this case E is supersingular and #O∗ = 24.

The Frobenius π �K characterizes the isogeny class of E (Tate). A twisted
isogeny class will correspond to a Frobenius π′ ̸=π, where there exist n with
πn =π′n . This give a bijection between the twisted isogeny class and the roots of
unity in K .
More generally, there is a bijection between O∗ and the twists of E .
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Reduction and lifting (see Marco’s talk)

Let O be an order in a imaginary quadratic field K . Then they are hO (the class
number of O) elliptic curves overQ with endomorphism ring O. They are
defined over the ray class field HO of O.
If p -∆O , p is a prime of good reduction. Let p be a prime above p in HO . If p is
inert in K , Ep is supersingular. If p splits, Ep is ordinary, and its endomorphism
ring is the minimal order containing O of index prime to p.
Reciprocally, if E/Fq is an ordinary elliptic curve, the couple (E ,End(E)) can be
lifted overQq .

Corollary

If E/Fq is an ordinary elliptic curve, then End(E) is an order in K =Q(π) of
conductor prime to p. For every order O of K such that Z[π]⊂O, there exist an
isogenous curve whose endomorphism ring is O.
Reciprocally, for every order O of discriminant a non zero square modulo p; let n
be the order of one of the prime above p in the class group of O. Then there exist an
(ordinary) elliptic curve E ′ over Fqn with End(E ′) =O.
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The structure of the rational points

Theorem (Lenstra)

Let E/Fq be an ordinary elliptic curve. We have as EndFq
(E)-modules

E(Fqn )≃
EndFq

(E)

πn − 1

Corollary

Let a, m �Z be such that OK =Z[π−a
m ].

Let γE be the index of O in OK .
Then E(Fq ) =Z/n1Z⊕Z/n2Z where n1 | n2 and n1n2 = #E(Fq ).

Explicitly, we have: n1 = gcd(a− 1, m/γE ).

Exercice: show that n1 | q − 1 (use the Weil pairing).
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Endomorphisms and isogenies

Let f : E1→ E2 be an isogeny of degree ℓ prime. Then either
1 f is an ascending isogeny: O1 ⊂O2 with [O2 : O1] = ℓ;
2 f is a descending isogeny: O2 ⊂O1 with [O1 : O2] = ℓ;
3 f is an horizontal isogeny: O1 =O2.

The horizontal case can only happen when O1 is maximal locally in ℓ:
(O1)ℓ = (OK )ℓ.
Let ker f be the kernel of f . Let O f ⊂O1 be the subring (of index ℓ) of isogenies
fixing ker f . Then f induce an injection O f ,→O2.

If ψ �O∗1 is an automorphism, then either ψ fixes ker f and descends to an
automorphism of O2, or ψ induce an isogeny equivalent to f .
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Isogeny graph: the local picture

Let E be an ordinary elliptic curve with endomorphism ring O, and ℓ ̸= p be a
prime.
We note∆ the discriminant of OK , and∆π = t 2− 4 p the discriminant of χπ.
We have∆π = γ

2∆, where γ is the conductor of Z[π]⊂OK .
We note ν the ℓ-adic valuation of γ , and νE the ℓ-adic valuation of the conductor
γE of O ⊂OK .
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Isogeny graph: horizontal isogenies

If ν = 0, then every ℓ-isogeny is horizontal, and there are 1+ ∆
ℓ

such isogeny. More
precisely:

1 If ℓ splits in O. In this case ∆π is a non zero square mod ℓ, and the Frobenius

acts on E[ℓ] as
�

λ 0
0 µ

�

where the two eigenvalues λ and µ are distinct. The modular

polynomial splits into irreducible factors of degree 1, 1, r , . . . , r where r is the order of
λ/µ � Fℓ. There are 2 horizontal isogenies.

2 If ℓ is inert in O. Then∆π is not a square modulo ℓ. The two eigenvalues λ and µ
are conjugate in Fℓ2 \Fℓ. The modular polynomial splits as irreducible factors of degree
r , where r is the smallest number such that λr � Fℓ (or equivalently such that πr acts
like a scalar on E[ℓ]). There are no horizontal isogenies.

3 If ℓ is ramified in O. Then∆π ≡ 0 mod ℓ. In this case π acts on E[ℓ] as
�

λ 1
0 λ

�

.

The modular polynomial splits into two irreducible factors of degree 1 and ℓ. There is
one horizontal isogeny.
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Isogeny graph: vertical isogenies

If ν ̸= 0. Then
If νE = 0, that is if Oℓ = (OK )ℓ. There are 1+ ∆

ℓ
horizontal isogenies, and ℓ− ∆

ℓ
descending isogenies (that is ℓ− 1, ℓ+ 1 or ℓ whether ℓ splits, is inert or is
ramified in OK ).
If 0< νE < ν , there is one ascending isogeny, and ℓ-descending ones.
If νE = ν , that is Oℓ =Z[π]ℓ, there is only one ascending isogeny.

In the first two cases, π acts as a scalar on E[ℓ] (and the modular polynomial splits completely), while in

the last case π acts as
�

λ 1
0 λ

�

(and the modular polynomial splits into two irreducible factors of degree 1

and ℓ).
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Isogeny graph: graphic interpretation of the local picture

The isogeny graph looks like a volcano [FM02]:
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Isogeny graph: graphic interpretation of the local picture

The volcano has height ν .
The crater has length:

1 0 if ℓ is inert;
2 1 if ℓ splits;
3 the order of l in the class group of the order of the curves in the crater when ℓ splits

as ll.

Taking an extension only increase the height of the volcano;
If the height ν is non 0, then the only extension increasing the height are of
degrees d with ℓ | d .
If d = ℓ the height increase only by one (except possibly when ℓ= 2 and ν = 1).
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The structure of the ℓ∞-torsion in the volcano

If E is on the floor, then E[ℓ∞](Fq ) is cyclic: E[ℓ∞](Fq ) =Z/ℓmZ (possibly
m = 0).
If E is on level α < m/2 above the floor, then E[ℓ∞](Fq ) =Z/ℓα⊕Z/ℓm−α.
If E is on level α≥ m/2, then m is even and E[ℓ∞](Fq ) =Z/ℓm/2⊕Z/ℓm/2.

0 E[ℓ∞](Fq ) =Z/ℓm/2Z⊕Z/ℓm/2Z

1 E[ℓ∞](Fq ) =Z/ℓm/2Z⊕Z/ℓm/2Z

ν − 2 E[ℓ∞](Fq ) =Z/ℓ2Z⊕Z/ℓm−2Z

ν − 1 E[ℓ∞](Fq ) =Z/ℓZ⊕Z/ℓm−1Z

ν E[ℓ∞](Fq ) =Z/ℓmZ
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The global structure

Theorem (Complex multiplication)

Let E be an elliptic curve with endomorphism ring O. Then the set of horizontal isogenies
form a principal homogeneous space under the class group of O.

This yield the following global picture (courtesy of Gaetan Bisson):

`1`2

OQ(π)

Z[π,π]

O`2
O`1

O`1`2
O`2

1

`1`2
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Finding the endomorphism ring

Locally: for each ℓ | γ , follow 3 paths in the ℓ-volcano. The first path reaching
the floor give us the height of the curve in the volcano.
Since γ ≈pq , this is exponential.
Globally, by using relations in the class groups of the orders. If R is a relation in
Cl(O) but the corresponding isogeny path is not cyclic then we know that
O ̸⊂ End(E). This give a subexponential algorithm (under GRH). More details
will be given in Gaetan’s talk next week.
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Cryptographic applications of the endomorphism ring

It is a finer grained invariant than the number of point.
It gives an idea of “where we are” in the full isogeny graph.
It is used by the CRT method to compute class polynomials: from a curve in the
isogeny class, we want to find a curve with maximal endomorphism ring.
The cycle in the crater can be used to compute χπ mod ℓn .
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Isogeny class of supersingular curves

Let q = pn . The isogeny classes of elliptic curves are given by the value of the trace t
by Tate’s theorem. The possible value of t are:

t prime to p, in this case the isogeny class is ordinary.
The other cases give supersingular elliptic curves. The endomorphism fraction
ring End0

k (E ) of the isogeny class is either a quaternion algebra of rank 4, or an
imaginary quadratic field. In the latter case, it will become maximal after an
extension of degree d , with:

1 If n is even:
t =±2pq , this is the only case where End0

k (E ) is a quaternion algebra.
t =±pq when p ̸≡ 1 mod 3, here d = 3.
t = 0 when p ̸≡ 1 mod 4, here d = 2.

2 If n is odd:
t = 0, here d = 2.
t =±p2q when p = 2, here d = 4.
t =±p3q when p = 3, here d = 6.
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The commutative case

If K = End0
k (E) is commutative, then χπ is irreducible and K =Q(π). Z[π] is

maximal for every ℓ ̸= {2, p}.
The endomorphism rings of the isogeny class are the orders containing Z[π]
maximal at p.
If O is such an order, the class group Cl(O) acts principally on the set of elliptic
curves in the isogeny class with O as ring of endomorphisms.
If k ′ is such that End0

k ′(E) is maximal (i.e. a quaternion algebra), then it can
happen that some curves E ′ in the isogeny class become isomorphic to E over k ′.



Supersingular elliptic curves — 56 / 66

The maximal case

If K = End0
k (E) is non commutative, then it is the quaternion algebra ramified

only at p and∞. The frobenius π= p m/2 �Z and χπ is a square. The
endomorphism rings in the isogeny class corresponds to the maximal orders of
K .
If O is any maximal order of K , then the isogeny class of E (up to isomorphism)
is of size #Cl(O). There is one or two curve in the isogeny class with
endomorphism ring O, according to whether p is principal or not, where p is
the ideal such that p2 = p.
If n is even there are two isogeny classes (quadratic twists of each other) with a
maximal endomorphism ring.

Remark

Any two supersingular elliptic curves become isogenous after a quadratic extension of
degree 2d (with d the degree where their endomorphism ring become maximal). But a
new maximal class and up to 3 commutative classes appear in this extension.
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Supersingular elliptic curves over Fp

In characteristic p, every supersingular curve is defined over Fp2 .

For every ℓ ̸= p, the isogeny graph of supersingular curves (up to twists) over
Fp2 is connected. It has p/12+O(1) vertices, and diameter O(log p).

The absolute endomorphism ring Endk (E) of a supersingular curve is a maximal
order in the quaternion algebra ramified only at p and∞.
There is a bijection between the set of such orders, and the set of supersingular
elliptic curve (up to an action of Gal(Fp2/Fp )).
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Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.
The group law is abelian.
A (separable) isogeny is a finite surjective (separable) morphism between two
Abelian varieties.

Example

Abelian varieties of dimension 1 are elliptic curves.
The Jacobian of a curve of genus g is an abelian variety of dimension g .
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Non absolutely simple abelian varieties

Definition

An abelian variety Ak is simple if the only subvariety of Ak are 0Ak
and itself.

Ak is absolutely simple if it is simple over k.

Even if an abelian variety A is ordinary, lot of funny things can happen if it is not
absolutely simple:

Not every non zero morphism is an isogeny.
The endomorphism ring End0(A) = End(A)⊗Qmay not be a division algebra.
We can have End0

k ′(A) ̸= End0
k (A) for extensions k ′ of k.

A can be isogenous to another abelian variety A′, isomorphic to it over an
extension of k, but not isomorphic to it over k.
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Decomposing abelian varieties

Theorem (Poincaré-Weil)

Every abelian variety A is isogenous to a product of simple abelian varieties A=
∏

Ami
i .

The decomposition is entirely determined by χπA
.

End0(Ai ) is a division algebra.

End0(A) =
∏

Mmi
(End0(Ai )).

Theorem (Tate)

H omk (A,B) is free of rank the number of common roots (with multiplicity) of χπA
and

χπB
.
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Endomorphism rings of abelian varieties

Let A be a simple abelian variety of dimension g . Then
1 χπ = me

A where mA is the minimal polynomial of the Frobenius and is
irreducible.

2 End0(E) is a division algebra of centerQ(π). The type of End0(E) is entirely
determined by π.

3 We have 2g = d e , where d is the degree of mA. End0(E) is of rank d e2.

Remark

If A is ordinary, then e = 1, χπ is irreducible and K = End0
k (E) is a CM-field of

rank 2g .
Moreover if A is absolutely simple, then K =Q(π) =Q(πn) for every n and
Endk (A) = Endk (A).



Abelian varieties — 63 / 66

Computing isogenies and endomorphisms

In dimension 2, one can define modular polynomials using the Igusa invariants
[Gau00; Dup06; BL09]. But these are too big to compute even for ℓ¾ 3.
We have an equivalent of Vélu’s formula for maximally isotropic kernels [LR10;
CR11].
We also have subexponentials algorithms to compute the endomorphism ring in
dimension 2 [Bis11b].
See the package AVIsogenies [BCR10] for an implementation of isogenies and
endomorphism ring computation (mostly restricted to dimension 2 for now).
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Isogeny graph in genus 2: example of horizontal isogenies
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Isogeny graph in genus 2: vertical isogenies

Computations done by Gaetan Bisson using AVIsogenies.

3 3

3 3
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Isogeny graph in genus 2: vertical isogenies



References — 66 / 66

Outline

1 Isogenies on elliptic curves

2 Endomorphisms

3 Supersingular elliptic curves

4 Abelian varieties

5 References



References — 66 / 66

Elliptic curves

For a meta look at attacks on elliptic curves using isogenies to transfert the DLP: [KKM09,
Section 11.2].

Computing the modular polynomial: [Eng09a; BLS09].

Different methods to compute class fields polynomials (the best known methods use the CRT and
isogenies): [Eng09b; Sut09; ES10].

Explicit isogenies in large characteristic: see [Elk92; Elk97]; and [BMS+08] for the best current
known algorithm, with a nice history of previous methods.

Explicit isogenies in small characteristic: [JL06; LS08] for methods based on lifting, [Cou94; Cou96]
for Couveigne’s algorithm. The current best implementation of Couveigne’s algorithm is in
[Feo10a], a nice summary is in [Feo10b].

Some papers on SEA point counting algorithm [Sch95; Mor95; Elk97; Ler97].

About isogenies and isomorphisms descending to the base field, see [Cox89, Proposition 14.19] and
[Sch95, Proposition 6.1].

See [Sil86, Chapter X, Theorem 2.2] for the equivalence between automorphisms and twists.

An algorithm to compute endomorphism ring was developed in Kohel’s thesis [Koh96]. Some
extensions to supersingular curves are in [ML04; Cer04].

Developing the result of Kohel’s led to the notion of “isogeny volcano” [FM02] and improvements
of the computation of the endomorphism ring [Fou01] with applications to the CRT method to
compute class polynomials.

Finally, a subexponential algorithm is developped in [BS09; Bis11a; Bis11b].

One can also use the cycle given by the crater of the volcano to recover the trace of the Frobenius
modulo a power of ℓ [CM94; CDM96; FM02; Fou01].
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Using pairings to go up in the Volcano [IJ10]. The ℓ∞-torsion in the volcano is described there, and
also in [MMS+06].

Abelian varieties

For an introduction to abelian variety, see [Mil91]. For more informations, see [Mum70], with
[Mil85; Mil86] for simplified proofs using étale cohomology, and [GM07] for a more recent account.
For abelian varieties over C, see [Mum83; Mum84; Mum91] and a more recent account in [BL04].

Some nice informations on abelian varieties over finite fields (Tate’s theorem, Honda-Tate theory) see
[WM71] and [Wat69] for a more complete treatment.

A description of ordinary abelian variety over a finite field is given by an equivalence of category
[Del69], the link is further studied in [How95].

For algebraic theta functions, see [Mum66; Mum67a; Mum67b], and some new results in [Kem89].

Computing modular polynomials in genus 2: [Gau00; Dup06; BL09]. Computing a certain modular
correspondance using theta functions [FLR11].

Computing isogenies in abelian varieties using theta functions [LR10; CR11].

For an introduction to the use of theta functions in cryptography (arithmetic, pairings, isogenies) see
[Rob10].

Computing endomorphism ring see [EL07; FL08; Wag09; Bis11b].
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