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©® Breen’s introduction gives a very nice high level overview
® Very abstract (the case of a bitorsor on an arbitrary topos...)

® Not a single explicit formula

@ This talk: a“gentle introduction” to cubical arithmetic

@ Algorithmic applications: from explicit cubical formulas on a model we obtain pairings and
isogeny formulas!

@ More details in [Rob24]



Cubical structure associated to a divisor

o A/kacommutative algebraic group, D a divisor on A.
® p;: A%> - Athe projections, p;; == p; + pj,
P123 = p1 + P2+ p3: (P, Py P3) = Py + Py + Ps.

Definition (Cubical structure)

A cubical structure on D is a rational function g1, on A3 such that:
@ gp hasfordivisor pj,,D — pi,D — pi3D — p3.D + piD + p3D + p3D;
@ Neutral point: g (0,0,0) = 1.
o Commutativity: Forallo € &3,9p (0 (P, Py, P3)) = gp(P1, Py, P3).

@ Associativity:

&p(P1 + Py, P3,P4)gp(P1, Py, Py) = §p(Pq, Py + P3,P4)gp (Py, P3, Py).

Example

The trivial cubical structure: D = Oand gp = 1.

We will use symmetric cubical structures [Bre83, § 51: D a symmetric divisor, g p (P, Po, —P1 — P5) = 1.



Cubical points and cubical arithmetic

o Llinebundle, Z € I'(.L) asection, D the divisor of zeroes of Z

@ A cubical point P above a point P € A is a choice of coordinate Z(D) & G,, (k) =k*
(This assumes that P is neither a pole or zero of Z)

Definition (Cubical arithmetic)
Given acube 0, Py, Py, P3, P, + P3, Py + P3,P1 + P, Py + P, + P3, a choice of 7 out of 8 cubical
points determine the 8th one via
Z(Py +P; + P3)Z(P)) Z(Py) Z(P3)
Z(0)Z(Py + P3)Z(Py + P3)Z(Py + P,)

=gp(P1, P, P3)

Example

@ Differential additions: 0, P, Q,—Q,0,P — Q,P + Q, P
=P +QfromP,0,P —Q
@ Doublings: 2P from P (special case of a differential addition with Q =D).




Translated cubes

@ We can also use translated cubes:

Z(R + Py + Py + P3)Z(R+ P))Z(R+Py)Z(R+P3) _ gp(Py, Py, P3+R)
Z(R)Z(R + P, + P3)Z(R + Py + P3)Z(R + Py + Py) gp(P1,P3,R)

e 8points Py, Py, P3, Py; Py, Py, P5, P are part of a translated cube iff there exists Q such that
P1+P2+P3+P4=2QandP;~:Q—PZ~.

(Then the P; are in the numerator and the P; in the denominator in the above formula.)

@ g The general function 8D,Py,Py,P, (R) given for a translated cube in [Rob24] is wrong: it has the correct divisor but is not

normalised correctly. The explicit formulas in that paper are correct (at least the implementation gives the correct results!)



Multiscalar exponentiations
@ Consider an m-dimensional hypercube generated by 0, Py, P», ..., P,,
@ Assume that cubical points have been chosen for all squares 6, 1’3:-, 1’3;-, P:—F’Pj

@ Then we can use cubes to fill out the hypercube and obtain P £+ P,

@ More generally using cubes we can compute ;P + - + n,,P,, foralln; € Z.

Proposition J

The resulting cubical point Y nil’sli does not depends on the choice of intermediate cubes used.

Proof.
By the commutativity and associativity assumptions on ¢py. DJ

@ Cubical multidimensional ladder: O,,, (log maxn;)
@ Homogeneity: P; — A; x P, P{TP]- — Aij * Pi’rpj,

Z niT); i n/\:‘l% H)‘Z‘mj 2 Z niﬁ;
; L

i<j



Cubical arithmetic on abelian varieties

Theorem (Grothendieck, Breen)

If A/k is an abelian variety, then for every divisor D there is a unique (once 6; is fixed) cubical structure on
D. This cubical structure is symmetric if D is symmetric.

Proof.

Cohomological arguments and the fact that A has no non constant global sections.
Explicit construction of gp:

8D,p,,P,(P3)
p(P1, Py, P3) = —————=
< 8D,p,,p,(0)
where gp p, p, is any function with divisor t;, . p D + D —tp D —tp D. O

Corollary
Ifwe takegp p, p, normalised at 0, then
o gD/PI/PZ <P3) = gD/P2/P3 (P1> = gD/P3/Pl (Pz) (commutativity)

© 8D,P,+P,y,Py8D,Py, P, = 8D,Py,Po+P38D,P,, Py (GssOciativity).




Representing cubical points and extra arithmetic

o If (Xy, ..., X,,) are a basis of I (.L), then Z(P) determines X;(P) via X;(P) = x;(P)Z(P)
where x; = X;/Z is a function on A.

@ A choice of cubical point is thus a choice of affine coordinates (X; (F), s X (ﬁ)) above the
projective coordinates (X; (P) : ... : X,,,(P)) of P

This allows to define D whenever P is not a base point of D
@ Inversion: If L is symmetric, a (symmetric) cubical structure also determines —P from P

@ Translation by a point T of n-torsion: If D = n® 4, ® 4 a principal polarisation (we will say D is of
level 1), then we also have a translation map Mg : P +— P +T.

@ Mg is linear in the X; and only depends on the choice of T.

@ [Morss, § 3, § 4]: The biextension associated to the cubical structure is trivial when restricted to A[1] x A, from which we

recover the theta group G (D) and its linear action on I' (D)



Analytic cubical points

o Let A = C8/(Z8 + QZ8) aprincipally polarised complex abelian variety;
@ The addition law on A lifts to the addition law on (C$, +)

@ The analytic period matrix {2 defines a canonical level structure on A[n] for all 2 (in a compatible
way)

@ Let ©(, be the principal polarisation associated to (2, and D = n@®q,.
Basis of I'(A, D): the analytic theta functions 6;(zp, (2/n)

P € Alis represented by the projective coordinates (6;(P))
Ifzp € C8 is above P, we can represent zp by the affine coordinates (6;(zp)).
A choice of zp = a choice of cubical point P

Knowing 6;(z1), 8;(z,) does not allow to find 8;(zy + z5).

But if we have an analytic cube 0,21, 25,23, 2 + 23,21 + 23,21 + 23,21 + 2 + 23, the
knowledge ou the 8;(z;), 0;(z; + ) is enough to recover the coordinates 8;(z; + 25 + z3):
this is precisely the cubical law!

@ Multiexponentiation: recover the 6; (Z] i ]

@ Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)

@ Cubical structure = algebraic consequences of our analytic structure



Elliptic curves (level 1)
o Level1:D = (0g), Z; with a zero of order 1 at O = Of.
@ Cubical point: P = (P,Z4 (D).
o Z1(0g) = 0.0 defined by (Z/(x/y)) (O) = 1.

Ip,,p, (P3) x(P1+P5)—x(P3)
80p) (P1/ P2, P3) = sy =<y — Ip, b,y (—P3)

Differential addition: Z; (P + Q)Z; (P — Q) = Z;(P)2Z1(0)2(x(Q) — x(P))
Doubling: Z; (2P) = Z(P)*2y(P)
Inverse: Zl(—’p) = —Zl(p).

Example

Let P = (x(P),y(P)), Z; (P) = 1.Then Z, (nP) = ,,(P), P, the division polynomial.
And in level 3,if P = (x(P),y(P),1),

nP = (¢, (P) ¢, (P), w, (P), Y3 (P)),

with ¢,,, w,, the extended division polynomials.




Elliptic curves (level 2)

Level 2: D = 2(0g), with sections X5, Z, = Z%
@ Cubical point: P = (XZ(P'),ZZ@)

o O0=(1,0).

° Symmetry:Zz(—F) = Z%(—IAj) = 22(13).

°gp = 3(205) depends only on the x-coordinates of the P;, P; + P;

= Cubical arithmetic in level 2 valid on cubes on the Kummer line E/ + 1.

@ N.B.: for x-only arithmetic, knowing x(Py), x(P5), x(P3), x(P1 + P5), x(Pq + P3) is enough
torecover x(P, + P3), x(Py + P, + P3) (see [LR16]) so does not quite require the full cube.



Formulas on elliptic curves

Example (Montgomery model in level 2:y2 =+ Ax? +x)
o Z(2P) = 4X(P)Z(P)(X(P)? + AX(P)Z(P) + Z(P)?)
o ZPFQZP=Q) = (XQZP) - X®)2 D)’
= The standard Montgomery ladder gives (almost) the cubical ladder P — nP
@ T =(0:1)2-torsion, T = (0,1),P + T = (Z5(P), X5(P)).

@ Montgomery curves have very efficient cubical formulas!

Example (Elliptic nets = cubical arithmetic in level 1 [Stao8])

o GivenP;, P;:Pj, the elliptic net W(ny, ..., n,,) is simply Z; (3, n;P;)
@ Amazingly, knowing sufficiently many of these Z; is enough to recover all of them (via the elliptic
net recurrence relation)




Summary
@ Cubical point P = point P with additional marking (in G,)
@ Cubical arithmetic: coherent way to keep track of this marking

= New algorithmic tools!

Going further

@ The “correct point of view” is that of cubical isomorphisms of fppf-torsors (this makes the cubical
arithmetic well defined on any point)

@ Cubical point P= choice of rigidification of our torsor at P; cubical coordinates = encoding of this
rigidification

@ Moret-Bailly: “au royaume des torseurs, il n'y a pas de signe”

Contrast this with the sign ambiguity inherent in the Weil pairing, even [Gro72] has sign mistakes!

@ Grothendieck-Breen'’s theorem holds for abelian schemes A /S and semi-abelian schemes (and
more) over a normal base: equivalence of categories between cubical torsors and rigidified
torsors

@ Allows to study degenerations of abelian varieties

@ Cubical arithmetic induces theta group and biextension arithmetic, the algebraic structures
behind isogenies and pairings respectively.

@ Universality: [Bre83, Theorem 8.9]: the cubical structure on L encodes all the quadratic
information associated to the polarisation L



Table of Contents

Constructing functions with prescribed divisors, applications to pairings



Cubical functions

o E elliptic curve, D = (0g)
o R~ Z(R + Y. n,P;) is a“function” with divisor t“Z ﬂiPiD'
@ Depends on the choices of 13;, P;—ITIP]-.
@ Butalsoof R, RTPi
= Not a genuine function. Cubical function.

@ But combining these cubical functions we can get genuine elliptic functions.

Example

Z(R 4+ P; 4+ P,)Z(R)
Z(R+P1)Z(R+DPy)
is a genuine function gp p, p, with divisor tj;lJrPZD +D - tj;lD = tl*,zD.

R~ gp, p,(R) =

It only depends on the choices of Py, Py, P; + P».




Cubical functions for pairings

o P e E[{](k),Q € E(k)
o Tate pairing: fy p((Q) — (0g)) with f; p a function of divisor (D — £,D

~ )
@ Cubical function: Q — ( 28 )
Z(P+Q)

@ Not a genuine function!

@ Instead rewrite the divisor as t;pD + (¢ — 1)D — €t D and use:

Z(WP +Q)Z(Q)!
Z(P ¥ Q)"

fop(Q) =

Theorem
@ The Tate pairing is given by

ero(P,Q) =

2P +0) ( AYAG) )“
ZUP) \Z(P+Q)Z®©)

@ The Weil pairing is given by

ZUP + 0)Z(1Q)

P,Q) = = ——
i) Z(P)Z(Q + D)




Double and add algorithm

@ We can normalize our functions by setting Z(PTQ) =7(P) = Z(Q) =1

Z(mP+Q)

© fup((Q) = (0) = ZZ2S
o Double and add: Z(mi+mp)P+Q) _ ZmiP+Q)  Z(mpP+Q) Z((mljm5>P+Q)~Z(g>
Z((my+my)P) Z(m, D) Z(m,D) Z((mP+Q)Z(m,P+Q)

@ We recover the double and add formula for Miller’s algorithm:

Sy +my,p(Q) = fny P (i, p(Q&D, iy P, (Q)-

The cubical arithmetic allows to compute Z(mp =+ @) and Z(mp) separately!

Much more flexible!

These are not genuine functions, so not defined using only x, i coordinates!



Alternate formulas for the Weil pairing
o If hy pis a function with divisor [£]* (D — t},D), then the (original definition of the) Weil pairing
ew (P, Q) is given by Iy p(Q + R) /hy p(R) for any point R
o Cubical function R — Z({R)/Z({R + P)

@ Keeping track of the projective factors, we see that we can build the genuine ki p as

ZUR)ZUP +R)
hE,p(R) S ——a ———
Z{R + P)Z(R)
@ Using this Weil pairing alternate formula with R = 0, we find again
Z{P + Q)Z(tQ)
ew (P,Q) = ———c—- QN 9
ZUP)Z(Q + P)

@ Notice how we can compute /i p efficiently via the cubical ladder! By contrast Miller’s algorithm
for iy p needs the coordinates of the {-torsion points T € E[{] and of P such that £Py = P;
and cannot use a double and add method because the points on the support of the divisor
[01*(D —t3pD) = ZTGE[@] ((T) = (T — Py)) only have multiplicity one.

@ Extends to Weil-Cartier pairings ey (P, Q) by using cubical isogeny formulas @7 for ¢.

@ But not clear how to compute @TJ + O without knowing a preimage Qo € $~1(Q) and using zﬁ(lAj + FQVO)
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Summary

@ The cubical arithmetic allows us to easily build functions with prescribed divisors

@ We can use intermediate cubical functions in our computations, as long as the end result is a
genuine elliptic function

@ Greater flexibility!

@ New insights: Doliskani’s probabilistic supersingularity test is a self pairing test: all points on E
have trivial self Tate pairing if E is supersingular.

@ Faster pairing formulas for Montgomery curves

Going further:

o If Pis of {-torsion, and we choose cubical points P, O, P+ Q, we have (P = Ap x 0,
P+ Q =Ap g *QwithAp,Ap 5 # 1in general

@ The pairing formulas show that these monodromy values (in G,,,) give the Tate and Weil pairings

@ The mathematical framework for the monodromy interpretation of the pairings is Mumford’s
notion of biextension (see [Gro72; Stao8, Chapter 14])

@ [Rob24]: monodromy interpretation of the Ate and optimal Ate pairings on abelian varieties
@ Cubical arithmetic induces (and is finer) than biextension arithmtetic
@ This gives some extra flexibility in our arithmetic for pairing computations: we just need formulas

that are valid for the biextension arithmetic, even if they are not valid for the cubical arithmetic.
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Vélu's formulas

o Eq/k:y3 = x5 + ax; + by elliptic curve, K = (T) cyclic kernel of order ¢, E, = E{/K
@ %p(P) := YL (xq (P +iT)— Y11 x; (iT)
° y2(P) = Lo (P +iT)= Y71 1 (T)

@ X5 has for polar divisor Zf;(l) 2(iT) and is invariant by the translation by T, hence defines a
section of 2(0g,) on E;

o Likewise, i, defines a section of 3(0g,) on E;

@ The Weierstrass equation between x5, I/, can be found by evaluating on a few points or working
in the formal group of E;.



Vélu's formulas in higher dimension?

(Aq, ®A1 )/k ppav of dimension g, K = (T, ..., Tg) C Aq[{] isotropic kernel of rank g,
¢:A - A, =A/K

¢isan Lisogeny: 9" @4, = €Oy,

X1, .0, Xy € I'(n@ 4, ) system of coordinates of level 72.on A4

x;(P) = Y. pex %i(P + T)+constant

x; invariant by translation by T € K, so defines a coordinate on A,

We just need to evaluate on a few points and recover the equations for A, ...
Except this does not seem to work?

x; = X;/X. Putting everything in the same denominator, the trace x} has degree (5 on Ay, so is
of degree (8~ on A,

Here the degree is taken with respect to n®A1 and ”@Az respectively
i : ud ~ (8
More precisely: 3’ ;o 7104, ~ B0,

This divisor is invariant by translation by T € K, so descends to a divisor ~ 23_171@,42 onA,,
but it is of too large degree (unless g = 1)



Cubical Vélu's formulas in higher dimension

@ Rather than taking a trace of the affine coordinates x; = X; /X, we want to take a trace on the
projective coordinates X; directly

o Forinstance the trace of X} gives X/ (P) = YTk XHP +T).
@ This is of correct degree!

@ But the coordinates (X;(P + T)) are only defined up to projective factors A that depends on
Tek

@ The values Xf(P + T) do not make sense!
@ Except it does as a coordinate Xf(PTT) on a cubical point.

@ Taking a cubical trace works!



Technical details: theta groups and the cubical arithmetic

© We need to build a divisor @ on A; such that:

Q @¢ is invariant by translation by K
Q Oy ~ Oy,

@ Descent theory: (symmetric) lifts K of K in the theta group G(n®4,) < (symmetric) divisors
O,
¢

@ Symmetric ®¢ unique (up to linear equivalence) if n even and ¢ odd

@ [Rob21]: explicit formulas of the action of G(lﬂn@Al ) on T(Qn@Al ) allows to take the trace of
actions under K and compute the isogeny ¢

@ These explicit formulas exist in the theta model [LR12; CR15; LR22]

@ [Rob24]: the cubical arithmetic on level 71 allows to recover the theta group action of level {n

@ Cubical arithmetic = explicit isogeny formulas



Excellent cubical lifts

Proposition

T € A[(], Lodd. T a cubical point above T. TFAE:
Q@ Wj+ T =iTforalli,j € Z
Q@ T=0and(t+1)T =T
Q@ (W +1T=—UTfort =20 +1

A point Tsatisfying these properties is said to be an excellent cubical lift of T, there are { of them: if Tis
excellent then { T istoo for { €

o T e A[L], T arbitrary cubical lift

o T=Ag 0, + 1T =AM T

o W+ DT =ax—T

@ Ay =eq (T, T) (non reduced Tate pairing)
° A% = Ag,/\l =a2,Ag = al

o The excellent lifts are given by 7y T for 'ye =«



Theta group action from excellent lifts
o IfT € A[{], a cubical point T of level 1 induces a cubical point T®! of level 1€, hence an
element gy € G(In® ) of the theta group
o Tand  » Tinduce the same point T®! for { & My
o The excellent lifts T all induce the unique symmetric element groforder Lin G({n® 4)
o Excellent liftof K: K = (T®'| T € K) (subgroup of G({n® 4 ) since Kiis isotropic).

Definition

IfP € A, P + Tisan excellent lift relative to P and T (for T excellent) if P + (T = P.
In that case, P + Gt + NT =D +iT

— — ot
@ There are { possible relative excellent lifts P + T that all induce the same point P + T

@ Theactionof g7 € G(In®,) is given by

Tel. pot — p T

e NB:ifP,Q & A[E] Q excellent lift, then one can take P+ Q excellent relative to both
(Q,P)and (P,0) (le. P + O = Qand P + 10 = P)iff P, Q are isotropic for the Weil pairing.

Damien Robert Cubical arithmetic 27/43



Cubical isogeny formulas

Theorem
LetX; € I'(n®y ,)- Fix excellent lifts TforT € Kand P + T relative to D.
Then

XjPy=Y X{PFT)
TeK
gives a coordinateon A, = A1 /K.

@ Recovering equations for A, from the X will depend on the type of model we seek

@ The action ofG(n@Al) on the X; allows us to recover the action of G(n@Az) on the X;
(assume £ A 1 = 1 for simplicity), hence (for instance) a theta model of level 11 for A,

o Flexible:if ¢ = " a2, we can use Xi(P) = ZTGK I, Xi(ay @+T))
NB.: P — X;(a,P) is of degree a2

@ Cubical isogeny $: compatibility between cubes of level 728 on A; and cubes of level 12 on A,



Summary

@ Generalisation of Vélu's formula to higher dimension via cubical traces

@ Flexible framework (choice of coordinate to put in the trace)

Going further:
@ The mathematical framework for computing isogenies is descent theory, hence theta groups
@ Amazing fact: cubical arithmetic in level 71 allows to compute the theta group action in level {n!

@ Isogenies lift to cubical isogenies (compatible with cubes) and cubical traces naturally compute
cubical isogenies

o Compeatibility of pairings and isogenies is a special case of the compatibility of cubical isogenies
and cubical arithmetic
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Preimages

¢ : E; — E, isogeny of elliptic curves (for simplicity) with cyclic kernel K = (T') of order {

@ We saw how to compute isogeny images P — ¢(P)

Goal: compute isogeny preimages: (])‘1 (Q)

For ease of notations: let (/3 : E; — E; be the contragredient isogeny, we will compute the
preimages (f)‘l(P) CE,

@ Radical isogenies: the preimages T, & 43‘1 (T) are in bijection with the non-backtracking
isogenies ¢ : E; = Eg



Torsors

e ¢/k:Ey - Ey PeE (k)
o If $~1(P) contains a rational point Q € Ej (k), then the fiber is in bijection with Ker ¢ via
¢~ (P) = Q+Ker¢
@ It certainly contains such a point over the separable closure of k (assume ¢ separable)
= 43_1 (P) is an (étale) Ker gﬁ—torsor

o IfKer¢ = (T) with T € E;(k), then Ker ¢ =~ Z/{Z,so Ker ¢ = i, (via the Weil-Cartier
pairing)
° 43_1 (P) is an (étale) j/¢-torsor

= Hilbert 9o: we have an isomorphism of schemes over k: (]3_1 (P) e {xe =C}

Theorem

By the geometric interpretation of the Tate pairing, C = ery (T, P) (non reduced Tate pairing)

@ Goal: make this isomorphism explicit



Cubical arithmetic for preimages

Goal: compute (/3_1(P), ¢ : E; —» E; withkernel K = (T)

Fix an excellent lift T
Fix D and an excellent lift P + T relative to P and T

@ Start with an arbitrary lift P+T
@ Compute P + T = ApP
N.B.: Ap is the Tate pairing of P with T!

© Then /\Ilj/a * D+ Tis an excellent lift relative to D, T

Construct the cubical points P + i1 fori = 0, ..., — 1

These give the coordinates (in level 1{) of a point Q € 43_1 (P)!

@ The { choices for/\llj/e give the { preimages.



Descending level

Theorem

IfX1, ..., X,, are a basis of section of level n on E, then the X,,, (P + iT) form a basis of sections of
level &1 on E,, evaluated on Q

@ We want to describe Q with coordinates X; of level n

Goal: take linear combinations of the X,,, (P + iT) of the form X, (Q) X" (Q).

@ We recover projective coordinates of level 11 for Q

Method: use descent through a well chosen isogeny



Descending level on an abelian variety

o Write 0 =1 + a2 4+ b? + ¢ + d?> and take F : A% — A5 given by the matrix

1 a b @ d
a -1 0 0 0
b 0 -1 0 0
c 0 0O -1 o0
d 0 0 0 -1

o The kernel of F is given by the image of A[{] into A® via P — (P,aP,bP,cP,dP)

1 0
0 M2> such that fpMF = £1d.

@ So Fisan -isogeny (A, ©4)° — (A, 0 4) x (A%, ©@") (@' non principal non product
polarisation)

@ There is a block diagonal matrix M = (

@ Applying the isogeny formulas to F allows to recover the level 1 coordinates on A by projecting
to the left factor

@ N.B: here we are already in level {11 on the domain so the isogeny formulas are simple.
The kernel is of size {2 but half of the points give a trivial action, so we take a trace under {8
terms.

@ Complexity for descending from level {12 to level 12: O (£8)



Multiradical isogenies

Aofdimensiong, K = (Ty,...,T,), ¢ : A - B

88 +1/2 choice of excellent lifts for T, T{—-T-’T]- = all our possible £8@+1D/2 mytiradical
isogenies (after descending back to level n)

@ These involve the (sqrt of the) “self” Tate pairings er (T, T]-) (¢ odd)

o IfP € A, 88 choices for P+ T; = all €8 possible preimages Q € $~1(P) (after descending
back to level 1)

These involves the Tate pairings eg ((T;, P)



Summary

@ Cubical arithmetic allows to go up and down in level, not only on the same abelian variety but
also across an isogeny

@ Explicit algorithms to compute preimages and radical isogenies

@ The Tate pairings naturally appear in these algorithms

Open questions:

@ Interpretation of the cubical coordinates of the neutral points of 0 4 and O as modular forms (in
the spirit of [KNRR21])?

@ Simpler descent formulas?
o Radical SqrtVelu formulas?

o In progress: explicit radical formulas for Montgomery curves
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Cubical arithmetic and DLP

o P e E(F,) apoint of {-torsion,Q =5 - P

@ DLP:given (P, Q) recovers

o Assumelfq—1 thenpyyNF, = {1}
(Otherwise use pairings to reduce the DLP to IF;)

o Then there is only one canonical excellent lift P := P above P with coordinates in IFq (there is
only one rational root of xt = er (P, P))

o P, are easy to compute

e Wehaves-P = Q

@ This lifts the DLP to a cubical DLP

@ Now assume that someone leaks (p, @ =s- '1\5) for some cubical point (not canonical) D above P
o WriteD=A P
oThenQ =5-P=25xs5-P =15« Q.
@ We know (A, /\Sz). ADLPin IF; allows to recover s2, hence s (modulo the multiplicative order
of A).
@ If A has large enough order, we obtain s.

@ Thisassumes g — 1 has not too many factor so that there are not too many sqrt of 52 to check.



The monodromy leak

@ For the attack to work, we need someone to leak 1’\5, Q =5.P
@ How would that be possible? Nobody uses cubical arithmetic for standard ECC, right?

@ Actually, many implementations use the Montgomery ladder.

And this is (almost!) the cubical ladder.

Montgomery ladder: Start from (X (P), Z(P) = 1) and compute (X (sP), Z(sP))

@ Then output x(sP) = X (sP)/Z(sP). If division not in constant time, this leaks Z(sP).
@ Hence this leaks s - P for D = (x(P),1)
°

N.B.: Montgomery ladder is not quite the cubical ladder, so we solve a different degree two
equation to recover s.

The general DLP:
If we have only (P, Q), we take arbitrary choices of 13, Q

We have Q =t-Pforsomet =s mod £ (if Pischosen to have order lg—-1))
Apply the monodromy leak attack to recover f modulo g — 1

°
°
@ Problem: £ is coprime to g — 1, so this gives zero information on s mod (.
°

The monodromy leak only works when we know that 0 < £ < !
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Perspectives

@ DLP, pairing inversion from the cubical point of view?

@ Cubical arithmetic allows to reduce the elliptic curve DLP to a DLP between “quasi”-cyclic
matrices of size £ x {. Not very useful but gives new point of view on pairings attacks (take an
eigenvalue of these matrices to reduce to a DLP in dimension 1)

@ Investigate the arithmetic of non symmetric biextensions induced by (non symmetric) isogenies

@ R-sesquilinear pairings [Sta24] from the cubical point of view? (Replace G,,, torsors by
G8&R-torsors?)

@ Related: computing multidimensional endomorphism ladders Y, aiﬁi?

o Self pairings [CHM+23] from the cubical point of view?

@ [Bre83]: if we have a symmetric cubical torsor structure on (G, L), G C A[n], then thereisa
canonical trivialisation of the induced cubical structure on [21]* L.

@ Similarity with self pairings: if P is of n-torsion, then the self pairing e(P, P) lives in i5,,.
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