Cubical arithmetic on abelian varieties: introduction and applications 2025/02/06 — Biextension reading group

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

Table of Contents

Cubical arithmetic

Constructing functions with prescribed divisors, applications to pairings

Computing isogenies

Isogeny preimages, and radical isogenies

5 The monodromy leak

6 Perspectives

References

- [Gro72] Grothendieck, <u>Groupes de Monodromie en Géométrie Algébrique: SGA 7</u> (1972) VII, VIII. Biextensions
- [Bre83] Breen, <u>Fonctions thêta et théoreme du cube</u> (1983)
 Symmetric biextensions and cubical torsor structures
- [Mor85] Moret-Bailly, <u>Pinceaux de variétés abéliennes</u> (1985) Cubical torsor structures
- © Breen's introduction gives a very nice high level overview
- Very abstract (the case of a bitorsor on an arbitrary topos...)
- Sot a single explicit formula
- This talk: a "gentle introduction" to cubical arithmetic
- Algorithmic applications: from explicit cubical formulas on a model we obtain pairings and isogeny formulas!
- More details in [Rob24]

Cubical structure associated to a divisor

- A/k a commutative algebraic group, D a divisor on A.
- $p_i : A^3 \to A$ the projections, $p_{ij} := p_i + p_j$, $p_{123} := p_1 + p_2 + p_3 : (P_1, P_2, P_3) \mapsto P_1 + P_2 + P_3$.

Definition (Cubical structure)

A cubical structure on D is a rational function g_D on A^3 such that:

- g_D has for divisor $p_{123}^*D p_{12}^*D p_{13}^*D p_{23}^*D + p_1^*D + p_2^*D + p_3^*D$;
- Neutral point: $g_D(0, 0, 0) = 1$.
- Commutativity: For all $\sigma \in \mathfrak{S}_3$, $g_D(\sigma(P_1, P_2, P_3)) = g_D(P_1, P_2, P_3)$.
- Associativity:

 $g_D(P_1 + P_2, P_3, P_4)g_D(P_1, P_2, P_4) = g_D(P_1, P_2 + P_3, P_4)g_D(P_2, P_3, P_4).$

Example

The trivial cubical structure: D = 0 and $g_D = 1$.

We will use symmetric cubical structures [Bre83, § 5]: D a symmetric divisor, $g_D(P_1, P_2, -P_1 - P_2) = 1$.

Cubical points and cubical arithmetic

- \mathcal{L} line bundle, $Z \in \Gamma(\mathcal{L})$ a section, D the divisor of zeroes of Z
- A cubical point \tilde{P} above a point $P \in A$ is a choice of coordinate $Z(\tilde{P}) \in \mathbb{G}_m(k) = k^*$ (This assumes that P is neither a pole or zero of Z)

Definition (Cubical arithmetic)

Given a cube $0, P_1, P_2, P_3, P_2 + P_3, P_1 + P_3, P_1 + P_2, P_1 + P_2 + P_3$, a choice of 7 out of 8 cubical points determine the 8th one via

$$\frac{Z(P_1 + \widetilde{P_2} + P_3)Z(\widetilde{P_1})Z(\widetilde{P_2})Z(\widetilde{P_3})}{Z(\widetilde{0})Z(P_2 + P_3)Z(P_1 + P_3)Z(P_1 + P_2)} = g_D(P_1, P_2, P_3)$$

Example

- Differential additions: 0, P, Q, -Q, 0, P Q, P + Q, $P \Rightarrow P + Q$ from \widetilde{P} , \widetilde{Q} , $\widetilde{P Q}$
- Doublings: $\widetilde{2P}$ from \widetilde{P} (special case of a differential addition with $\widetilde{Q} = \widetilde{P}$).

Translated cubes

• We can also use translated cubes:

$$\frac{Z(R+P_1+P_2+P_3)Z(R+P_1)Z(R+P_2)Z(R+P_3)}{Z(\widetilde{R})Z(R+\widetilde{P_2}+P_3)Z(R+\widetilde{P_1}+P_3)Z(R+\widetilde{P_1}+P_2)} = \frac{g_D(P_1,P_2,P_3+R)}{g_D(P_1,P_3,R)}$$

• 8 points $P_1, P_2, P_3, P_4; P'_1, P'_2, P'_3, P'_4$ are part of a translated cube iff there exists Q such that $P_1 + P_2 + P_3 + P_4 = 2Q$ and $P'_i = Q - P_i$.

(Then the P_i are in the numerator and the P'_i in the denominator in the above formula.)

The general function g_{D,P1}, P2,P3</sub>(R) given for a translated cube in [Rob24] is wrong: it has the correct divisor but is not normalised correctly. The explicit formulas in that paper are correct (at least the implementation gives the correct results!)

Multiscalar exponentiations

- Consider an *m*-dimensional hypercube generated by 0, *P*₁, *P*₂, ..., *P*_m
- Assume that cubical points have been chosen for all squares $\tilde{0}, \widetilde{P_i}, \widetilde{P_j}, \widetilde{P_i + P_j}$
- Then we can use cubes to fill out the hypercube and obtain $P_1 + \cdot + P_m$
- More generally using cubes we can compute $n_1P_1 + + n_mP_m$ for all $n_i \in \mathbb{Z}$.

Proposition

The resulting cubical point $\sum n_i \widetilde{P_i}$ does not depends on the choice of intermediate cubes used.

Proof.

By the commutativity and associativity assumptions on g_D .

- Cubical multidimensional ladder: $O_m(\log \max n_i)$
- Homogeneity: $\widetilde{P_i} \mapsto \lambda_i \star \widetilde{P_i}, P_i + P_j \mapsto \lambda_{ij} \star P_i + P_j$,

$$\sum n_i \widetilde{P_i} \mapsto \prod_i \lambda_i^{n_i^2} \prod_{i < j} \lambda_{ij}^{n_i n_j} \star \sum n_i \widetilde{P_i}$$

Cubical arithmetic on abelian varieties

Theorem (Grothendieck, Breen)

If A/k is an abelian variety, then for every divisor D there is a unique (once $\widetilde{0_A}$ is fixed) cubical structure on D. This cubical structure is symmetric if D is symmetric.

Proof.

Cohomological arguments and the fact that A has no non constant global sections. Explicit construction of g_D :

$$g_D(P_1, P_2, P_3) = \frac{g_{D, P_1, P_2}(P_3)}{g_{D, P_1, P_2}(0)}$$

where g_{D,P_1,P_2} is any function with divisor $t^*_{P_1+P_2}D + D - t^*_{P_1}D - t^*_{P_2}D$.

Corollary

If we take g_{D,P_1,P_2} normalised at 0, then

•
$$g_{D,P_1,P_2}(P_3) = g_{D,P_2,P_3}(P_1) = g_{D,P_3,P_1}(P_2)$$
 (commutativity)

• $g_{D,P_1+P_2,P_3}g_{D,P_1,P_2} = g_{D,P_1,P_2+P_3}g_{D,P_2,P_3}$ (associativity).

Representing cubical points and extra arithmetic

- If $(X_1, ..., X_m)$ are a basis of $\Gamma(\mathcal{L})$, then $Z(\widetilde{P})$ determines $X_i(\widetilde{P})$ via $X_i(\widetilde{P}) = x_i(P)Z(\widetilde{P})$ where $x_i = X_i/Z$ is a function on A.
- A choice of cubical point is thus a choice of affine coordinates $(X_1(\tilde{P}), \dots, X_m(\tilde{P}))$ above the projective coordinates $(X_1(P) : \dots : X_m(P))$ of PThis allows to define \tilde{P} whenever P is not a base point of D
- Inversion: If $\mathcal L$ is symmetric, a (symmetric) cubical structure also determines $-\widetilde{P}$ from \widetilde{P}
- Translation by a point T of n-torsion: If $D = n\Theta_A$, Θ_A a principal polarisation (we will say D is of level n), then we also have a translation map $M_{\widetilde{T}} : \widetilde{P} \mapsto \widetilde{P+T}$.
- $M_{\widetilde{T}}$ is linear in the X_i and only depends on the choice of \widetilde{T} .
- [Mor85, § 3, § 4]: The biextension associated to the cubical structure is trivial when restricted to $A[n] \times A$, from which we recover the theta group G(D) and its linear action on $\Gamma(D)$

Analytic cubical points

- Let $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ a principally polarised complex abelian variety;
- The addition law on A lifts to the addition law on $(\mathbb{C}^{g}, +)$
- The analytic period matrix Ω defines a canonical level structure on A[n] for all n (in a compatible way)
- Let Θ_{Ω} be the principal polarisation associated to Ω , and $D = n\Theta_{\Omega}$. Basis of $\Gamma(A, D)$: the analytic theta functions $\theta_i(z_P, \Omega/n)$
- $P \in A$ is represented by the projective coordinates $(\theta_i(P))$
- If $z_P \in \mathbb{C}^g$ is above P, we can represent z_P by the affine coordinates $(\theta_i(z_P))$.
- A choice of $z_P \Rightarrow$ a choice of cubical point \widetilde{P}
- Knowing $\theta_i(z_1)$, $\theta_i(z_2)$ does not allow to find $\theta_i(z_1 + z_2)$.
- But if we have an analytic cube $0, z_1, z_2, z_3, z_2 + z_3, z_1 + z_3, z_1 + z_2, z_1 + z_2 + z_3$, the knowledge ou the $\theta_i(z_j), \theta_i(z_j + z_k)$ is enough to recover the coordinates $\theta_i(z_1 + z_2 + z_3)$: this is precisely the cubical law!
- Multiexponentiation: recover the $\theta_i(\sum_j n_j z_j)$.
- Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)
- Cubical structure = algebraic consequences of our analytic structure

Elliptic curves (level 1)

- Level 1: $D = (0_E)$, Z_1 with a zero of order 1 at $O = 0_E$.
- Cubical point: $\widetilde{P} = (P, Z_1(\widetilde{P})).$
- $Z_1(0_E) = 0. \widetilde{O}$ defined by $(Z/(x/y))(\widetilde{O}) = 1.$

•
$$g_{(0_E)}(P_1, P_2, P_3) = \frac{l_{P_1, P_2}(P_3)}{(x(P_3) - x(P_1))(x(P_3) - x(P_2))} = \frac{x(P_1 + P_2) - x(P_3)}{l_{P_1, P_2}(-P_3)}$$

- Differential addition: $Z_1(\widetilde{P+Q})Z_1(\widetilde{P-Q}) = Z_1(\widetilde{P})^2Z_1(\widetilde{Q})^2(x(Q) x(P))$
- Doubling: $Z_1(2\widetilde{P}) = Z(\widetilde{P})^4 2y(P)$
- Inverse: $Z_1(-\widetilde{P}) = -Z_1(\widetilde{P}).$

Example

Let $P = (x(P), y(P)), Z_1(\tilde{P}) = 1$. Then $Z_1(n\tilde{P}) = \psi_n(P), \psi_n$ the division polynomial. And in level 3, if $\tilde{P} = (x(P), y(P), 1)$,

$$n\widetilde{P}=(\phi_n(P)\psi_n(P),\omega_n(P),\psi_n^3(P)),$$

with ϕ_n , ω_n the extended division polynomials.

Elliptic curves (level 2)

- Level 2: $D = 2(0_E)$, with sections $X_2, Z_2 = Z_1^2$
- Cubical point: $\widetilde{P} = (X_2(\widetilde{P}), Z_2(\widetilde{P}))$
- $\widetilde{O} = (1, 0).$
- Symmetry: $Z_2(-\widetilde{P}) = Z_1^2(-\widetilde{P}) = Z_2(\widetilde{P}).$
- $g_D = g_{(0_F)}^2$ depends only on the *x*-coordinates of the $P_i, P_i + P_j$
- ⇒ Cubical arithmetic in level 2 valid on cubes on the Kummer line $E / \pm 1$.
- N.B.: for x-only arithmetic, knowing $x(P_1), x(P_2), x(P_3), x(P_1 + P_2), x(P_1 + P_3)$ is enough to recover $x(P_2 + P_3), x(P_1 + P_2 + P_3)$ (see [LR16]) so does not quite require the full cube.

Formulas on elliptic curves

Example (Montgomery model in level 2: $y^2 = x^3 + Ax^2 + x$)

- $Z(2\widetilde{P}) = 4X(\widetilde{P})Z(\widetilde{P})(X(\widetilde{P})^2 + AX(\widetilde{P})Z(\widetilde{P}) + Z(\widetilde{P})^2)$
- $Z(\widetilde{P+Q})Z(\widetilde{P-Q}) = (X(\widetilde{Q})Z(\widetilde{P}) X(\widetilde{P})Z(\widetilde{Q}))^2$
- $\Rightarrow~$ The standard Montgomery ladder gives (almost) the cubical ladder $\widetilde{P}\mapsto n\widetilde{P}$
- T = (0:1) 2-torsion, $\widetilde{T} = (0,1)$, $\widetilde{P+T} = (Z_2(\widetilde{P}), X_2(\widetilde{P}))$.
- Montgomery curves have very efficient cubical formulas!

Example (Elliptic nets = cubical arithmetic in level 1 [Stao8])

- Given $\widetilde{P_i}, P_i + P_j$, the elliptic net $W(n_1, \dots, n_m)$ is simply $Z_1(\sum n_i \widetilde{P_i})$
- Amazingly, knowing sufficiently many of these Z₁ is enough to recover all of them (via the elliptic net recurrence relation)

Summary

- Cubical point \widetilde{P} = point P with additional marking (in \mathbb{G}_m)
- Cubical arithmetic: coherent way to keep track of this marking
- ⇒ New algorithmic tools!

Going further

- The "correct point of view" is that of cubical isomorphisms of fppf-torsors (this makes the cubical arithmetic well defined on any point)
- Cubical point *P*= choice of rigidification of our torsor at *P*; cubical coordinates = encoding of this
 rigidification
- Moret-Bailly: "au royaume des torseurs, il n'y a pas de signe"
 Contrast this with the sign ambiguity inherent in the Weil pairing, even [Gro72] has sign mistakes!
- Grothendieck-Breen's theorem holds for abelian schemes *A*/*S* and semi-abelian schemes (and more) over a normal base: equivalence of categories between cubical torsors and rigidified torsors
- Allows to study degenerations of abelian varieties
- Cubical arithmetic induces theta group and biextension arithmetic, the algebraic structures behind isogenies and pairings respectively.
- $\bullet~$ Universality: [Bre83, Theorem 8.9]: the cubical structure on \pounds encodes all the quadratic information associated to the polarisation \pounds

Cubical arithmetic

Table of Contents

1 Cubical arithmetic

2 Constructing functions with prescribed divisors, applications to pairings

Computing isogenies

Isogeny preimages, and radical isogenies

5 The monodromy leak

6 Perspectives

Cubical functions

- *E* elliptic curve, $D = (0_E)$
- $\widetilde{R} \mapsto Z(\widetilde{R} + \sum n_i \widetilde{P}_i)$ is a "function" with divisor $t^*_{\sum n_i P_i} D$.
- Depends on the choices of $\widetilde{P_i}$, $\widetilde{P_i + P_j}$.
- But also of \widetilde{R} , $\widetilde{R + P_i}$
- \Rightarrow Not a genuine function. Cubical function.
- But combining these cubical functions we can get genuine elliptic functions.

Example

$$R \mapsto g_{P_1,P_2}(R) = \frac{Z(R + \widetilde{P_1} + P_2)Z(\widetilde{R})}{Z(\widetilde{R} + P_1)Z(\widetilde{R} + P_2)}$$

is a genuine function g_{D,P_1,P_2} with divisor $t^*_{P_1+P_2}D + D - t^*_{P_1}D - t^*_{P_2}D$. It only depends on the choices of $\widetilde{P_1}, \widetilde{P_2}, P_1 + P_2$.

Cubical functions for pairings

- $P \in E[\ell](k), Q \in E(k)$
- Tate pairing: $f_{\ell,P}((Q) (0_E))$ with $f_{\ell,P}$ a function of divisor $\ell D \ell t_P^* D$
- Cubical function: $\widetilde{Q} \mapsto \left(\frac{Z(\widetilde{Q})}{Z(\widetilde{P+Q})}\right)^{\ell}$
- Not a genuine function!
- Instead rewrite the divisor as $t_{\ell P}D + (\ell 1)D \ell t_P^*D$ and use:

$$f_{\ell,P}(Q) = \frac{Z(\ell \widetilde{P} + \widetilde{Q})Z(\widetilde{Q})^{\ell-1}}{Z(\widetilde{P} + Q)^{\ell}}$$

Theorem

• The Tate pairing is given by

$$e_{T,\ell}(P,Q) = \frac{Z(\ell \widetilde{P} + \widetilde{Q})}{Z(\ell \widetilde{P})} \left(\frac{Z(\widetilde{P})Z(\widetilde{Q})}{Z(\widetilde{P+Q})Z(\widetilde{O})} \right)^{-1}$$

• The Weil pairing is given by

$$e_{W,\ell}(P,Q) = \frac{Z(\ell \widetilde{P} + \widetilde{Q})Z(\ell \widetilde{Q})}{Z(\ell \widetilde{P})Z(\ell \widetilde{Q} + \widetilde{P})}$$

Double and add algorithm

• We can normalize our functions by setting $Z(\widetilde{P+Q}) = Z(\widetilde{P}) = Z(\widetilde{Q}) = 1$

•
$$f_{m,P}((Q) - (0)) = \frac{Z(m\overline{P} + \overline{Q})}{Z(m\overline{P})}$$

• Double and add:
$$\frac{Z((m_1 + m_2)\overline{P} + \overline{Q})}{Z((m_1 + m_2)\overline{P})} = \frac{Z(m_1\overline{P} + \overline{Q})}{Z(m_1\overline{P})} \cdot \frac{Z(m_2\overline{P} + \overline{Q})}{Z(m_2\overline{P})} \cdot \frac{Z((m_1 + m_2)\overline{P} + \overline{Q})Z(\overline{Q})}{Z((m_1\overline{P} + \overline{Q})Z(m_2\overline{P} + \overline{Q}))}$$

• We recover the double and add formula for Miller's algorithm:

$$f_{m_1+m_2,P}(Q)=f_{m_1,P}(Q)f_{m_2,P}(Q)g_{D,m_1P,m_2P}(Q).$$

- The cubical arithmetic allows to compute $Z(m\tilde{P} + \tilde{Q})$ and $Z(m\tilde{P})$ separately!
- Much more flexible!
- These are not genuine functions, so not defined using only x, y coordinates!

Alternate formulas for the Weil pairing

- If $h_{\ell,P}$ is a function with divisor $[\ell]^*(D t_P^*D)$, then the (original definition of the) Weil pairing $e_{W,\ell}(P,Q)$ is given by $h_{\ell,P}(Q+R)/h_{\ell,P}(R)$ for any point R
- Cubical function $\widetilde{R} \mapsto Z(\ell \widetilde{R})/Z(\ell \widetilde{R} + \widetilde{P})$
- Keeping track of the projective factors, we see that we can build the genuine $h_{\ell,P}$ as

$$h_{\ell,P}(R) = \frac{Z(\ell \widetilde{R}) Z(\ell \widetilde{P} + \widetilde{R})}{Z(\ell \widetilde{R} + \widetilde{P}) Z(\widetilde{R})}$$

• Using this Weil pairing alternate formula with R = 0, we find again

$$e_{W,\ell}(P,Q) = \frac{Z(\ell \widetilde{P} + \widetilde{Q})Z(\ell \widetilde{Q})}{Z(\ell \widetilde{P})Z(\ell \widetilde{Q} + \widetilde{P})}$$

- Notice how we can compute $h_{\ell,P}$ efficiently via the cubical ladder! By contrast Miller's algorithm for $h_{\ell,P}$ needs the coordinates of the ℓ -torsion points $T \in E[\ell]$ and of P_0 such that $\ell P_0 = P$; and cannot use a double and add method because the points on the support of the divisor $[\ell]^*(D t_P^*D) = \sum_{T \in E[\ell]} ((T) (T P_0))$ only have multiplicity one.
- Extends to Weil-Cartier pairings $e_{\phi}(P, Q)$ by using cubical isogeny formulas $\widetilde{\phi}$ for ϕ .
- But not clear how to compute $\widetilde{\phi}\widetilde{P} + \widetilde{Q}$ without knowing a preimage $Q_0 \in \phi^{-1}(Q)$ and using $\widetilde{\phi}(\widetilde{P} + \widetilde{Q_0})$

Summary

- The cubical arithmetic allows us to easily build functions with prescribed divisors
- We can use intermediate cubical functions in our computations, as long as the end result is a genuine elliptic function
- Greater flexibility!
- <u>New insights</u>: Doliskani's probabilistic supersingularity test is a self pairing test: all points on *E* have trivial self Tate pairing if *E* is supersingular.
- Faster pairing formulas for Montgomery curves

Going further:

- If P is of ℓ -torsion, and we choose cubical points \widetilde{P} , \widetilde{Q} , $\widetilde{P + Q}$, we have $\ell \widetilde{P} = \lambda_P \star \widetilde{O}$, $\ell \widetilde{P} + \widetilde{Q} = \lambda_{P,Q} \star \widetilde{Q}$, with $\lambda_P, \lambda_{P,Q} \neq 1$ in general
- The pairing formulas show that these monodromy values (in \mathbb{G}_m) give the Tate and Weil pairings
- The mathematical framework for the monodromy interpretation of the pairings is Mumford's notion of biextension (see [Gro72; Stao8, Chapter 14])
- [Rob24]: monodromy interpretation of the Ate and optimal Ate pairings on abelian varieties
- Cubical arithmetic induces (and is finer) than biextension arithmtetic
- This gives some extra flexibility in our arithmetic for pairing computations: we just need formulas that are valid for the biextension arithmetic, even if they are not valid for the cubical arithmetic.

Table of Contents

1 Cubical arithmetic

Constructing functions with prescribed divisors, applications to pairings

3 Computing isogenies

Isogeny preimages, and radical isogenies

5 The monodromy leak

6 Perspectives

Vélu's formulas

- $E_1/k : y_1^2 = x_1^3 + ax_1 + b_1$ elliptic curve, $K = \langle T \rangle$ cyclic kernel of order $\ell, E_2 = E_1/K$
- $x_2(P) := \sum_{i=0}^{\ell-1} (x_1(P+iT) \sum_{i=1}^{\ell-1} x_1(iT))$
- $y_2(P) := \sum_{i=0}^{\ell-1} (y_1(P+iT) \sum_{i=1}^{\ell-1} y_1(iT))$
- x_2 has for polar divisor $\sum_{i=0}^{\ell-1} 2(iT)$ and is invariant by the translation by T, hence defines a section of $2(0_{E_2})$ on E_2
- Likewise, y_2 defines a section of $3(0_{E_2})$ on E_2
- The Weierstrass equation between x_2, y_2 can be found by evaluating on a few points or working in the formal group of E_1 .

Vélu's formulas in higher dimension?

- $(A_1, \Theta_{A_1})/k$ ppav of dimension $g, K = \langle T_1, \dots, T_g \rangle \subset A_1[\ell]$ isotropic kernel of rank $g, \phi: A_1 \rightarrow A_2 = A_1/K$
- ϕ is an ℓ -isogeny: $\phi^* \mathcal{O}_{A_2} = \ell \mathcal{O}_{A_1}$
- $x_1, \ldots, x_m \in \Gamma(n\Theta_{A_1})$ system of coordinates of level n on A_1
- $x'_i(P) = \sum_{T \in K} x_i(P+T) + \text{constant}$
- x'_i invariant by translation by $T \in K$, so defines a coordinate on A_2
- We just need to evaluate on a few points and recover the equations for $A_2...$ Except this does not seem to work?
- $x_i = X_i/X_0$. Putting everything in the same denominator, the trace x'_i has degree ℓ^g on A_1 , so is of degree ℓ^{g-1} on A_2

Here the degree is taken with respect to $n \mathcal{O}_{A_1}$ and $n \mathcal{O}_{A_2}$ respectively

- More precisely: $\sum_{T \in K} t_T^* n \Theta_{A_1} \sim \ell^g \Theta_{A_1}$
- This divisor is invariant by translation by $T \in K$, so descends to a divisor $\sim \ell^{g-1} n \Theta_{A_2}$ on A_2 , but it is of too large degree (unless g = 1)

Cubical Vélu's formulas in higher dimension

- Rather than taking a trace of the affine coordinates x_i = X_i/X₀, we want to take a trace on the projective coordinates X_i directly
- For instance the trace of X_i^{ℓ} gives $X_i'(P) = \sum_{T \in K} X_i^{\ell}(P + T)$.
- This is of correct degree!
- But the coordinates $(X_i(P+T))$ are only defined up to projective factors λ_T that depends on $T \in K!$
- The values $X_i^{\ell}(P+T)$ do not make sense!
- Except it does as a coordinate $X_i^{\ell}(\widetilde{P+T})$ on a cubical point.
- Taking a cubical trace works!

Technical details: theta groups and the cubical arithmetic

- ${\ensuremath{\, \bullet }}$ We need to build a divisor ${\ensuremath{\mathcal O}}_\phi$ on A_1 such that:
- Descent theory: (symmetric) lifts \widetilde{K} of K in the theta group $G(\ell n \mathcal{O}_{A_1}) \Leftrightarrow$ (symmetric) divisors \mathcal{O}_ϕ
- Symmetric \varTheta_ϕ unique (up to linear equivalence) if n even and ℓ odd
- [Rob21]: explicit formulas of the action of $G(\ell n \Theta_{A_1})$ on $\Gamma(\ell n \Theta_{A_1})$ allows to take the trace of actions under \widetilde{K} and compute the isogeny ϕ
- These explicit formulas exist in the theta model [LR12; CR15; LR22]
- [Rob24]: the cubical arithmetic on level n allows to recover the theta group action of level ℓn
- Cubical arithmetic ⇒ explicit isogeny formulas

Excellent cubical lifts

Proposition

 $T \in A[\ell], \ell \text{ odd. } \widetilde{T} \text{ a cubical point above } T. TFAE:$

• $(\ell j + i)\widetilde{T} = i\widetilde{T}$ for all $i, j \in \mathbb{Z}$

$$\ \, {\ell} \widetilde{T} = \widetilde{O} \text{ and } (\ell+1) \widetilde{T} = \widetilde{T}$$

$$\bigcirc \quad (\ell'+1)\widetilde{T} = -\ell'\widetilde{T} \text{ for } \ell = 2\ell'+1$$

A point \widetilde{T} satisfying these properties is said to be an excellent cubical lift of T, there are ℓ of them: if \widetilde{T} is excellent then $\zeta \star \widetilde{T}$ is too for $\zeta \in \mu_{\ell}$

• $T \in A[\ell]$, \widetilde{T} arbitrary cubical lift

•
$$\ell \widetilde{T} = \lambda_0 \star \widetilde{O}, (\ell + 1)\widetilde{T} = \lambda_0 \lambda_1 \star \widetilde{T}$$

- $(\ell' + 1)\widetilde{T} = \alpha \star \ell'\widetilde{T}$
- $\lambda_1 = e_{T,\ell}(T,T)$ (non reduced Tate pairing)
- $\bullet \ \lambda_0^2 = \lambda_1^\ell, \lambda_1 = \alpha^2, \lambda_0 = \alpha^\ell$
- The excellent lifts are given by $\gamma\star\widetilde{T}$ for $\gamma^\ell=\alpha$

Theta group action from excellent lifts

- If $T \in A[\ell]$, a cubical point \widetilde{T} of level n induces a cubical point $\widetilde{T}^{\otimes \ell}$ of level $n\ell$, hence an element $g_T \in G(\ell n \Theta_A)$ of the theta group
- \widetilde{T} and $\zeta \star \widetilde{T}$ induce the same point $\widetilde{T}^{\otimes \ell}$ for $\zeta \in \mu_{\ell}$
- The excellent lifts \widetilde{T} all induce the unique symmetric element g_T of order ℓ in $G(\ell n \Theta_A)$
- Excellent lift of $K: \widetilde{K} = \langle \widetilde{T}^{\otimes \ell} | T \in K \rangle$ (subgroup of $G(\ell n \Theta_A)$ since K is isotropic).

Definition

If $P \in A$, $\widetilde{P + T}$ is an excellent lift relative to \widetilde{P} and \widetilde{T} (for \widetilde{T} excellent) if $\widetilde{P} + \ell \widetilde{T} = \widetilde{P}$. In that case, $\widetilde{P} + (j\ell + i)\widetilde{T} = \widetilde{P} + i\widetilde{T}$

- There are ℓ possible relative excellent lifts $\widetilde{P+T}$ that all induce the same point $\widetilde{P+T}^{\otimes \ell}$
- The action of $g_T \in G(\ell n \Theta_A)$ is given by

$$\widetilde{T}^{\otimes \ell} \cdot \widetilde{P}^{\otimes \ell} = \widetilde{P + T}^{\otimes \ell}$$

• N.B.: if $P, Q \in A[\ell], \widetilde{P}, \widetilde{Q}$ excellent lift, then one can take $\widetilde{P + Q}$ excellent relative to both $(\widetilde{Q}, \widetilde{P})$ and $(\widetilde{P}, \widetilde{Q})$ (i.e. $\ell \widetilde{P} + \widetilde{Q} = \widetilde{Q}$ and $\widetilde{P} + \ell \widetilde{Q} = \widetilde{P}$) iff P, Q are isotropic for the Weil pairing.

Cubical isogeny formulas

Theorem

Let $X_i \in \Gamma(n\Theta_{A_1})$. Fix excellent lifts \widetilde{T} for $T \in K$ and $\widetilde{P+T}$ relative to \widetilde{P} . Then

$$X'_i(P) = \sum_{T \in K} X^{\ell}_i(\widetilde{P+T})$$

gives a coordinate on $A_2 = A_1/K$.

- Recovering equations for A₂ from the X_i will depend on the type of model we seek
- The action of $G(n\Theta_{A_1})$ on the X_i allows us to recover the action of $G(n\Theta_{A_2})$ on the X'_i (assume $\ell \wedge n = 1$ for simplicity), hence (for instance) a theta model of level n for A_2
- Flexible: if $\ell = \sum a_{u'}^2$, we can use $X'_i(P) = \sum_{T \in K} \prod_u X_i(a_u(\widetilde{P} + \widetilde{T}))$ N.B.: $P \mapsto X_i(a_u P)$ is of degree a_u^2
- Cubical isogeny $\tilde{\phi}$: compatibility between cubes of level $n\ell$ on A_1 and cubes of level n on A_2

Summary

- Generalisation of Vélu's formula to higher dimension via cubical traces
- Flexible framework (choice of coordinate to put in the trace)

Going further:

- The mathematical framework for computing isogenies is descent theory, hence theta groups
- <u>Amazing fact</u>: cubical arithmetic in level n allows to compute the theta group action in level ln!
- Isogenies lift to cubical isogenies (compatible with cubes) and cubical traces naturally compute cubical isogenies
- Compatibility of pairings and isogenies is a special case of the compatibility of cubical isogenies and cubical arithmetic

Table of Contents

1 Cubical arithmetic

Constructing functions with prescribed divisors, applications to pairings

Computing isogenies

Isogeny preimages, and radical isogenies

5 The monodromy leak

6 Perspectives

Preimages

- $\phi: E_1 \to E_2$ isogeny of elliptic curves (for simplicity) with cyclic kernel $K = \langle T \rangle$ of order ℓ
- We saw how to compute isogeny images $P \mapsto \phi(P)$
- Goal: compute isogeny preimages: $\phi^{-1}(Q)$
- For ease of notations: let $\hat{\phi}: E_2 \to E_1$ be the contragredient isogeny, we will compute the preimages $\hat{\phi}^{-1}(P) \subset E_2$
- Radical isogenies: the preimages $T_2 \in \hat{\phi}^{-1}(T)$ are in bijection with the non-backtracking isogenies $\phi_2 : E_2 \to E_3$

Torsors

- $\bullet \ \phi/k: E_1 \to E_2, P \in E_1(k)$
- If $\hat{\phi}^{-1}(P)$ contains a rational point $Q \in E_2(k)$, then the fiber is in bijection with Ker $\hat{\phi}$ via $\hat{\phi}^{-1}(P) = Q + \operatorname{Ker} \hat{\phi}$
- It certainly contains such a point over the separable closure of k (assume ϕ separable)
- $\Rightarrow \hat{\phi}^{-1}(P)$ is an (étale) Ker $\hat{\phi}$ -torsor
- If Ker $\phi = \langle T \rangle$ with $T \in E_1(k)$, then Ker $\phi \simeq \mathbb{Z}/\ell\mathbb{Z}$, so Ker $\hat{\phi} \simeq \mu_{\ell}$ (via the Weil-Cartier pairing)
- $\hat{\phi}^{-1}(P)$ is an (étale) μ_{ℓ} -torsor
- ⇒ Hilbert 90: we have an isomorphism of schemes over $k: \hat{\phi}^{-1}(P) \simeq \{x^{\ell} = C\}$

Theorem

By the geometric interpretation of the Tate pairing, $C = e_{T,\ell}(T, P)$ (non reduced Tate pairing)

Goal: make this isomorphism explicit

Cubical arithmetic for preimages

- Goal: compute $\hat{\phi}^{-1}(P)$, $\phi: E_1 \to E_2$ with kernel $K = \langle T \rangle$
- Fix an excellent lift \widetilde{T}
- Fix \widetilde{P} and an excellent lift $\widetilde{P + T}$ relative to \widetilde{P} and \widetilde{T} .
 - Start with an arbitrary lift P + T
 - Compute $\widetilde{P} + \ell \widetilde{T} = \lambda_P \widetilde{P}$ N.B.: λ_P is the Tate pairing of P with T! • Then $\lambda_D^{1/\ell} \star \widetilde{P + T}$ is an excellent lift relative to $\widetilde{P}, \widetilde{T}$
- Construct the cubical points $\tilde{P} + i\tilde{T}$ for $i = 0, ..., \ell 1$
- These give the coordinates (in level $n\ell$) of a point $Q \in \hat{\phi}^{-1}(P)$!
- The ℓ choices for $\lambda_P^{1/\ell}$ give the ℓ preimages.

Descending level

Theorem

If X_1, \ldots, X_n are a basis of section of level n on E_1 , then the $X_m(\widetilde{P} + i\widetilde{T})$ form a basis of sections of level ℓn on E_2 , evaluated on Q

- We want to describe Q with coordinates X'_i of level n
- Goal: take linear combinations of the $X_m(\tilde{P} + i\tilde{T})$ of the form $X'_m(Q)X'_0^{\ell-1}(Q)$.
- We recover projective coordinates of level *n* for *Q*
- Method: use descent through a well chosen isogeny

Descending level on an abelian variety

• Write $\ell = 1 + a^2 + b^2 + c^2 + d^2$ and take $F : A^5 \to A^5$ given by the matrix

$$\begin{pmatrix} 1 & a & b & c & d \\ a & -1 & 0 & 0 & 0 \\ b & 0 & -1 & 0 & 0 \\ c & 0 & 0 & -1 & 0 \\ d & 0 & 0 & 0 & -1 \end{pmatrix}$$

- The kernel of *F* is given by the image of $A[\ell]$ into A^5 via $P \mapsto (P, aP, bP, cP, dP)$
- There is a block diagonal matrix $M = \begin{pmatrix} 1 & 0 \\ 0 & M_2 \end{pmatrix}$ such that $t_F M F = \ell \operatorname{Id}$.
- So *F* is an ℓ -isogeny $(A, \Theta_A)^5 \to (A, \Theta_A) \times (A^4, \Theta')$ (Θ' non principal non product polarisation)
- Applying the isogeny formulas to *F* allows to recover the level *n* coordinates on *A* by projecting to the left factor
- N.B: here we are already in level ln on the domain so the isogeny formulas are simple. The kernel is of size l^{2g} but half of the points give a trivial action, so we take a trace under l^g terms.
- Complexity for descending from level ln to level $n: O(l^g)$

Multiradical isogenies

- A of dimension $g, K = \langle T_1, \dots, T_g \rangle, \phi : A \to B$
- $\ell^{g(g+1)/2}$ choice of excellent lifts for $\widetilde{T_i}, \widetilde{T_i+T_j} \Rightarrow$ all our possible $\ell^{g(g+1)/2}$ multiradical isogenies (after descending back to level *n*)
- These involve the (sqrt of the) "self" Tate pairings $e_{T,\ell}(T_i, T_i)$ (ℓ odd)
- If $P \in A$, ℓ^g choices for $P + T_i \Rightarrow all \, \ell^g$ possible preimages $Q \in \hat{\phi}^{-1}(P)$ (after descending back to level n)
- These involves the Tate pairings $e_{T,\ell}(T_i, P)$

Summary

- Cubical arithmetic allows to go up and down in level, not only on the same abelian variety but also across an isogeny
- Explicit algorithms to compute preimages and radical isogenies
- The Tate pairings naturally appear in these algorithms

Open questions:

- Interpretation of the cubical coordinates of the neutral points of 0_A and 0_B as modular forms (in the spirit of [KNRR21])?
- Simpler descent formulas?
- Radical SqrtVelu formulas?
- In progress: explicit radical formulas for Montgomery curves

Table of Contents

1 Cubical arithmetic

Constructing functions with prescribed divisors, applications to pairings

Computing isogenies

Isogeny preimages, and radical isogenies

5 The monodromy leak

6 Perspectives

Cubical arithmetic and DLP

- $P \in E(\mathbb{F}_q)$ a point of ℓ -torsion, $Q = s \cdot P$
- DLP: given (P, Q) recover s
- Assume $\ell \nmid q 1$, then $\mu_{\ell} \cap \mathbb{F}_q = \{1\}$ (Otherwise use pairings to reduce the DLP to \mathbb{F}_q^*)
- Then there is only one canonical excellent lift $\hat{P} := \widetilde{P}$ above P with coordinates in \mathbb{F}_q (there is only one rational root of $x^{\ell} = e_{T,\ell}(P, P)$)
- \hat{P}, \hat{Q} are easy to compute
- We have $s\cdot \hat{P}=\hat{Q}$
- This lifts the DLP to a cubical DLP
- Now assume that someone leaks $(\widetilde{P}, \widetilde{Q} = s \cdot \widetilde{P})$ for some cubical point (not canonical) \widetilde{P} above P
- Write $\widetilde{P} = \lambda \star \hat{P}$
- Then $\widetilde{Q} = s \cdot \widetilde{P} = \lambda^{s^2} \star s \cdot \widehat{P} = \lambda^{s^2} \star \widehat{Q}.$
- We know (λ, λ^{s²}). A DLP in F^{*}_q allows to recover s², hence s (modulo the multiplicative order of λ).
- If λ has large enough order, we obtain s.
- This assumes q 1 has not too many factor so that there are not too many sqrt of s^2 to check.

The monodromy leak

- For the attack to work, we need someone to leak $\widetilde{P}, \widetilde{Q} = s \cdot \widetilde{P}$
- How would that be possible? Nobody uses cubical arithmetic for standard ECC, right?
- Actually, many implementations use the Montgomery ladder.
- And this is (almost!) the cubical ladder.
- Montgomery ladder: Start from (X(P), Z(P) = 1) and compute (X(sP), Z(sP))
- Then output x(sP) = X(sP)/Z(sP). If division not in constant time, this leaks Z(sP).
- Hence this leaks $s \cdot \tilde{P}$ for $\tilde{P} = (x(P), 1)$
- N.B.: Montgomery ladder is not quite the cubical ladder, so we solve a different degree two equation to recover *s*.

The general DLP:

- If we have only (P, Q), we take arbitrary choices of P̃, Q̃.
- We have $\widetilde{Q} = t \cdot \widetilde{P}$ for some $t \equiv s \mod \ell$ (if \widetilde{P} is chosen to have order $\ell(q-1)$)
- Apply the monodromy leak attack to recover t modulo q − 1
- Problem: ℓ is coprime to q 1, so this gives zero information on $s \mod \ell$.
- The monodromy leak only works when we know that $0 < t < \ell!$

Table of Contents

1 Cubical arithmetic

Constructing functions with prescribed divisors, applications to pairings

Computing isogenies

Isogeny preimages, and radical isogenies

5 The monodromy leak

6 Perspectives

Perspectives

- DLP, pairing inversion from the cubical point of view?
- Cubical arithmetic allows to reduce the elliptic curve DLP to a DLP between "quasi"-cyclic matrices of size ℓ × ℓ. Not very useful but gives new point of view on pairings attacks (take an eigenvalue of these matrices to reduce to a DLP in dimension 1)
- Investigate the arithmetic of non symmetric biextensions induced by (non symmetric) isogenies
- *R*-sesquilinear pairings [Sta24] from the cubical point of view? (Replace \mathbb{G}_m torsors by $\mathbb{G}_m^{\otimes R}$ -torsors?)
- Related: computing multidimensional endomorphism ladders $\sum \alpha_i \tilde{P}_i$?
- Self pairings [CHM+23] from the cubical point of view?
- [Bre83]: if we have a symmetric cubical torsor structure on $(G, \mathcal{L}), G \subset A[n]$, then there is a canonical trivialisation of the induced cubical structure on $[2n]^*\mathcal{L}$.
- Similarity with self pairings: if P is of n-torsion, then the self pairing e(P, P) lives in μ_{2n} .

Bibliography

[Bre83]	L. Breen. Fonctions thêta et théoreme du cube. Vol. 980. Springer, 1983 (cit. on pp. 3, 4, 14, 42).
[CHM+23]	W. Castryck, M. Houben, SP. Merz, M. Mula, S. v. Buuren, and F. Vercauteren. "Weak instances of class group action based cryptography via self-pairings". In: Annual International Cryptology Conference. Springer. 2023, pp. 762–792 (cit. on p. 42).
[CR15]	R. Cosset and D. Robert. "An algorithm for computing (ℓ , ℓ)-isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2". In: <u>Mathematics of Computation</u> 84.294 (Nov. 2015), pp. 1953–1975. doi: 10.1090/S0025-5718-2014-02899-8 (cit. on p. 25).
[Gr072]	A. Grothendieck. Groupes de Monodromie en Géométrie Algébrique: SGA 7. Springer-Verlag, 1972 (cit. on pp. 3, 14, 20).
[KNRR21]	M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert. "Spanning the isogeny class of a power of an elliptic curve". In: Mathematics of Computation 91.333 (Sept. 2021), pp. 401–449. doi: 10.1090/mcom/3672. arXiv: 2004.08315 (cit. on p. 37).
[LR12]	D. Lubicz and D. Robert. "Computing isogenies between abelian varieties". In: <u>Compositio Mathematica</u> 148.5 (Sept. 2012), pp. 1483–1515. doi: 10.1112/S0010437X12000243. arXiv: 1001.2016 [math.AG] (cit. on p. 25).
[LR16]	D. Lubicz and D. Robert. "Arithmetic on Abelian and Kummer Varieties". In: <u>Finite Fields and Their Applications</u> 39 (May 2016), pp. 130–158. doi: 10.1016/j.ffa.2016.01.009 (cit. on p. 12).
[LR22]	D. Lubicz and D. Robert. "Fast change of level and applications to isogenies". In: <u>Research in Number Theory (ANTS XV Conference)</u> 9.1 (Dec. 2022). doi: 10.1007/s40993-022-00407-9 (cit. on p. 25).
[Mor85]	L. Moret-Bailly. Pinceaux de variétés abéliennes. Société mathématique de France, 1985 (cit. on pp. 3, 9).
[Rob21]	D. Robert. "Efficient algorithms for abelian varieties and their moduli spaces". HDR thesis, Université Bordeaux, June 2021. url: http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf. Slides: 2021-06-HDR-Bordeaux.pdf (1h, Bordeaux). (Cit. on p. 25).
[Rob24]	D. Robert. "Fast pairings via biextensions and cubical arithmetic". Apr. 2024 (cit. on pp. 3, 6, 20, 25).
[Stao8]	K. Stange. "Elliptic nets and elliptic curves". PhD thesis. Brown University, 2008. url: https://repository.library.brown.edu/studio/item/bdr:309/PDF/ (cit.on pp. 13, 20).
[Sta24]	K. E. Stange. "Sesquilinear pairings on elliptic curves". In: arXiv preprint arXiv:2405.14167 (2024) (cit. on p. 42).