Isogenies and endomorphism rings of elliptic curves ECC Summer School

Damien Robert

Microsoft Research

15/09/2011 (Nancy)

- Isogenies on elliptic curves
- 2 Endomorphisms
- Supersingular elliptic curves
- 4 Abelian varieties
- S References

Outline

Isogenies on elliptic curves

- Definitions
- Cryptographic applications of isogenies
- Isomorphisms and twists
- Algorithms for computing isogenies

2 Endomorphisms

Supersingular elliptic curves

4 Abelian varieties

5 References

- We fix a perfect field k. Since our aim is cryptographic applications of elliptic curves, most of the time k will be a finite field.
- An elliptic curve E is a smooth complete curve of genus 1 with a base point O_E . This base point uniquely determine a structure of algebraic group on E.
- If *k* is a finite field, every smooth complete curve of genus 1 has a rational point, so is an elliptic curve.
- An elliptic curve E/F_q over a finite field of characteristic p is said to be supersingular if #E[p] = {0}. In this case #E[pⁿ] = {0} for all n. Otherwise, #E[pⁿ] = pⁿ for all n, and E is said to be ordinary.

Complex elliptic curve

- Over \mathbb{C} : an elliptic curve is a torus $E = \mathbb{C}/\Lambda$, where Λ is a lattice $\Lambda = \mathbb{Z} + \tau \mathbb{Z}$, $(\tau \in \mathfrak{H})$.
- Let $\wp(z, \Lambda) = \sum_{w \in \Lambda \setminus \{0_E\}} \frac{1}{(z-w)^2} \frac{1}{w^2}$ be the Weierstrass \wp -function and $E_{2k}(\Lambda) = \sum_{w \in \Lambda \setminus \{0_E\}} \frac{1}{w^{2k}}$ be the Eisenstein series of weight 2k.
- Then $\mathbb{C}/\Lambda \to E, z \mapsto (\wp'(z, \Lambda), \wp(z, \Lambda))$ is an analytic isomorphism to the elliptic curve

$$y^2 = 4x^3 - 60E_4(\Lambda) - 140E_6(\Lambda).$$

Isogenies between elliptic curves

Definition

An isogeny is a (non trivial) algebraic map $f: E_1 \to E_2$ between two elliptic curves such that f(P+Q) = f(P) + f(Q) for all geometric points $P, Q \in E_1$.

Example

- If E is an elliptic curve, the multiplication by [m] is an isogeny.
- If E: y² = x³ + ax + b is an elliptic curve defined over a finite field F_q of characteristic p, the Frobenius E → E^(p), (x, y) → (x^p, y^p) is an isogeny.
- Let *E* be the elliptic curve $y^2 = x^3 + x$ over \mathbb{F}_{17} . Let *f* be the map f(x, y) = (x, 4y). Is *f* an isogeny?

Remark

Isogenies are surjectives. In particular, if E is ordinary, any isogenous curve to E is also ordinary.

7 / 66

Isogenies and algebraic maps

Theorem

An algebraic map
$$f: E_1 \to E_2$$
 is an isogeny if and only if $f(O_{E_1}) = f(O_{E_2})$

Proof.

Over \mathbb{C} : a bit of work on analytic functions.

Corollary

An algebraic map between two elliptic curves is either

- trivial (i.e. constant)
- or the composition of a translation with an isogeny.

Equivalent isogenies

• Two isogenies $f_1: E_1 \to E_2$ and $f_2: E'_1 \to E'_2$ are equivalent if the following diagram commutes:

- Let $E_1: y^2 = x^3 + 4x + 2$ and $E_2: y^2 = x^3 + 8x + 7$ be two elliptic curves over \mathbb{F}_{17} .
- Let $f_1: E_1 \to E_1$ be the isogeny given by

$$(\frac{x^9 - x^8 + 8x^7 - 2x^6 - 6x^5 + 5x^4 + x^3 - 4x^2 + 2}{x^8 - x^7 + 2x^6 - 5x^5 + 7x^4 + 4x^3 - 8x^2 + 3x - 2},$$

$$\frac{x^{12}y + 7x^{11}y + 8x^{10}y - 2x^9y + 6x^8y + 5x^7y + 8x^6y + 2x^5y + 7x^4y - 6x^3y - 7x^2y + 5xy + 4y}{x^{12} + 7x^{11} - 3x^{10} + 7x^9 - 2x^8 + 2x^7 - 4x^6 - 6x^5 - 8x^4 - 5x^3 + 3x^2 + 6x + 3})$$

Let $f_2: E_1 \to E_2$ be the isogeny given by

$$(\frac{x^{9}+3x^{7}-5x^{6}+4x^{5}-5x^{4}-3x^{3}+6x^{2}-2x+6}{-8x^{8}+8x^{6}+8x^{5}+4x^{4}-4x^{3}-5x^{2}-3x+1},$$

$$\frac{x^{12}y+3x^{10}y-2x^{9}y-5x^{8}y-8x^{7}y-4x^{6}y-x^{5}y-7x^{4}y+x^{3}y-6x^{2}y-2xy-6y}{-7x^{12}+2x^{10}+2x^{9}-8x^{8}-2x^{7}-8x^{6}-x^{5}-5x^{4}+8x^{3}-2x^{2}+4x+1})$$

Is f₁ equivalent to f₂?

Equivalent isogenies

- f_1 and f_2 have the same degrees. But $E_1 \neq E_2!$
- But they have the same *j*-invariant (j = 4), so they are isomorphics.
- We could compose f₂ with an isomorphism E₂ → E₁ and test if it is equal to f₁. But even if the curves were equal, we could still compose with automorphisms.
- So we have to construct "canonical" isogenies from f_1 and f_2 .
- Easier way: compute the kernels!

$$\ker f_1 = x^4 + 8x^2 + 8x + 6$$
$$\ker f_2 = x^4 + 8x^3 + 3x^2 + 16x + 7$$

- The kernel are different, hence the isogenies are not the same. (Since $Aut(E_1) = \{\pm 1\}$).
- Exercice: prove that f_1 is equivalent to the multiplication by 3.

Isogenies and kernels

Definition (Kernel)

The kernel ker f of an isogeny $f: E_1 \to E_2$ is the set of geometric points $P \in E_1$ such that $f(P) = O_{E_2}$.

Definition (Degree)

The degree of an isogeny f is the degree of the extension field $[k(E_1): f^*k(E_2)]$. An isogeny is separable iff $\# \ker f = \deg f$.

- The Frobenius is an inseparable isogeny of degree *p*.
- Every isogeny is the composition of a separable isogeny with a power of the Frobenius ⇒ from now on we only focus on separable isogenies.

Theorem

There is a bijection between separable isogenies and finite subgroups of E:

$$(f: E_1 \to E_2) \mapsto \ker f$$
$$(E_1 \to E_1/G) \longleftrightarrow G$$

Isogenies and multiplications

- If $H \subset G$ are finite subgroups of E, then the isogeny $E \to E/G$ splits as $E \to E/H \to (E/H)/(G/H)$.
- In particular, for every (separable) isogeny $f: E \to E'$, there exists a contragredient isogeny $f': E' \to E$ such that $f' \circ f = [m]$, where *m* is the exponent of ker *f*.
- We can also identify f' as the dual isogeny \hat{f} of f (if $m = \deg f$):

12 / 66

Algorithms for manipulating isogenies

- Given a finite subgroup $G \subset E$, construct the isogeny E/G.
- Given E_1 and E_2 , test if they are isogenous. If so construct an (or all) isogenies $E_1 \rightarrow E_2$.
- Given *E* and ℓ , find ℓ -isogenous curves to *E* (and iterate to construct the isogeny graph).
- Find cyclic rational subgroups of *E* (by using the correspondance between isogenies and kernels).

Remark

Algorithm 4 can be obtained by combining algorithms 2 and 3: first compute all ℓ -isogenous curves E', and from them compute the isogeny $E \rightarrow E'$ of degree ℓ , whose kernel give a cyclic subgroup of $E[\ell]$.

Destructive cryptographic applications

• An isogeny $f: E_1 \rightarrow E_2$ transports the DLP problem from E_1 to E_2 . This can be used to attack the DLP on E_1 if there is a weak curve on its isogeny class (and an efficient way to compute an isogeny to it).

Example

- extend attacks using Weil descent [GHS02] (remember Vanessa's talk!)
- Transfert the DLP from the Jacobian of an hyperelliptic curve of genus 3 to the Jacobian of a quartic curve [Smi09].

Constructive cryptographic applications

- One can recover informations on the elliptic curve E modulo ℓ by working over the $\ell\text{-torsion}.$
- $\bullet\,$ But by computing isogenies, one can work over a cyclic subgroup of cardinal $\ell\,$ instead.
- Since thus a subgroup is of degree ℓ , whereas the full ℓ -torsion is of degree ℓ^2 , we can work faster over it.

Example

- The SEA point counting algorithm [Sch95; Mor95; Elk97] (go to François' talk for more details).
- The CRT algorithms to compute class polynomials [Sut09; ES10].
- The CRT algorithms to compute modular polynomials [BLS09].

Further applications of isogenies

- Splitting the multiplication using isogenies can improve the arithmetic (remember Laurent's talk) [DIK06; Gau07].
- The isogeny graph of a supersingular elliptic curve can be used to construct secure hash functions [CLG09].
- Construct public key cryptosystems by hiding vulnerable curves by an isogeny (the trapdoor) [Tes06], or by encoding informations in the isogeny graph [RS06].
- Take isogenies to reduce the impact of side channel attacks [Sma03].
- Construct a normal basis of a finite field [CL09].
- Improve the discrete logarithm in \mathbb{F}_q^* by finding a smoothness basis invariant by automorphisms [CL08].

Class of isomorphisms of elliptic curves

• Every elliptic curve has a Weierstrass equation:

$$y^{2} + a_{1}xy + a_{3}y = x^{3} + a_{2}x^{2} + a_{4}x + a_{6}$$
(1)

with the discriminant
$$\Delta_E = -b_2b_8 - 8b_3 - 27b_2 + 9b_2b_4b_6 \neq 0$$
.
(Here $b_2 = a_1^2 + 4a_2$, $b_4 = 2a_4 + a_1a_3$, $b_6 = a_3^2 + 4a_6$, $b_8 = a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2$).

• The *j*-invariant of E is

$$j_E = \frac{(b_2^2 - 24b_4)^3}{\Delta_E}$$

Theorem

Two elliptic curves *E* and *E'* are isomorphics over \overline{k} if and only if $j_E = j_{E'}$.

16 / 66

The case of a finite field of characteristic p > 3

• We can always write the Weierstrass equation as

$$y^2 = x^3 + ax + b.$$

- The discriminant is $-16(4a^3 + 27b^2)$.
- The *j*-invariant is

$$j_E = 1728 \frac{4a^3}{4a^3 + 27b^2}.$$

Isomorphisms

• The isomorphisms (over \overline{k}) of isomorphisms of elliptic curves in Weierstrass form are given by the maps

$$(x,y) \mapsto (u^2x + r, u^3y + u^2sx + t)$$

for $u, r, s, t \in \overline{k}, u \neq 0$.

• If we restrict to elliptic curves of the form $y^2 = x^3 + ax + b$ then s = t = 0.

Proposition

Let E / \mathbb{F}_q and E' / \mathbb{F}_q be two ordinary elliptic curves such that $j_E = j_{E'}$. Then $E \simeq E'$ over \mathbb{F}_q $\Leftrightarrow E$ and E' are isogenous over \mathbb{F}_q $\Leftrightarrow #E = #E'$.

- A twist of an elliptic curve E/\mathbb{F}_q is an elliptic curve E'/\mathbb{F}_q isomorphic to E over $\overline{\mathbb{F}}_q$ but not over \mathbb{F}_q .
- Every elliptic curve $E: y^2 = x^3 + ax + b$ has a quadratic twist

$$E':\delta y^2 = x^3 + ax + b$$

for any non square $\delta \in \mathbb{F}_q$. *E* and *E'* are isomorphic over \mathbb{F}_q^2 .

• If E/\mathbb{F}_q is an ordinary elliptic curve with $j_E \notin \{0, 1728\}$ then the only twist of E is the quadratic twist. If $j_E = 1728$, then E admits 4 twists. If $j_E = 0$, then E admits 6 twists.

When are two elliptic curves isogenous?

Theorem (Tate)

Two elliptic curves over \mathbb{F}_q are isogenous if and only if they have the same cardinal.

Proof.

- If E and E' are isogenous, they have the same cardinal: use the dual isogeny and look at the action of the Frobenius on $E[\ell]$ for ℓ not dividing the degree of the isogeny.
- The reciprocal is a theorem of Tate.

Isogenies between two elliptic curves

In this slide, E_1/\mathbb{F}_q and E_2/\mathbb{F}_q are ordinary elliptic curves over \mathbb{F}_q .

- If E_1 and E_2 are isogenous, then any isogeny over $\overline{\mathbb{F}}_q$ is in fact \mathbb{F}_q -rational.
- If f: E₁→ E₂ is an isogeny over F_q of prime degree, then there exist twists E'₁ and E'₂ of E₁ and E₂ such that f descends to an F_q-rational isogeny f: E'₁→ E'₂.
- Either $\operatorname{Hom}_{\mathbb{F}_q}(E_1, E_2) = \{0\}$ or $\operatorname{Hom}_{\mathbb{F}_q}(E_1, E_2)$ is a free \mathbb{Z} -module of rank 2.

Computing explicit isogenies

• If E_1 and E_2 are two elliptic curves given by Weierstrass equations, a morphism of curve $f: E_1 \rightarrow E_2$ is of the form

$$f(x,y) = (R_1(x,y), R_2(x,y))$$

where R_1 and R_2 are rational functions, whose degree in y is less than 2 (using the equation of the curve E_1).

- If f is an isogeny, f(-P) = -f(P). If car k > 3 so we can assume that E_1 and E_2 are given by reduced Weierstrass forms, this mean that R_1 depends only on x, and R_2 is y time a rational function depending only on x.
- Let w_E = dx/2y be the canonical differential. Then f*w_{E'} = cw_E, with c in k.
 This show that f is of the form

$$f(x,y) = \left(\frac{g(x)}{h(x)}, cy\left(\frac{g(x)}{h(x)}\right)'\right).$$

h(x) give (the x coordinates of the points in) the kernel of f (if we take it prime to g).

• If c = 1, we say that f is normalized.

Isogeny from the kernel

Remark

Every isogeny is a composition of a multiplication by [m] and an isogeny with cyclic kernel (we could even further reduce to a composition with cyclic kernels of prime orders).

- Let E/k be an elliptic curve. Let $G = \langle P \rangle$ be a rational finite subgroup of E. We want to construct the isogeny $E \rightarrow E/G$.
- We need to find the Weierstrass coordinates X, Y on k(E/G). But $k(E/G) = k(E)^G$ are the rational functions on E invariants under translation by a point of G.
- Moreover the Weierstrass coordinates x and y on E are characterized (up to isomorphism) by

$$\begin{aligned} v_{\mathsf{O}_E}(x) &= -2 & v_P(x) \ge 0 & \text{if } P \neq \mathsf{O}_E \\ v_{\mathsf{O}_E}(y) &= -3 & v_P(y) \ge 0 & \text{if } P \neq \mathsf{O}_E \\ y^2/x^3(\mathsf{O}_E) &= 1 \end{aligned}$$

Vélu's formula

• Vélu constructs the isogeny $E \rightarrow E/G$ as

$$X(P) = x(P) + \sum_{Q \in G \setminus \{0_E\}} (x(P+Q) - x(Q))$$
$$Y(P) = y(P) + \sum_{Q \in G \setminus \{0_E\}} (y(P+Q) - y(Q)).$$

The choices are made so that the formulas give a normalized isogeny.

- Moreover by looking at the expression of X and Y in the formal group of E, Vélu recovers the equations for E/G.
- For instance if $E: y^2 = x^3 + ax + b = f(x)$ then E/G is

$$y^2 = x^3 + (a - 5t)x + b - 7w$$

where
$$t = \sum_{Q \in G \setminus \{0_E\}} f'(Q)$$
, $u = 2 \sum_{Q \in G \setminus \{0_E\}} f(Q)$ and $w = \sum_{Q \in G \setminus \{0_E\}} x(Q) f'(Q)$.

Complexity of Vélu's formula

- Even if G is rational, the points in G may live to an extension of degree up to #G 1.
- Thus summing over the points in the kernel G can be expensive.
- Let $h(x) = \prod_{Q \in G \setminus \{0_E\}} (x x(Q))$. The symmetry of X and Y allows us to express everything in term of h.
- For instance is E is given by a reduced Weierstrass equation $y^2 = f(x)$, we have

$$f(x,y) = \left(\frac{g(x)}{h(x)}, y\left(\frac{g(x)}{h(x)}\right)'\right), \text{ with}$$
$$\frac{g(x)}{h(x)} = \#G.x - \sigma - f'(x)\frac{h'(x)}{h(x)} - 2f(x)\left(\frac{h'(x)}{h(x)}\right)',$$

where σ is the first power sum of h (i.e. the sum of the *x*-coordinates of the points in the kernel).

- When #G is odd, h(x) is a square, so we can replace it by its square root.
- The complexity of computing the isogeny is then O(M(#G)) operations in k.

Computing isogenous curves from E

- Let *E* be an elliptic curve and ℓ a prime number. We want to compute all ℓ -isogenous elliptic curves to *E*.
- Easy! Compute the rational cyclic subgroups of $E[\ell]$ and apply Vélu's formulas. These subgroups can be obtained as factors of the ℓ -division polynomial $\prod_{Q \in E[\ell] \setminus \{0_E\}} (x - x(Q)).$
- But the division polynomial has degree $(\ell^2 1)/2$ (if ℓ odd), and factorizing it will cost $O(\ell^{3.63})$. We only want to compute isogenies of degree ℓ . Can we do better?

Modular polynomials

Here $k = \overline{k}$.

Definition (Modular polynomial)

The modular polynomial $\varphi_{\ell}(x, y) \in \mathbb{Z}[x, y]$ is a bivariate polynomial such that $\varphi_{\ell}(x, y) = 0 \iff x = j(E)$ and y = j(E') with *E* and *E'* ℓ -isogeneous.

- Roots of φ_ℓ(j(E), .) ⇔ elliptic curves ℓ-isogeneous to E. There are ℓ + 1 = #P¹(F_ℓ) such roots if ℓ is prime.
- φ_{ℓ} is symmetric.
- The height of φ_{ℓ} grows as $O(\ell)$.

28 / 66

Rational roots of the modular polynomials

Theorem

- Let E/\mathbb{F}_q be an ordinary elliptic curve with *j*-invariant not equal to 0 or 1728.
- Let ℓ be prime and j' be a root of $\varphi_{\ell}(j_E, \cdot)$ over \mathbb{F}_{q^n} .
- Then j' corresponds to a \mathbb{F}_{q^n} -rational ℓ -isogeny $E \to E'$.

Proof.

There exist a $\overline{\mathbb{F}}_q$ -isogeny between E and E' so a \mathbb{F}_{q^n} -isogeny on twists of E and E'. But with the hypothesis, the only twist of E is the quadratic one, so by applying a quadratic twist to the isogeny, we find a \mathbb{F}_{q^n} -rational isogeny starting from E.

Corollary

We can use the modular polynomial φ_{ℓ} to construct ℓ -isogeny graphs!

Computing the modular polynomial

- The complex analytic method: if we see τ → j(τ) and τ → j(τ/ℓ) as a modular functions on 5; then φ_ℓ(·, j) is the minimal polynomial of j(·/ℓ) in C(j). One can then recover the polynomial by computing the Fourrier coefficients of j and j(·/ℓ) with high precision.
- The CRT method: use Vélu's formulas to compute φ_ℓ mod p for small p and the CRT to recover the full modular polynomial.

Remark

- Using asymptotically fast algorithms, both algorithms are quasilinear in the size ℓ^3 of φ_ℓ , so the computations are memory bounded. But the CRT algorithm allow to compute the specialization $\varphi_\ell(j,\cdot) \in \mathbb{F}_p[x]$ directly and is the faster in practice.
- To reduce the size of the coefficients, one use a different modular function in $X_0^*(\ell)$ than $j(\tau/\ell)$.

Finding an isogeny between two isogenous elliptic curves

- Let *E* and *E'* be ℓ -isogenous abelian varieties (we can check that $\varphi_{\ell}(j_E, j_{E'}) = 0$. We want to compute the isogeny $f : E \to E'$.
- The explicit forms of isogenies are given by Vélu's formula, which give normalized isogenies. We first need to normalize *E'*.
- Over \mathbb{C} , the equation of the normalized curve E' is given by the Eisenstein series $E_4(\ell \tau)$ and $E_6(\ell \tau)$. We have $j'(\ell \tau)/j(\ell \tau) = -E_6(\tau)/E_4(\tau)$. By differencing the modular polynomial, we recover the differential logarithms.
- We obtain that from $E: y^2 = x^3 + ax + b$, a normalized model of $j_{E'}$ is given by the Weierstrass equation

$$y^2 = x^3 + Ax + B$$

where
$$A = -\frac{1}{48} \frac{J^2}{j_{E'}(j_{E'} - 1728)}, B = -\frac{1}{864} \frac{J^3}{j_{E'}^2(j_{E'} - 1728)} \text{ and } J = -\frac{18}{\ell} \frac{b}{a} \frac{\varphi_{\ell}^{\prime(X)}(j_{E}, j_{E'})}{\varphi_{\ell}^{\prime(Y)}(j_{E}, j_{E'})} j_{E'}.$$

Remark

 $E_2(\tau)$ is the differential logarithm of the discriminant. Similar methods allow to recover $E_2(\ell \tau)$, and from it $\sigma = \sum_{P \in K \setminus \{0_E\}} x(K)$.

Finding the isogeny between the normalized models (I: Stark's method)

- We need to find the rational function I(x) = g(x)/h(x) giving the isogeny $f:(x,y) \mapsto (I(x), yI'(x))$ between *E* and *E'*.
- Over \mathbb{C} the coordinates of the elliptic curve are given by the elliptic functions: $x = \wp(z)$ and $y = \wp'(z)$.
- We have to find *I* such that $\wp_{E'}(z) = I \circ \wp_E(z)$.
- Stark's idea is to develop $\wp_{E'}$ as a continuous fraction in \wp_E , and approximate I as p_n/q_n .
- This algorithm is quasi-quadratic ($\widetilde{O}(\ell^2)$).

Finding the isogeny between the normalized models (II: Elkie's method)

- We need to find the rational function I(x) = g(x)/b(x) giving the isogeny $f: (x, y) \mapsto (I(x), yI'(x))$ between *E* and *E'*.
- Plugging f into the equation of E' shows that I satisfy the differential equation

$$(x^{3} + ax + b)I'(x)^{2} = I(x)^{3} + AI(x) + B.$$

- Using an asymptotically fast algorithm to solve this equation yields I(x) in time quasi-linear $(\tilde{O}(\ell))$.
- Knowing σ gains a logarithmic factor.

Finding an isogeny between two isogenous elliptic curves (the case of small characteristic)

- The preceding algorithm needs $p > 8\ell 5$ to solve the differential equation.
- Idea in small characteristic: lift the curves to \mathbb{Q}_q by taking lifts \tilde{j}_E and $\tilde{j}_{E'}$ such that $\varphi_\ell(\tilde{j}_E, \tilde{j}_{E'}) = 0$ and apply the preceding algorithm.
- Even if *E'* is normalized, we need the modular polynomial to lift *E'* and normalize the lift.

Finding an isogeny: total complexity

To summarize, we have the following algorithm to find an isogeny from E in large characteristic:

Algorithm ([BMS+08])

- Compute φ_{ℓ} (cost $\tilde{O}(\ell^3)$)
- Specialize on j_E to obtain $\varphi_{\ell}(X, j_E)$ (cost $\widetilde{O}(\ell^2 \log q)$)
- Find a root j_{E'} of φ_ℓ(X, j_E) to obtain the j-invariant of a ℓ-isogenous curve E' (cost Õ(ℓ log² q)).
- Compute the normalized model for E' (cost $\widetilde{O}(\ell^2 \log q)$).
- Solve the differential equation (cost $\widetilde{O}(\ell \log q)$).

Finding an isogeny: total complexity

With the adaptation in small characteristic still of total cost $\tilde{O}(\ell^3 + \ell \log^2 q)$:

Algorithm ([LS08])

- Compute $\varphi_{\ell}(X, j_E)$ (cost $\widetilde{O}(\ell^3 + \ell^2 \log q)$).
- **a** Lift j_E and find a root $\tilde{j}_{E'}$ in precision $O(1 + \log^2 \ell / \log q)$ (cost $\tilde{O}(\ell \log^2 q)$).
- Compute the normalized model for \widetilde{E}' (cost $\widetilde{O}(\ell^2 \log q)$).
- Solve the differential equation in \mathbb{Q}_q (cost $\widetilde{O}(\ell \log q)$).
- Seduce in \mathbb{F}_q (cost $\widetilde{O}(\ell \log q)$).

Finding an isogeny between two isogenous elliptic curves (the case of small characteristic): Couveigne's algorithm

Another idea to compute the isogeny in the ordinary case comes from Couveigne:

Algorithm

- Find generators P and P' of the cyclic groups $E[p^{\alpha}]$ and $E'[p^{\alpha}]$ for $p^{\alpha} \ll \ell$.
- **(a)** Interpolate the algebraic map $f : E[p^{\alpha}] \to E'[p^{\alpha}], iP \mapsto iP'$.
- Test if f is an isogeny.
 - [Cou94] works with formal groups.
 - [Cou96] use *p*-descent and towers of Artin-Schreier extensions. The best implementation [Feo10a] has complexity Õ(ℓ²).
 - But the complexity is exponential in log(*p*).
Other algorithms to compute the isogeny

- Lercier for p = 2: solve the differential equation using linear algebra. Cost $\tilde{O}(\ell^3 \log q)$ operations, in practice the fastest for p = 2.
- Joux and Lercier: lift in \mathbb{Q}_q with precision $O(\ell)$. Cost $\widetilde{O}(\ell^2(1+\ell/p)\log q)$; useful for the intermediate case $p \approx \log q$.
- When the degree ℓ is not known but only bounded by *L*. The naive method is to apply one of the above algorithm for all $\ell \leq L$. This increase the cost by a degree 1 in *L*. However, Couveigne's algorithm can be adapted to stay in $\widetilde{O}(L^2)$ [Feo10b].
- Subexponential algorithms for computing isogenies of large degree [JS10; CJS10].

37 / 66

Outline

Isogenies on elliptic curves

2 Endomorphisms

- Definition
- The type of endomorphism rings
- Endomorphisms and isogenies
- Computing the endomorphism ring and applications

Supersingular elliptic curves

Abelian varieties

5 References

The characteristic polynomial of the Frobenius

From now on k will represent a finite field: $k = \mathbb{F}_q$.

There exist a unique polynomial χ_π such that for every n prime to the characteristic p, χ_π mod n is the characteristic polynomial of the action of the Frobenius π on E[n] (here π = Fr_{F_q}).

• We have
$$\chi_{\pi}(\pi) = 0$$
, and $\#E = \chi_{\pi}(1)$.

• We have $\chi_{\pi} = X^2 - tX + q$ where the trace t is such that $|t| \leq 2\sqrt{q}$ (Hasse).

The endomorphism ring

Definition

- If E_1 and E_2 are elliptic curves, we note $\operatorname{Hom}_k(E_1, E_2)$ the Z-module of all *k*-morphisms from E_1 to E_2 . The endomorphism ring $\operatorname{End}_k(E)$ is then $\operatorname{End}_k(E) = \operatorname{Hom}_k(E, E)$.
- We note $\operatorname{End}_k^0(E) = \operatorname{End}_k(E) \otimes_{\mathbb{Z}} \mathbb{Q}$ the endomorphism fraction ring.

Remark

- Every non nul element of $\operatorname{Hom}_k(E_1, E_2)$ is an isogeny (possibly non separable).
- $\operatorname{End}_{k}^{0}(E_{1})$ is a division algebra, and $\operatorname{End}_{k}(E_{1})$ is an order in it.
- If $\operatorname{Hom}_k(E_1, E_2) \neq 0$, then $\operatorname{End}_k^0(E_1) = \operatorname{End}_k^0(E_2)$ and $\operatorname{Hom}_k(E_1, E_2)$ is a free \mathbb{Z} -module of the same rank as $\operatorname{End}_k(E_1)$.
- If \mathscr{E} is the isogeny class of E, $\operatorname{End}_{k}^{0}(E)$ does not depend on the curve $E \in \mathscr{E}$.
- $\operatorname{End}_k(E)$ is either commutative of rank 2, or an order of rank 4 in a quaternion algebra.

The ordinary case

If E is ordinary, then

- χ_{π} is irreducible.
- $K = \operatorname{End}_{k}^{0}(E)$ is a quadratic imaginary field.
- *K* is generated by $\pi: K = \mathbb{Q}(\pi)$.
- $\operatorname{End}_k(E)$ is an order O in K.
- For any extension k' of k we have $\operatorname{End}_k(E) = \operatorname{End}_{k'}(E) = \operatorname{End}_{\overline{k}}(E)$.

Remark

If k' is an extension of k of degree n, then the Frobenius of $E_{k'}$ seen in K is π^n .

From now on, we assume that *E* is ordinary, and we note $O = \text{End}_k(E)$ and *K* the quadratic imaginary field $\text{End}_k^0(E)$.

- The automorphisms of *E* are the inversible elements in O = EndE.
- All inversible elements are roots of unity.
- We usually have $O^* = \{\pm 1\}$ except in the following exceptions:
 - j_E = 1728 (p ≠ 2, 3), in this case O is the maximal order in Q(i) and #O* = 4;
 j_E = 0 (p ≠ 2, 3), in this case O is the maximal order in Q(i√3) and #O* = 6;
 j_E = 0 (p = 3), in this case E is supersingular and #O* = 12;
 j_E = 0 (p = 2), in this case E is supersingular and #O* = 24.
- The Frobenius $\pi \in K$ characterizes the isogeny class of E (Tate). A twisted isogeny class will correspond to a Frobenius $\pi' \neq \pi$, where there exist n with $\pi^n = \pi'^n$. This give a bijection between the twisted isogeny class and the roots of unity in K.
- More generally, there is a bijection between O^* and the twists of E.

Reduction and lifting (see Marco's talk)

- Let O be an order in a imaginary quadratic field K. Then they are h_O (the class number of O) elliptic curves over $\overline{\mathbb{Q}}$ with endomorphism ring O. They are defined over the ray class field H_O of O.
- If $p \nmid \Delta_O$, p is a prime of good reduction. Let p be a prime above p in H_O . If p is inert in K, E_p is supersingular. If p splits, E_p is ordinary, and its endomorphism ring is the minimal order containing O of index prime to p.
- Reciprocally, if E/𝔽_q is an ordinary elliptic curve, the couple (E, End(E)) can be lifted over ℚ_q.

Corollary

- If E/\mathbb{F}_q is an ordinary elliptic curve, then $\operatorname{End}(E)$ is an order in $K = \mathbb{Q}(\pi)$ of conductor prime to p. For every order O of K such that $\mathbb{Z}[\pi] \subset O$, there exist an isogenous curve whose endomorphism ring is O.
- Reciprocally, for every order O of discriminant a non zero square modulo p; let n be the order of one of the prime above p in the class group of O. Then there exist an (ordinary) elliptic curve E' over \mathbb{F}_{q^n} with $\operatorname{End}(E') = O$.

The structure of the rational points

Theorem (Lenstra)

Let E/\mathbb{F}_q be an ordinary elliptic curve. We have as $\operatorname{End}_{\mathbb{F}_q}(E)$ -modules

 $E(\mathbb{F}_{q^n}) \simeq \frac{\operatorname{End}_{\mathbb{F}_q}(E)}{\pi^n - 1}$

Corollary

- Let $a, m \in \mathbb{Z}$ be such that $O_K = \mathbb{Z}[\frac{\pi-a}{m}]$.
- Let γ_E be the index of O in O_K .

• Then
$$E(\mathbb{F}_q) = \mathbb{Z}/n_1\mathbb{Z} \oplus \mathbb{Z}/n_2\mathbb{Z}$$
 where $n_1 \mid n_2$ and $n_1n_2 = \#E(\mathbb{F}_q)$

• *Explicitly*, we have:
$$n_1 = \text{gcd}(a - 1, m/\gamma_E)$$
.

• Exercice: show that $n_1 | q - 1$ (use the Weil pairing).

Endomorphisms and isogenies

- Let $f: E_1 \rightarrow E_2$ be an isogeny of degree ℓ prime. Then either
 - f is an ascending isogeny: $O_1 \subset O_2$ with $[O_2 : O_1] = \ell$;
 - If is a descending isogeny: $O_2 ⊂ O_1$ with $[O_1 : O_2] = l$;
 - f is an horizontal isogeny: $O_1 = O_2$.
- The horizontal case can only happen when O_1 is maximal locally in ℓ : $(O_1)_{\ell} = (O_K)_{\ell}$.
- Let ker f be the kernel of f. Let $O_f \subset O_1$ be the subring (of index ℓ) of isogenies fixing ker f. Then f induce an injection $O_f \hookrightarrow O_2$.
- If $\psi \in O_1^*$ is an automorphism, then either ψ fixes ker f and descends to an automorphism of O_2 , or ψ induce an isogeny equivalent to f.

Isogeny graph: the local picture

- Let *E* be an ordinary elliptic curve with endomorphism ring *O*, and $\ell \neq p$ be a prime.
- We note Δ the discriminant of O_K , and $\Delta_{\pi} = t^2 4p$ the discriminant of χ_{π} .
- We have $\Delta_{\pi} = \gamma^2 \Delta$, where γ is the conductor of $\mathbb{Z}[\pi] \subset O_K$.
- We note ν the ℓ -adic valuation of γ , and ν_E the ℓ -adic valuation of the conductor γ_E of $O \subset O_K$.

Isogeny graph: horizontal isogenies

If $\nu = 0$, then every ℓ -isogeny is horizontal, and there are $1 + \frac{\Delta}{\ell}$ such isogeny. More precisely:

- If ℓ splits in O. In this case Δ_{π} is a non zero square mod ℓ , and the Frobenius acts on $E[\ell]$ as $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ where the two eigenvalues λ and μ are distinct. The modular polynomial splits into irreducible factors of degree 1, 1, r, \ldots, r where r is the order of $\lambda/\mu \in \mathbb{F}_{\ell}$. There are 2 horizontal isogenies.
- If ℓ is inert in O. Then Δ_{π} is not a square modulo ℓ . The two eigenvalues λ and μ are conjugate in $\mathbb{F}_{\ell^2} \setminus \mathbb{F}_{\ell}$. The modular polynomial splits as irreducible factors of degree r, where r is the smallest number such that $\lambda^r \in \mathbb{F}_{\ell}$ (or equivalently such that π^r acts like a scalar on $E[\ell]$). There are no horizontal isogenies.

• If ℓ is ramified in O. Then $\Delta_{\pi} \equiv 0 \mod \ell$. In this case π acts on $E[\ell]$ as $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$. The modular polynomial splits into two irreducible factors of degree 1 and ℓ . There is one horizontal isogeny.

 \cap

Isogeny graph: vertical isogenies

If $\nu \neq 0$. Then

- If v_E = 0, that is if O_ℓ = (O_K)_ℓ. There are 1 + ^A/_ℓ horizontal isogenies, and ℓ ^A/_ℓ descending isogenies (that is ℓ 1, ℓ + 1 or ℓ whether ℓ splits, is inert or is ramified in O_K).
- If $0 < v_E < v$, there is one ascending isogeny, and ℓ -descending ones.
- If $v_E = v$, that is $O_{\ell} = \mathbb{Z}[\pi]_{\ell}$, there is only one ascending isogeny.

In the first two cases, π acts as a scalar on $E[\ell]$ (and the modular polynomial splits completely), while in the last case π acts as $\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}$ (and the modular polynomial splits into two irreducible factors of degree 1 and ℓ).

Isogeny graph: graphic interpretation of the local picture

Isogeny graph: graphic interpretation of the local picture

- The volcano has height v.
- The crater has length:
 - 0 if ℓ is inert;
 - 1 if l splits;
 - the order of l in the class group of the order of the curves in the crater when l splits as ll.
- Taking an extension only increase the height of the volcano;
- If the height v is non 0, then the only extension increasing the height are of degrees d with $\ell \mid d$.
- If $d = \ell$ the height increase only by one (except possibly when $\ell = 2$ and $\nu = 1$).

The structure of the ℓ^{∞} -torsion in the volcano

- If E is on the floor, then E[ℓ[∞]](𝔽_q) is cyclic: E[ℓ[∞]](𝔽_q) = ℤ/ℓ^mℤ (possibly m = 0).
- If *E* is on level $\alpha < m/2$ above the floor, then $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^{\alpha} \oplus \mathbb{Z}/\ell^{m-\alpha}$.
- If E is on level $\alpha \ge m/2$, then m is even and $E[\ell^{\infty}](\mathbb{F}_q) = \mathbb{Z}/\ell^{m/2} \oplus \mathbb{Z}/\ell^{m/2}$.

$$E[\ell^{\infty}](\mathbb{F}_{q}) = \mathbb{Z}/\ell^{m/2}\mathbb{Z} \oplus \mathbb{Z}/\ell^{m/2}\mathbb{Z}$$

$$E[\ell^{\infty}](\mathbb{F}_{q}) = \mathbb{Z}/\ell^{m/2}\mathbb{Z} \oplus \mathbb{Z}/\ell^{m/2}\mathbb{Z}$$

$$E[\ell^{\infty}](\mathbb{F}_{q}) = \mathbb{Z}/\ell^{2}\mathbb{Z} \oplus \mathbb{Z}/\ell^{m-2}\mathbb{Z}$$

$$E[\ell^{\infty}](\mathbb{F}_{q}) = \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell^{m-1}\mathbb{Z}$$

$$E[\ell^{\infty}](\mathbb{F}_{q}) = \mathbb{Z}/\ell\mathbb{Z} \oplus \mathbb{Z}/\ell^{m-1}\mathbb{Z}$$

The global structure

Theorem (Complex multiplication)

Let *E* be an elliptic curve with endomorphism ring O. Then the set of horizontal isogenies form a principal homogeneous space under the class group of O.

This yield the following global picture (courtesy of Gaetan Bisson):

Finding the endomorphism ring

- Locally: for each ℓ | γ, follow 3 paths in the ℓ-volcano. The first path reaching the floor give us the height of the curve in the volcano.
 Since γ ≈ √q, this is exponential.
- Globally, by using relations in the class groups of the orders. If R is a relation in Cl(O) but the corresponding isogeny path is not cyclic then we know that $O \not\subset End(E)$. This give a subexponential algorithm (under GRH). More details will be given in Gaetan's talk next week.

Cryptographic applications of the endomorphism ring

- It is a finer grained invariant than the number of point.
- It gives an idea of "where we are" in the full isogeny graph.
- It is used by the CRT method to compute class polynomials: from a curve in the isogeny class, we want to find a curve with maximal endomorphism ring.
- The cycle in the crater can be used to compute $\chi_{\pi} \mod \ell^n$.

Outline

- Isogenies on elliptic curves
- 2 Endomorphisms
- Supersingular elliptic curves
- 4 Abelian varieties
- 6 References

Isogeny class of supersingular curves

Let $q = p^n$. The isogeny classes of elliptic curves are given by the value of the trace t by Tate's theorem. The possible value of t are:

- *t* prime to *p*, in this case the isogeny class is ordinary.
- The other cases give supersingular elliptic curves. The endomorphism fraction ring $\operatorname{End}_k^0(\mathscr{E})$ of the isogeny class is either a quaternion algebra of rank 4, or an imaginary quadratic field. In the latter case, it will become maximal after an extension of degree d, with:

• If n is even:

- $t = \pm 2\sqrt{q}$, this is the only case where $\operatorname{End}_k^0(\mathscr{E})$ is a quaternion algebra.
- $t = \pm \sqrt{q}$ when $p \not\equiv 1 \mod 3$, here d = 3.
- t = 0 when $p \not\equiv 1 \mod 4$, here d = 2.

2 If n is odd:

•
$$t = 0$$
, here $d = 2$.

•
$$t = \pm \sqrt{2q}$$
 when $p = 2$, here $d = 4$

• $t = \pm \sqrt{3q}$ when p = 3, here d = 6.

- If K = End⁰_k(E) is commutative, then χ_π is irreducible and K = Q(π). Z[π] is maximal for every ℓ ≠ {2, p}.
- The endomorphism rings of the isogeny class are the orders containing Z[π] maximal at p.
- If O is such an order, the class group Cl(O) acts principally on the set of elliptic curves in the isogeny class with O as ring of endomorphisms.
- If k' is such that $\operatorname{End}_{k'}^{0}(E)$ is maximal (i.e. a quaternion algebra), then it can happen that some curves E' in the isogeny class become isomorphic to E over k'.

The maximal case

- If $K = \operatorname{End}_{k}^{0}(E)$ is non commutative, then it is the quaternion algebra ramified only at p and ∞ . The frobenius $\pi = p^{m/2} \in \mathbb{Z}$ and χ_{π} is a square. The endomorphism rings in the isogeny class corresponds to the maximal orders of K.
- If O is any maximal order of K, then the isogeny class of E (up to isomorphism) is of size $\# \operatorname{Cl}(O)$. There is one or two curve in the isogeny class with endomorphism ring O, according to whether \mathfrak{p} is principal or not, where \mathfrak{p} is the ideal such that $\mathfrak{p}^2 = p$.
- If *n* is even there are two isogeny classes (quadratic twists of each other) with a maximal endomorphism ring.

Remark

Any two supersingular elliptic curves become isogenous after a quadratic extension of degree 2d (with d the degree where their endomorphism ring become maximal). But a new maximal class and up to 3 commutative classes appear in this extension.

Supersingular elliptic curves over \mathbb{F}_p

- In characteristic p, every supersingular curve is defined over \mathbb{F}_{p^2} .
- For every $\ell \neq p$, the isogeny graph of supersingular curves (up to twists) over \mathbb{F}_{p^2} is connected. It has p/12 + O(1) vertices, and diameter $O(\log p)$.
- The absolute endomorphism ring $\operatorname{End}_{\overline{k}}(E)$ of a supersingular curve is a maximal order in the quaternion algebra ramified only at p and ∞ .
- There is a bijection between the set of such orders, and the set of supersingular elliptic curve (up to an action of $\operatorname{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p)$).

58 / 66

Outline

- Isogenies on elliptic curves
- 2 Endomorphisms
- Supersingular elliptic curves
- 4 Abelian varieties
- 5 References

Abelian varieties

Definition

- An Abelian variety is a complete connected group variety over a base field *k*. The group law is abelian.
- A (separable) isogeny is a finite surjective (separable) morphism between two Abelian varieties.

Example

- Abelian varieties of dimension 1 are elliptic curves.
- The Jacobian of a curve of genus g is an abelian variety of dimension g.

60 / 66

Non absolutely simple abelian varieties

Definition

- An abelian variety A_k is simple if the only subvariety of A_k are O_{A_k} and itself.
- A_k is absolutely simple if it is simple over \overline{k} .

Even if an abelian variety A is ordinary, lot of funny things can happen if it is not absolutely simple:

- Not every non zero morphism is an isogeny.
- The endomorphism ring $\operatorname{End}^{0}(A) = \operatorname{End}(A) \otimes \mathbb{Q}$ may not be a division algebra.
- We can have $\operatorname{End}_{k'}^{0}(A) \neq \operatorname{End}_{k}^{0}(A)$ for extensions k' of k.
- A can be isogenous to another abelian variety A', isomorphic to it over an extension of k, but not isomorphic to it over k.

Decomposing abelian varieties

Theorem (Poincaré-Weil)

Every abelian variety A is isogenous to a product of simple abelian varieties $A = \prod A_i^{m_i}$. The decomposition is entirely determined by χ_{π_A} .

- End⁰(A_i) is a division algebra.
- End⁰(A) = $\prod M_{m_i}(\text{End}^0(A_i))$.

Theorem (Tate)

 $Hom_k(A, B)$ is free of rank the number of common roots (with multiplicity) of χ_{π_A} and χ_{π_B} .

62 / 66

Endomorphism rings of abelian varieties

Let A be a simple abelian variety of dimension g. Then

- $\chi_{\pi} = m_A^e$ where m_A is the minimal polynomial of the Frobenius and is irreducible.
- End⁰(E) is a division algebra of center Q(π). The type of End⁰(E) is entirely determined by π.
- We have 2g = de, where d is the degree of m_A . End⁰(E) is of rank de^2 .

Remark

- If A is ordinary, then e = 1, χ_{π} is irreducible and $K = \text{End}_{k}^{0}(E)$ is a CM-field of rank 2g.
- Moreover if A is absolutely simple, then $K = \mathbb{Q}(\pi) = \mathbb{Q}(\pi^n)$ for every n and $\operatorname{End}_k(A) = \operatorname{End}_{\overline{k}}(A)$.

Computing isogenies and endomorphisms

- In dimension 2, one can define modular polynomials using the Igusa invariants [Gau00; Dup06; BL09]. But these are too big to compute even for $\ell \ge 3$.
- We have an equivalent of Vélu's formula for maximally isotropic kernels [LR10; CR11].
- We also have subexponentials algorithms to compute the endomorphism ring in dimension 2 [Bis11b].
- See the package AVIsogenies [BCR10] for an implementation of isogenies and endomorphism ring computation (mostly restricted to dimension 2 for now).

Isogeny graph in genus 2: example of horizontal isogenies

Isogeny graph in genus 2: vertical isogenies

Computations done by Gaetan Bisson using AVIsogenies.

Abelian varieties -

Isogeny graph in genus 2: vertical isogenies

Outline

- Isogenies on elliptic curves
- 2 Endomorphisms
- Supersingular elliptic curves
- 4 Abelian varieties
- **5** References

Elliptic curves

- For a meta look at attacks on elliptic curves using isogenies to transfert the DLP: [KKM09, Section 11.2].
- Computing the modular polynomial: [Eng09a; BLS09].
- Different methods to compute class fields polynomials (the best known methods use the CRT and isogenies): [Eng09b; Sut09; ES10].
- Explicit isogenies in large characteristic: see [Elk92; Elk97]; and [BMS+08] for the best current known algorithm, with a nice history of previous methods.
- Explicit isogenies in small characteristic: [JL06; LS08] for methods based on lifting, [Cou94; Cou96] for Couveigne's algorithm. The current best implementation of Couveigne's algorithm is in [Feo10a], a nice summary is in [Feo10b].
- Some papers on SEA point counting algorithm [Sch95; Mor95; Elk97; Ler97].
- About isogenies and isomorphisms descending to the base field, see [Cox89, Proposition 14.19] and [Sch95, Proposition 6.1].
- See [Sil86, Chapter X, Theorem 2.2] for the equivalence between automorphisms and twists.
- An algorithm to compute endomorphism ring was developed in Kohel's thesis [Koh96]. Some extensions to supersingular curves are in [ML04; Cer04].
- Developing the result of Kohel's led to the notion of "isogeny volcano" [FM02] and improvements of the computation of the endomorphism ring [Fou01] with applications to the CRT method to compute class polynomials.
- Finally, a subexponential algorithm is developped in [BS09; Bis11a; Bis11b].
- One can also use the cycle given by the crater of the volcano to recover the trace of the Frobenius modulo a power of ℓ [CM94; CDM96; FM02; Fou01].

 Using pairings to go up in the Volcano [IJ10]. The ℓ[∞]-torsion in the volcano is described there, and also in [MMS+06].

Abelian varieties

- For an introduction to abelian variety, see [Mil91]. For more informations, see [Mum70], with [Mil85; Mil86] for simplified proofs using étale cohomology, and [GM07] for a more recent account. For abelian varieties over C, see [Mum83; Mum84; Mum91] and a more recent account in [BL04].
- Some nice informations on abelian varieties over finite fields (Tate's theorem, Honda-Tate theory) see [WM71] and [Wat69] for a more complete treatment.
- A description of ordinary abelian variety over a finite field is given by an equivalence of category [Del69], the link is further studied in [How95].
- For algebraic theta functions, see [Mum66; Mum67a; Mum67b], and some new results in [Kem89].
- Computing modular polynomials in genus 2: [Gau00; Dup06; BL09]. Computing a certain modular correspondance using theta functions [FLR11].
- Computing isogenies in abelian varieties using theta functions [LR10; CR11].
- For an introduction to the use of theta functions in cryptography (arithmetic, pairings, isogenies) see [Rob10].
- Computing endomorphism ring see [EL07; FL08; Wag09; Bis11b].

Bibliography

[BL04] C. Birkenhake and H. Lange. Complex abelian varieties. Second. Vol. 302. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Berlin: Springer-Verlag, 2004, pp. xii+635. ISBN: 3-540-20488-1 (cit. on p. 71).
 [Bis11a] G. Bisson. "Computing endomorphism rings of elliptic curves under the GRH". In: Journal of Mathematical Cryptology (2011). arXiv:1101.4323 (cit. on p. 70).

m	c	
Ka	terences	
ILC.	ici cii ces	

[Bis11b]	G. Bisson. "Endomorphism Rings in Cryptography". PhD thesis. 2011 (cit. on pp. 65, 70, 71).
[BCR10]	G. Bisson, R. Cosset, and D. Robert. "AVIsogenies (Abelian Varieties and Isogenies)". Packet magma dédié au calcul explicite d'isogénies entre variétés abéliennes. 2010. URL: http://avisogenies.gforge.inria.fr. Licence libre (LGPLv2+), enregistré à l'APP (référence IDDN.FR.001.440011.000.R.P.2010.000.10000) (cit. on p. 65).
[BS09]	G. Bisson and A. Sutherland. "Computing the endomorphism ring of an ordinary elliptic curve over a finite field". In: <i>Journal of Number Theory</i> (2009) (cit. on p. 70).
[BMS+08]	A. Bostan, F. Morain, B. Salvy, and E. Schost. "Fast algorithms for computing isogenies between elliptic curves". In: <i>Mathematics of Computation</i> 77.263 (2008), pp. 1755–1778 (cit. on pp. 34, 70).
[BL09]	R. Bröker and K. Lauter. "Modular polynomials for genus 2". In: <i>LMS J. Comput. Math.</i> 12 (2009), pp. 326–339. ISSN: 1461-1570 (cit. on pp. 65, 71).
[BLS09]	R. Bröker, K. Lauter, and A. Sutherland. <i>Modular polynomials via isogeny volcanoes</i> . 2009. arXiv:1001.0402 (cit. on pp. 14, 70).
[Cer04]	J. Cerviño. "On the correspondence between supersingular elliptic curves and maximal quaternionic orders". In: <i>Arxiv preprint math/0404538</i> (2004) (cit. on p. 70).
[CLG09]	D. Charles, K. Lauter, and E. Goren. "Cryptographic hash functions from expander graphs". In: <i>Journal of Cryptology</i> 22.1 (2009), pp. 93–113. ISSN: 0933-2790 (cit. on p. 15).
[CJS10]	A. Childs, D. Jao, and V. Soukharev. "Constructing elliptic curve isogenies in quantum subexponential time". In: <i>Arxiv preprint arXiv:1012.4019</i> (2010) (cit. on p. 37).
[CR11]	R. Cosset and D. Robert. "An algorithm for computing (ℓ, ℓ) -isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2". Mar. 2011. URL: http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf. HAL: hal-00578991 (cit. on pp. 65, 71).
---------	---
[Cou94]	J. Couveignes. "Quelques calculs en théorie des nombres". PhD thesis. 1994 (cit. on pp. 36, 70).
[Cou96]	J. Couveignes. "Computing l-isogenies using the p-torsion". In: <i>Algorithmic Number Theory</i> (1996), pp. 59–65 (cit. on pp. 36, 70).
[CDM96]	J. Couveignes, L. Dewaghe, and F. Morain. <i>Isogeny cycles and the Schoof-Elkies-Atkin algorithm.</i> Tech. rep. Citeseer, 1996 (cit. on p. 70).
[CL08]	J. Couveignes and R. Lercier. "Galois invariant smoothness basis". In: <i>Algebraic geometry and its applications</i> (2008) (cit. on p. 15).
[CL09]	J. Couveignes and R. Lercier. "Elliptic periods for finite fields". In: <i>Finite fields and their applications</i> 15.1 (2009), pp. 1–22 (cit. on p. 15).
[CM94]	J. Couveignes and F. Morain. "Schoof's algorithm and isogeny cycles". In: <i>Algorithmic Number Theory</i> (1994), pp. 43–58 (cit. on p. 70).
[Cox89]	D. Cox. Primes of the form $x^2 + ny^2$. Wiley, 1989 (cit. on p. 70).
[Del69]	P. Deligne. "Variétés abéliennes ordinaires sur un corps fini". In: <i>Inventiones Mathematicae</i> 8.3 (1969), pp. 238–243 (cit. on p. 71).
[DIK06]	C. Doche, T. Icart, and D. Kohel. "Efficient scalar multiplication by isogeny decompositions". In: <i>Public Key Cryptography-PKC 2006</i> (2006), pp. 191–206 (cit. on p. 15).
[Dup06]	R. Dupont. "Moyenne arithmetico-geometrique, suites de Borchardt et applications". In: <i>These de doctorat, Ecole polytechnique, Palaiseau</i> (2006) (cit. on pp. 65, 71).

× 1	c .			
Kα	to		20	
I.C.		10		

66 / 66

[EL07]	K. Eisentrager and K. Lauter. "A CRT algorithm for constructing genus 2 curves over finite fields". In: <i>AGCT-11</i> (2007) (cit. on p. 71).
[Elk92]	N. Elkies. "Explicit isogenies". In: manuscript, Boston MA (1992) (cit. on p. 70).
[Elk97]	N. Elkies. "Elliptic and modular curves over finite fields and related computational issues". In: <i>Computational perspectives on number theory: proceedings of a conference in honor of AOL Atkin, September 1995, University of Illinois at Chicago.</i> Vol. 7. Amer Mathematical Society. 1997, p. 21 (cit. on pp. 14, 70).
[Eng09a]	A. Enge. "Computing modular polynomials in quasi-linear time". In: <i>Math. Comp</i> 78.267 (2009), pp. 1809–1824 (cit. on p. 70).
[Eng09b]	A. Enge. "The complexity of class polynomial computation via floating point approximations". In: <i>Mathematics of Computation</i> 78.266 (2009), pp. 1089–1107 (cit. on p. 70).
[ES10]	A. Enge and A. Sutherland. "Class invariants by the CRT method, ANTS IX: Proceedings of the Algorithmic Number Theory 9th International Symposium". In: <i>Lecture Notes in Computer Science</i> 6197 (July 2010), pp. 142–156 (cit. on pp. 14, 70).
[FLR11]	JC. Faugère, D. Lubicz, and D. Robert. "Computing modular correspondences for abelian varieties". In: <i>Journal of Algebra</i> (2011). arXiv:0910.4668. URL: http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf. HAL: hal-00426338. (Cit. on p. 71).
[Feo10a]	L. de Feo. "Fast algorithms for computing isogenies between ordinary elliptic curves in small characteristic". In: <i>Journal of Number Theory</i> (2010) (cit. on pp. 36, 70).
[Feo10b]	L. de Feo. "Algorithmes Rapides pour les Tours de Corps Finis et les Isogénies". PhD thesis. Ecole Polytechnique X, Dec. 2010. URL: http://hal.inria.fr/tel-00547034/en (cit. on pp. 37, 70).

[Fou01]	M. Fouquet. "http://www.math.jussieu.fr/ fouquet/Manuscrit.ps.gz". PhD thesis. 2001 (cit. on p. 70).
[FM02]	M. Fouquet and F. Morain. "Isogeny volcanoes and the SEA algorithm". In: <i>Algorithmic Number Theory</i> (2002), pp. 47–62 (cit. on pp. 49, 70).
[FL08]	D. Freeman and K. Lauter. "Computing endomorphism rings of Jacobians of genus 2 curves over finite fields". In: <i>Algebraic Geometry and its Applications, World Scientific</i> (2008), pp. 29–66 (cit. on p. 71).
[GHS02]	S. Galbraith, F. Hess, and N. Smart. "Extending the GHS Weil descent attack". In: <i>Advances in Cryptology—EUROCRYPT 2002</i> . Springer. 2002, pp. 29–44 (cit. on p. 13).
[Gau00]	P. Gaudry. "Algorithmique des courbes hyperelliptiques et applications à la cryptologie". PhD thesis. École Polytechnique, Dec. 2000 (cit. on pp. 65, 71).
[Gau07]	P. Gaudry. "Fast genus 2 arithmetic based on Theta functions". In: <i>Journal of Mathematical Cryptology</i> 1.3 (2007), pp. 243–265 (cit. on p. 15).
[GM07]	G. van der Geer and B. Moonen. "Abelian varieties". In: <i>Book in preparation</i> (2007) (cit. on p. 71).
[How95]	E. Howe. "Principally polarized ordinary abelian varieties over finite fields". In: <i>American Mathematical Society</i> 347.7 (1995) (cit. on p. 71).
[IJ10]	S. Ionica and A. Joux. "Pairing the volcano". In: <i>Algorithmic Number Theory</i> (2010), pp. 201–218 (cit. on p. 71).
[JS10]	D. Jao and V. Soukharev. "A subexponential algorithm for evaluating large degree isogenies". In: <i>Algorithmic Number Theory</i> (2010), pp. 219–233 (cit. on p. 37).
[JL06]	A. Joux and R. Lercier. "Counting points on elliptic curves in medium characteristic". Cryptology ePrint Archive, Report 2006/176. May 2006 (cit. on p. 70).

× 1	c .			
Kα	to		20	
I.C.		10		

66	1	6	6

[Kem89]	G. Kempf. "Linear systems on abelian varieties". In: American Journal of Mathematics 111.1 (1989), pp. 65–94 (cit. on p. 71).
[KKM09]	A. Koblitz, N. Koblitz, and A. Menezes. "Elliptic curve cryptography: The serpentine course of a paradigm shift". In: <i>Journal of Number Theory</i> (2009) (cit. on p. 70).
[Koh96]	D. Kohel. "Endomorphism rings of elliptic curves over finite fields". PhD thesis. University of California, 1996 (cit. on p. 70).
[Ler97]	R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. These, LIX-CNRS, juin 1997. 1997. URL: http://cat.inist.fr/?cpsidt=183634 (cit. on p. 70).
[LS08]	R. Lercier and T. Sirvent. "On Elkies subgroups of ℓ -torsion points in elliptic curves defined over a finite field." In: <i>Journal de théorie des nombres de Bordeaux</i> 20.3 (2008), pp. 783–797 (cit. on pp. 35, 70).
[LR10]	D. Lubicz and D. Robert. "Computing isogenies between abelian varieties". 2010. URL: http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf. HAL: hal-00446062 (cit. on pp. 65, 71).
[ML04]	K. McMurdy and K. Lauter. "Explicit Generators for Endomorphism Rings of Supersingular Elliptic Curves". In: (2004) (cit. on p. 70).
[Mil85]	J. Milne. "Jacobian varieties". In: Arithmetic geometry (G. Cornell and JH Silverman, eds.) (1985), pp. 167–212 (cit. on p. 71).
[Mil86]	J. Milne. "Abelian varieties". In: Arithmetic geometry (G. Cornell and JH Silverman, eds.) (1986), pp. 103–150 (cit. on p. 71).
[Mil91]	J. Milne. <i>Abelian varieties</i> . 1991. URL: http://www.jmilne.org/math/CourseNotes/av.html (cit. on p. 71).

[MMS+06]	J. Miret, R. Moreno, D. Sadornil, J. Tena, and M. Valls. "An algorithm to compute volcanoes of 2-isogenies of elliptic curves over finite fields". In: <i>Applied mathematics and computation</i> 176.2 (2006), pp. 739–750 (cit. on p. 71).
[Mor95]	F. Morain. "Calcul du nombre de points sur une courbe elliptique dans un corps fini: aspects algorithmiques". In: <i>J. Théor. Nombres Bordeaux</i> 7 (1995), pp. 255–282 (cit. on pp. 14, 70).
[Mum66]	D. Mumford. "On the equations defining abelian varieties. I". In: <i>Invent. Math.</i> 1 (1966), pp. 287–354 (cit. on p. 71).
[Mum67a]	D. Mumford. "On the equations defining abelian varieties. II". In: <i>Invent. Math.</i> 3 (1967), pp. 75–135 (cit. on p. 71).
[Mum67b]	D. Mumford. "On the equations defining abelian varieties. III". In: <i>Invent. Math.</i> 3 (1967), pp. 215–244 (cit. on p. 71).
[Mum70]	D. Mumford. <i>Abelian varieties</i> . Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970, pp. viii+242 (cit. on p. 71).
[Mum83]	D. Mumford. <i>Tata lectures on theta I.</i> Vol. 28. Progress in Mathematics. With the assistance of C. Musili, M. Nori, E. Previato and M. Stillman. Boston, MA: Birkhäuser Boston Inc., 1983, pp. xiii+235. ISBN: 3-7643-3109-7 (cit. on p. 71).
[Mum84]	D. Mumford. <i>Tata lectures on theta II</i> . Vol. 43. Progress in Mathematics. Jacobian theta functions and differential equations, With the collaboration of C. Musili, M. Nori, E. Previato, M. Stillman and H. Umemura. Boston, MA: Birkhäuser Boston Inc., 1984, pp. xiv+272. ISBN: 0-8176-3110-0 (cit. on p. 71).
[Mum91]	D. Mumford. <i>Tata lectures on theta III</i> . Vol. 97. Progress in Mathematics. With the collaboration of Madhav Nori and Peter Norman. Boston, MA: Birkhäuser Boston Inc., 1991, pp. viii+202. ISBN: 0-8176-3440-1 (cit. on p. 71).

[Rob10]	D. Robert. "Theta functions and applications in cryptography". PhD thesis. Université Henri-Poincarré, Nancy 1, France, July 2010. URL:
	http://www.normalesup.org/~robert/pro/publications/academic/pnd.pdf. Sndes http://www.normalesup.org/~robert/pro/publications/slides/2010-07-phd.pdf, TEL:tel-00528942. (Cit. on p. 71).
[RS06]	A. Rostovtsev and A. Stolbunov. "Public-key cryptosystem based on isogenies". In: International Association for Cryptologic Research. Cryptology ePrint Archive (2006). eprint: http://eprint.iacr.org/2006/145 (cit. on p. 15).
[Sch95]	R. Schoof. "Counting points on elliptic curves over finite fields". In: J. Théor. Nombres Bordeaux 7.1 (1995), pp. 219–254 (cit. on pp. 14, 70).
[Sil86]	J. H. Silverman. <i>The arithmetic of elliptic curves</i> . Vol. 106. Graduate Texts in Mathematics. Corrected reprint of the 1986 original. New York: Springer-Verlag, 1986, pp. xii+400. ISBN: 0-387-96203-4 (cit. on p. 70).
[Sma03]	N. Smart. "An analysis of Goubin's refined power analysis attack". In: <i>Cryptographic Hardware and Embedded Systems-CHES 2003</i> (2003), pp. 281–290 (cit. on p. 15).
[Smi09]	B. Smith. Isogenies and the Discrete Logarithm Problem in Jacobians of Genus 3 Hyperelliptic Curves. Feb. 2009. arXiv:0806.2995 (cit. on p. 13).
[Sut09]	A. Sutherland. "Computing Hilbert class polynomials with the Chinese remainder theorem". In: <i>Mathematics of Computation</i> (2009) (cit. on pp. 14, 70).
[Tes06]	E. Teske. "An elliptic curve trapdoor system". In: <i>Journal of cryptology</i> 19.1 (2006), pp. 115–133 (cit. on p. 15).
[Wag09]	M. Wagner. "Über Korrespondenzen zwischen algebraischen Funktionenkörpern". PhD thesis. Technische Universität Berlin, 2009 (cit. on p. 71).

[Wat69]	W. Waterhouse. "Abelian varieties over finite fields". In: <i>Ann. Sci. Ecole Norm. Sup</i> 2.4 (1969), pp. 521–560 (cit. on p. 71).
[WM71]	W. Waterhouse and J. Milne. "Abelian varieties over finite fields". In: <i>Proc. Symp. Pure Math</i> 20 (1971), pp. 53–64 (cit. on p. 71).

66 / 66