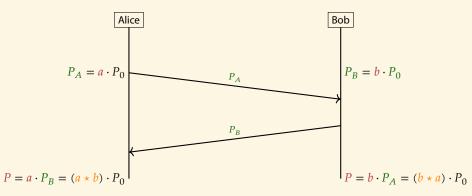
The module action for isogeny based cryptography $2025/06/13 - AGC^2T - Luminy$

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

NIKE: Non Interactive Key Exchange



CRS Key Exchange ([Couveignes (1997)], [Rostovtsev–Stolbunov (2006)])

The ideal action on ordinary elliptic curves:

$$E_{0} \longrightarrow E_{[\mathfrak{a}]} = \mathfrak{a} \cdot E_{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{[\mathfrak{b}]} = \mathfrak{b} \cdot E_{0} \longrightarrow E_{[\mathfrak{a}\mathfrak{b}]} \simeq \mathfrak{a}\mathfrak{b} \cdot E_{0}$$

- © Commutative group action
- Restricted group action → Unrestricted group action: CSI-FiSh (2019), [Pearl-]Scallop[-HD] (2023–2024), [CKQ]lapoti[s]/Pegasis (2023–2025)
- Classical security $\approx \Delta^{1/4}$
- ⓒ Susceptible to Kuperberg's subexponential quantum algorithm ⇒ need to work with $\Delta \gg 512$ bits

The ordinary ideal action

- E/\mathbb{F}_q ordinary elliptic curve
- $\mathfrak{a} \subset R := \operatorname{End}_{\mathbb{F}_q}(E)$ invertible ideal in a quadratic imaginary order

Definition (The ideal action)

 $\mathfrak{a} \cdot E$ is the elliptic curve $E/E[\mathfrak{a}]$, where

$$\mathbb{E}[\mathfrak{a}] \coloneqq \{ P \in E(\overline{\mathbb{F}}_q) \mid \alpha(P) = 0_E, \forall \alpha \in \mathfrak{a} \}$$

- ⓒ This conflates the codomain $\mathfrak{a} \cdot E$ with the way we compute it as an isogeny $E \to E/E[\mathfrak{a}]$
- Not obvious that $\mathfrak{a} \cdot \mathfrak{b} \cdot E \simeq (\mathfrak{a}\mathfrak{b}) \cdot E$ (Can use that $\deg E[\mathfrak{a}] = N(\mathfrak{a})$) What happens at non invertible ideals?
- As in Deuring's correspondence, can kinda be reframed as an equivalence of category between (equivalence classes of) invertible ideals in *R* and (isomorphism classes of) elliptic curves "horizontally" isogeneous to *E*
- An isogeny $\phi : \mathfrak{a} \cdot E \to \mathfrak{b} \cdot E$ corresponds to the invertible ideal \mathfrak{ba}^{-1}
- Not clear distinction of objects and morphisms
- **Question 1**: intrinsic characterisation of $\mathfrak{a} \cdot E$?

SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)])

- Idea: Switch to maximal supersingular curves over \mathbb{F}_{p^2}
- No commutative group action \Rightarrow no Kuperberg attack

SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)])

SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)])

• Observation: The CRS diagram

$$E_{0} \longrightarrow E_{[\mathfrak{a}]} = \mathfrak{a} \cdot E_{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{[\mathfrak{b}]} = \mathfrak{b} \cdot E_{0} \longrightarrow E_{[\mathfrak{a}\mathfrak{b}]} \simeq \mathfrak{a}\mathfrak{b} \cdot E_{0}$$

is a pushforward if $N(\mathfrak{a})$ is coprime to $N(\mathfrak{b})$

SIDH:

$$E_{0} \longrightarrow E_{A} = E_{0}/K_{A}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{B} = E_{0}/K_{B} \longrightarrow E_{AB} \simeq E_{0}/(K_{A} + K_{B})$$

where $K_A \subset E_0[2^a]$, $K_B \subset E_0[3^b]$ and E_0/\mathbb{F}_{p^2} is a maximal supersingular curve

© To compute E_{AB} from E_A and K_B , Bob needs extra torsion information on E_A from Alice ©©© SIDH attacks [Castryck-Decru; Maino-Martindale-Panny-Pope-Wesolowski; R. 2023]

A commutative supersingular key exchange?

- There is also a supersingular ideal action [Deuring]
- $K_A = E_0[I_A], K_B = E_0[I_B], I_A, I_B \subset \mathfrak{O}_0 \coloneqq \operatorname{End}_{\overline{\mathbb{F}}_n}(E_0)$
- **Problem**: the endomorphism ring \mathfrak{O}_A of E_A is distinct from \mathfrak{O}_0 , so I_B is not an ideal of it
- Instead, Bob needs to act by a different ideal $I'_B \subset \mathfrak{O}_A$ to get $E_{AB} = I'_B \cdot E_A$
- Idea: What if I_A , I_B are generated by ideals $\mathfrak{a}, \mathfrak{b} \subset R$ of a commutative quadratic order $R \subset \mathfrak{O}$?
- Then $R \subset \mathfrak{O}_A$, and I'_B is also generated by \mathfrak{b} (Assume R saturated in \mathfrak{O} and the ideals $\mathfrak{a}, \mathfrak{b}$ invertible in R)
- And $E_A[I'_B] = E_A[b]$ can be computed as long as Bob knows how R acts on E_A
- CSIDH [Castryck-Lange-Martindale-Panny-Renes 2018]: start with a supersingular E_0/\mathbb{F}_p and $R = \mathbb{Z}[\sqrt{-p}] = \mathbb{Z}[\pi_p]$
- Oriented group actions [Colò-Kohel 2020], [Onuki 2020] on a (maximal) supersingular curve E_0/\mathbb{F}_{p^2} , with $R\subset \mathfrak{O}_0$ arbitrary

Frobenius orientation (CSIDH) and arbitrary orientations (SCALLOP)

$$E_{0} \longrightarrow E_{[\mathfrak{a}]} = \mathfrak{a} \cdot E_{0}$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_{[\mathfrak{b}]} = \mathfrak{b} \cdot E_{0} \longrightarrow E_{[\mathfrak{a}\mathfrak{b}]} \simeq \mathfrak{a}\mathfrak{b} \cdot E_{0}$$

- E_0/\mathbb{F}_{p^2} supersingular curve
- $R \subset \mathfrak{O}_0$ orientation by a quadratic imaginary order; $\mathfrak{a}, \mathfrak{b} \subset R$ invertible ideals

<u>CSIDH</u>: E_0/\mathbb{F}_p + natural Frobenius orientation $\pi_p \curvearrowright E_0$ (like in CRS)

ⓒ Great control on torsion (e.g. if $2^e | p + 1$, the points in $E_0[2^e]$ are rational over \mathbb{F}_{p^2})

$$\odot \Delta_R = -4p$$

- <u>SCALLOP</u>: arbitrary orientation $R \subset \mathfrak{O}_0$
 - © Decouple the arithmetic (\mathbb{F}_p) with the discriminant Δ_R (For an ordinary curve, $\Delta(\pi_p) \approx p$)
 - Needs a way to represent the orientation
 - Both still susceptible to Kuperberg's subexponential quantum algorithm

A commutative supersingular key exchange (round 2)?

$$E_{0} \longrightarrow E_{I_{A}} = I_{A} \cdot E_{0}$$

$$\downarrow$$

$$E_{I_{B}} = I_{B} \cdot E_{0}$$

- **Goal**: complete the diagram for I_A , I_B arbitrary ideals of \mathfrak{O}_0
- Idea: if $R \subset \mathfrak{O}_0$ is an orientation by a quadratic order, I_A , I_B are rank 2 R-modules
- $I_A I_B$ is not a well defined ideal, but $I_A \otimes_R I_B$ is a well defined rank 4 R-module
- Commutativity: $I_A \otimes_R I_B \simeq I_B \otimes_R I_A$
- Question 2: Can we make sense of a module action?

The module action

• If $A_1, A_2/k$ are two abelian varieties oriented by R, then $\operatorname{Hom}_R(A_1, A_2)$ is a R-module

Definition (The power object)

If A is an abelian variety oriented by R and M a (finite type) R-module, $M \cdot A := Hom_R(M, A)$ is the (unique) R-oriented abelian variety, if it exists, such that

 $\operatorname{Hom}_{R-\operatorname{Ab}}(X, \operatorname{Hom}_{R}(M, A)) = \operatorname{Hom}_{R}(M, \operatorname{Hom}_{R-\operatorname{Ab}}(X, A)) \quad \forall X \in R - \operatorname{Ab}$

R - Ab: category of R-oriented abelian varieties and R-oriented morphisms

[Giraud 1968] (credits Serre+Tate), [Serre 1985]

• Functoriality: an R-linear map $\psi: M_2 \rightarrow M_1$ induces an oriented morphism

$$\phi: \mathcal{H}om_R(M_1, A) \to \mathcal{H}om_R(M_2, A)$$

- Left exactness: $M_1 \rightarrow M_2 \rightarrow 0 \quad \rightsquigarrow \quad 0 \rightarrow \mathcal{H}om_R(M_2, A) \hookrightarrow \mathcal{H}om_R(M_1, A)$ $0 \rightarrow A_1 \hookrightarrow A_2 \quad \rightsquigarrow \quad 0 \rightarrow \mathcal{H}om_R(M, A_1) \hookrightarrow \mathcal{H}om_R(M, A_2)$
- Commutativity: if *R* is commutative, $M_2 \cdot M_1 \cdot A = \mathcal{H}om_R(M_2, \mathcal{H}om_R(M_1, A)) = \mathcal{H}om_R(M_1 \otimes_R M_2, A) = (M_1 \otimes_R M_2) \cdot A = M_1 \cdot M_2 \cdot A$

Construction of the module action

- Embed both categories into <u>R</u>-modules for the (big) fppf-topos (sheafs for the fppf site of Spec k)
- $\mathcal{H}om_R(M, A) := \mathcal{H}om_{R-fppf}(\underline{M}, A)$ is the <u>R</u>-Hom sheaf (internal <u>R</u>-Hom in the fppf-topos) <u>M</u> is the fppf-sheafification of the constant sheaf M
- Functor of points: If *S*/*k* is a f.t. *k*-algebra,

 $\mathcal{H}om_R(M, A)(S) = \operatorname{Hom}_R(M, A(S))$

[Waterhouse 1969, Appendix A] (cites [Serre 1965, 1967])

• This is always the (sheaf associated to) a proper commutative group scheme, of dimension

$$\dim \mathcal{H}om_R(M, A) = \operatorname{rank} M \times \dim A$$

- $Hom_R(M, A)$ is an abelian variety if M is projective [Serre]
- Exactness: if $0 \to M_2 \to M_1 \to M_1/M_2 \to 0$ is exact, and $\mathcal{H}om_R(M_2, A)$ is an abelian variety, then

$$0 \to \mathcal{H}om_R(M_1/M_2,A) \to \mathcal{H}om_R(M_1,A) \to \mathcal{H}om_R(M_2,A) \to 0$$

is exact

An equivalence of category

Oriented case: E_0/k elliptic curve primitively oriented by R quadratic imaginary

Theorem (Module anti-equivalence of category)

The action $M \mapsto M \cdot E_0 = \mathcal{H}om_R(M, E_0)$ gives an antiequivalence of category between the category of R-oriented abelian varieties ^a A k-isogenous to E_0^g and R-oriented k-morphisms; and the category of f.p.torsion free R-modules M of rank g and R-module morphisms. Inverse map: $A \mapsto \operatorname{Hom}_R(A, E_0)$: module of (oriented) morphisms from A to E_0

^{*a*}with the technical condition $\rho_R(A) \simeq \bigoplus_{i=1}^{g} \rho_R(E_0)$, where $\rho_R(A)$ is the representation of R/pR on Lie A

[Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018], [Page-R. 2023]

Example

- Frobenius orientation for E_0/\mathbb{F}_p : all \mathbb{F}_p -rational isogenies at level above E_0^g
- If p is inert in R, the Frobenius isogeny $\pi_p : E_0 \to E_0^{(p)}$ cannot be represented by an R-module morphism \Rightarrow Needs extra "Dieudonné" information to handle general inseparable isogenies, see [Centeleghe-Stix 2015, 2023; Bergström, Karemaker, Marseglia 2024]
- Symmetric monoidal structure: $(M_1 \cdot E_0) \otimes_{E_0} (M_2 \cdot E_0) := (M_1 \otimes_R M_2) \cdot E_0 = M_1 \cdot M_2 \cdot E_0$ This is an abelian variety if $M_1 \otimes_R M_2$ is torsion free.

Computing the module action

- Needs to work with polarised abelian varieties. For simplicity: stick to ppavs.
- Since the Rosati involution on E_0 induces the complex conjugation on R, a principal polarisation on $M \cdot E_0$ corresponds to a unimodular R-Hermitian form on M [Serre 1985, 2001], [Kirschmer, Narbonne, Ritzenthaler, R. 2021],
- If (M_1, H_1) , (M_2, H_2) are unimodular torsion free Hermitian R-modules of rank g then $(A_i, \lambda_i) = (M_i, H_i) \cdot (E_0, \lambda_0)$ are principally polarised abelian varieties of dimension g
- We have a M_1 -module orientation on A_1 : if $m_1 \in M_1$, the map $R \to M_1, r \mapsto rm_1$ induces

$$m_1:A_1\to E_0.$$

Proposition ([Kirschmer, Narbonne, Ritzenthaler, R. 2021])

If $\psi : (M_2, H_2) \hookrightarrow (M_1, H_1)$ is an N-similitude (i.e. $\psi^* H_1 = NH_2$), then $\phi : (A_1, \lambda_1) \to (A_2, \lambda_2)$ is an N-isogeny of ppavs, with kernel

$$\operatorname{Ker} \phi = M_1 / M_2 \cdot A = A_1[M_2] = \{ P \in A_1(\overline{k}) \mid m(P) = 0_{E_0} \forall m \in M_2 \}$$

Corollary (Clapoti for the module action)

If we can find two N_i -similitudes $(M, H_M) \rightarrow (R^g, H_{R^g})$, with N_1 coprime to N_2 , we can compute $(M, H_M) \cdot E_0$ in polynomial time.

Computing the module action

Proposition ([Kirschmer, Narbonne, Ritzenthaler, R. 2021])

If $\psi : (M_2, H_2) \hookrightarrow (M_1, H_1)$ is an N-similitude (i.e. $\psi^* H_1 = NH_2$), then $\phi : (A_1, \lambda_1) \to (A_2, \lambda_2)$ is an N-isogeny of ppavs, with kernel

$$\operatorname{Ker} \phi = M_1 / M_2 \cdot A = A_1 [M_2] = \{ P \in A_1(\overline{k}) \mid m(P) = 0_{E_0} \forall m \in M_2 \}$$

Example (The ideal action)

If $\mathfrak{a} \subset R$, we have a canonical unimodular Hermitian form:

$$H_{\mathfrak{a}}(x,y) = \frac{xy}{N(\mathfrak{a})}$$

The inclusion $(\mathfrak{a}, H_{\mathfrak{a}}) \subset (R, H_R)$ is a $N(\mathfrak{a})$ -similitude, hence we obtain a $N(\mathfrak{a})$ -isogeny

$$\phi_{\mathfrak{a}}: E = R \cdot E \to \mathfrak{a} \cdot E$$

with kernel $(R/\mathfrak{a}) \cdot E = E[\mathfrak{a}].$

Linking the supersingular ideal action with an oriented rank 2 module action

 E_0/\mathbb{F}_p primitively oriented by $R = \mathbb{Z}[\pi_p]$.

Proposition (Weil restriction)

If $I \subset \mathfrak{O}_0$ and $E_I = I \cdot E_0$, then

$$(M_I, H_I) \cdot (E_0, \lambda_0) = W_{\mathbb{F}_{p^2}/\mathbb{F}_p}(E_I, \lambda_I)$$

where $W_{\mathbb{F}_{p^2}/\mathbb{F}_p}$ is the Weil restriction, M_I is I seen as an R-module, and H_I is derived from the quaternionic Hermitian form

$$H_{\mathfrak{S}_0,I}: x, y \in I \mapsto x\overline{y}/N(I).$$

Corollary (Module inversion)

The rank 2 unimodular module supersingular action inversion problem over \mathbb{F}_p is at least as hard as the supersingular isogeny path problem over \mathbb{F}_{p^2} .

⊗-MIKE

$$\begin{array}{c} E'_{0} & \longrightarrow & E_{I_{1}} \\ \downarrow & & \downarrow \\ E_{I_{2}} & & \swarrow \\ \end{array} \\ K_{12} = W'_{\mathbb{F}_{p^{2}}/\mathbb{F}_{p}} E_{I_{1}} \otimes_{E'_{0}} W'_{\mathbb{F}_{p^{2}}/\mathbb{F}_{p}} E_{I_{2}} \end{array}$$

- $E'_0: y^2 = x^3 x/\mathbb{F}_p, \quad p = u2^e 1.$ (Ex: $p = 5 \cdot 2^{248} 1.$)
- Alice and Bob each compute a 2^e -isogeny from E'_0 over \mathbb{F}_{p^2}
- Then the common key A_{12} requires computing a 2^e -isogeny in dimension 4 over \mathbb{F}_p
- No need for coprime degrees!
- <u>Conjecture: 512 bits NIKE for 128 bits of quantum security</u> This conjecture holds if:

the module Diffie-Helmann problem is as hard as module inversion;

(a) The difficulty of recovering the supersingular isogeny $E'_0 \rightarrow E_{I_1}$ has e/2 bits of quantum security.

Help needed!

Need good dimension 4 modular invariants to represent A_{12} (e.g. suitable symmetric polynomials in the theta constants?)

Perspectives

- Implement this!
- Public Key Encryption via an ElGamal approach
- Signatures?
- Other protocols? (Problem: the dimension grows exponentially with the number of actions...)
- Can handle twists by looking at Galoisian R[G]-modules actions to encode descent data

Example (Quadratic twists: $G = \text{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p) = \langle \sigma \rangle$)

• if R' = R with σ acting by -1, then $R' \cdot E_0 = E_0^t$ is the quadratic twist, and

 $R' \cdot I \cdot R' \cdot E_0 \simeq \overline{I} \cdot E_0$

- $W_{\mathbb{F}_{p^2}/\mathbb{F}_p}E_0 = R[G] \cdot E_0$
- Extend the module equivalence of category to a ppav (A_0, λ_0) primitively oriented by a CM order O with maximal real multiplication.

(And such that the Rosati involution restricts to the complex conjugation on O. Maximal real multiplication ensures that O is a Bass order)

Constructing the power object

- Embed R Ab into R-oriented proper commutative group schemes to get an abelian category
- Embed both categories (*R*-modules and *R*-oriented proper commutative group schemes) inside the (big) fppf-topos (sheafs for the fppf site of Spec *k*)
- We obtain abelian subcategories of fppf <u>R</u>-modules. More precisely we have exact fully faithful morphisms:
 - ▶ to an *R*-oriented proper commutative group scheme *G* we associate its functor of points $S \mapsto G(S)$, which is an fppf sheaf
 - \blacktriangleright to an R-module M we associate \underline{M} is the fppf-sheafification of the constant (pre)sheaf M
- $Hom_R(M, A) := Hom_{R-fppf}(\underline{M}, A)$ is the <u>R</u>-Hom sheaf (internal <u>R</u>-Hom in the fppf-topos)
- This is only the power object in the larger category of <u>R</u>-modules. Still, if this is (the sheaf associated to) an abelian variety, then it has to be the power object for (*R*-oriented) abelian varieties.
- If *M* is f.p., this is always (the sheaf associated to) a proper commutative group scheme.

Exactness properties

C

• Recall: if $0 \to M_2 \to M_1 \to M_1/M_2 \to 0$ is exact, and $\mathcal{H}om_R(M_2, A)$ is an abelian variety, then

$$) \rightarrow \mathcal{H}om_R(M_1/M_2,A) \rightarrow \mathcal{H}om_R(M_1,A) \rightarrow \mathcal{H}om_R(M_2,A) \rightarrow 0$$

is exact

In general, we have a long exact sequence

$$\begin{split} 0 &\to \mathcal{H}om_R(M_1/M_2,A) \to \mathcal{H}om_R(M_1,A) \to \mathcal{H}om_R(M_2,A) \to \\ & \mathcal{E}xt^1_R(M_1/M_2,A) \to \mathcal{E}xt^1_R(M_1,A) \to \mathcal{E}xt^1_R(M_1,A) \to \ldots \end{split}$$

There are different variants of $\mathcal{E}xt_R^1$ we can take here:

- $\bullet \ \mathcal{E}xt^1_R(M,A) \coloneqq \mathcal{E}xt^1_{R-fppf}(\underline{M},A) = H^1(\mathcal{RHom}_{R-fppf}(\underline{M},A))$
- $\mathcal{E}xt^1_R(M, A) := i^*_{fppf} \mathcal{E}xt^1_{R-PSh}(M, A)$ where i^*_{fppf} is the fppf sheafification of presheaves

Since $i_{fppf}^* \mathcal{RHom}_{R-PSh}(M, A) = \mathcal{RHom}_{R-fppf}(\underline{M}, A)$ these are related by a spectral sequence.

Scholten's construction

- To have lots of 2^e -torsion, we work with $p \equiv 7 \pmod{8}$, so we have a non trivial 2-volcano
- $\bullet\,$ For technical reasons, we will start with a curve E_0' on the crater of the 2-volcano rather than on the floor
- $\operatorname{End}_{\mathbb{F}_p}(E'_0)$ is the maximal order O_R of $R = \mathbb{Z}[\pi_p]$, and the conductor $\mathfrak{f} \subset \mathbb{Z}[\pi_p]$ is of index 2
- We use a slight variant of the Weil restriction: $W'_{\mathbb{F}_{p^2}/\mathbb{F}_p} = \mathfrak{f} \cdot_R W_{\mathbb{F}_{p^2}/\mathbb{F}_p}$ (we can prove that $W'_{\mathbb{F}_{p^2}/\mathbb{F}_p}$ gives Scholten's construction)
- If $E_{I'} = I' \cdot E'_0$ for $I' \subset \mathfrak{O}'_0$, we still have $(M_{I'}, H_{I'}) \cdot_{O_R} (E'_0, \lambda'_0) = W'_{\mathbb{F}_{p^2}/\mathbb{F}_p}(E_{I'}, \lambda_{I'})$
- In practice: take $E'_0: y^2 = x^3 x/\mathbb{F}_p$, so that $W'_{\mathbb{F}_{p^2}/\mathbb{F}_p}E'_0 \simeq {E'_0}^2$