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, Breen’s introduction gives a very nice high level overview

/ Very abstract (the case of a bitorsor on an arbitrary topos…)

/ Not a single explicit formula

This talk: a “gentle introduction” to cubical arithmetic

Algorithmic applications: from explicit cubical formulas on a model we obtain pairings and
isogeny formulas!

More details in [Rob24]
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Cubical structure associated to a divisor

𝐴/𝑘 a commutative algebraic group, 𝐷 a divisor on 𝐴.

𝑝𝑖 ∶ 𝐴3 → 𝐴 the projections, 𝑝𝑖𝑗 ≔ 𝑝𝑖 + 𝑝𝑗,
𝑝123 ≔ 𝑝1 + 𝑝2 + 𝑝3 ∶ (𝑃1, 𝑃2, 𝑃3) ↦ 𝑃1 + 𝑃2 + 𝑃3.

Definition (Cubical structure)

A cubical structure on 𝐷 is a rational function 𝑔𝐷 on 𝐴3 such that:

𝑔𝐷 has for divisor 𝑝∗
123𝐷 − 𝑝∗

12𝐷 − 𝑝∗
13𝐷 − 𝑝∗

23𝐷 + 𝑝∗
1𝐷 + 𝑝∗

2𝐷 + 𝑝∗
3𝐷;

Neutral point: 𝑔𝐷(0, 0, 0) = 1.
Commutativity: For all 𝜎 ∈ 𝔖3, 𝑔𝐷(𝜎(𝑃1, 𝑃2, 𝑃3)) = 𝑔𝐷(𝑃1, 𝑃2, 𝑃3).
Associativity:

𝑔𝐷(𝑃1 + 𝑃2, 𝑃3, 𝑃4)𝑔𝐷(𝑃1, 𝑃2, 𝑃4) = 𝑔𝐷(𝑃1, 𝑃2 + 𝑃3, 𝑃4)𝑔𝐷(𝑃2, 𝑃3, 𝑃4).

Example

The trivial cubical structure: 𝐷 = 0 and 𝑔𝐷 = 1.

We will use symmetric cubical structures [Bre83, § 5]: 𝐷 a symmetric divisor, 𝑔𝐷(𝑃1, 𝑃2, −𝑃1 − 𝑃2) = 1.
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Cubical points and cubical arithmetic

ℒ line bundle, 𝑍 ∈ 𝛤(ℒ) a section, 𝐷 the divisor of zeroes of 𝑍
A cubical point �̃� above a point 𝑃 ∈ 𝐴 is a choice of coordinate 𝑍(�̃�) ∈ 𝔾𝑚(𝑘) = 𝑘∗

(This assumes that 𝑃 is neither a pole or zero of 𝑍)

Definition (Cubical arithmetic)

Given a cube 0, 𝑃1, 𝑃2, 𝑃3, 𝑃2 + 𝑃3, 𝑃1 + 𝑃3, 𝑃1 + 𝑃2, 𝑃1 + 𝑃2 + 𝑃3, a choice of 7 out of 8 cubical
points determine the 8th one via

𝑍( ̃𝑃1 + 𝑃2 + 𝑃3)𝑍(𝑃1)𝑍(𝑃2)𝑍(𝑃3)
𝑍( ̃0)𝑍( ̃𝑃2 + 𝑃3)𝑍( ̃𝑃1 + 𝑃3)𝑍( ̃𝑃1 + 𝑃2)

= 𝑔𝐷(𝑃1, 𝑃2, 𝑃3)

Example

Differential additions: 0, 𝑃, 𝑄, −𝑄, 0, 𝑃 − 𝑄, 𝑃 + 𝑄, 𝑃
⇒ ̃𝑃 + 𝑄 from �̃�, 𝑄, ̃𝑃 − 𝑄
Doublings: 2̃𝑃 from �̃� (special case of a differential addition with 𝑄 = �̃�).
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Translated cubes

We can also use translated cubes:

𝑍( ̃𝑅 + 𝑃1 + 𝑃2 + 𝑃3)𝑍( ̃𝑅 + 𝑃1)𝑍( ̃𝑅 + 𝑃2)𝑍( ̃𝑅 + 𝑃3)
𝑍(�̃�)𝑍( ̃𝑅 + 𝑃2 + 𝑃3)𝑍( ̃𝑅 + 𝑃1 + 𝑃3)𝑍( ̃𝑅 + 𝑃1 + 𝑃2)

=
𝑔𝐷(𝑃1, 𝑃2, 𝑃3 + 𝑅)

𝑔𝐷(𝑃1, 𝑃3, 𝑅)

8 points 𝑃1, 𝑃2, 𝑃3, 𝑃4; 𝑃′
1, 𝑃′

2, 𝑃′
3, 𝑃′

4 are part of a translated cube iff there exists 𝑄 such that

𝑃1 + 𝑃2 + 𝑃3 + 𝑃4 = 2𝑄 and 𝑃′
𝑖 = 𝑄 − 𝑃𝑖.

(Then the 𝑃𝑖 are in the numerator and the 𝑃′
𝑖 in the denominator in the above formula.)

N The general function 𝑔𝐷,𝑃1,𝑃2,𝑃3
(𝑅) given for a translated cube in [Rob24] is wrong: it has the correct divisor but is not

normalised correctly. The explicit formulas in that paper are correct (at least the implementation gives the correct results!)
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Multiscalar exponentiations

Consider an 𝑚-dimensional hypercube generated by 0, 𝑃1, 𝑃2, … , 𝑃𝑚

Assume that cubical points have been chosen for all squares ̃0, 𝑃𝑖, 𝑃𝑗, ̃𝑃𝑖 + 𝑃𝑗

Then we can use cubes to fill out the hypercube and obtain ̃𝑃1 + ⋅ + 𝑃𝑚

More generally using cubes we can compute ̃𝑛1𝑃1 + ⋅ + 𝑛𝑚𝑃𝑚 for all 𝑛𝑖 ∈ ℤ.

Proposition

The resulting cubical point∑ 𝑛𝑖𝑃𝑖 does not depends on the choice of intermediate cubes used.

Proof.

By the commutativity and associativity assumptions on 𝑔𝐷.

Cubical multidimensional ladder: 𝑂𝑚(logmax 𝑛𝑖)
Homogeneity: 𝑃𝑖 ↦ 𝜆𝑖 ⋆ 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗 ↦ 𝜆𝑖𝑗 ⋆ ̃𝑃𝑖 + 𝑃𝑗,

∑ 𝑛𝑖𝑃𝑖 ↦ ∏
𝑖

𝜆𝑛2
𝑖

𝑖 ∏
𝑖<𝑗

𝜆𝑛𝑖𝑛𝑗
𝑖𝑗 ⋆ ∑ 𝑛𝑖𝑃𝑖
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Cubical arithmetic on abelian varieties

Theorem (Grothendieck, Breen)

If𝐴/𝑘 is an abelian variety, then for every divisor𝐷 there is a unique (once 0̃𝐴 is fixed) cubical structure on
𝐷. This cubical structure is symmetric if𝐷 is symmetric.

Proof.

Cohomological arguments and the fact that 𝐴 has no non constant global sections.
Explicit construction of 𝑔𝐷:

𝑔𝐷(𝑃1, 𝑃2, 𝑃3) =
𝑔𝐷,𝑃1,𝑃2

(𝑃3)
𝑔𝐷,𝑃1,𝑃2

(0)

where 𝑔𝐷,𝑃1,𝑃2
is any function with divisor 𝑡∗

𝑃1+𝑃2
𝐷 + 𝐷 − 𝑡∗

𝑃1
𝐷 − 𝑡∗

𝑃2
𝐷.

Corollary

If we take 𝑔𝐷,𝑃1,𝑃2
normalised at 0, then

𝑔𝐷,𝑃1,𝑃2
(𝑃3) = 𝑔𝐷,𝑃2,𝑃3

(𝑃1) = 𝑔𝐷,𝑃3,𝑃1
(𝑃2) (commutativity)

𝑔𝐷,𝑃1+𝑃2,𝑃3
𝑔𝐷,𝑃1,𝑃2

= 𝑔𝐷,𝑃1,𝑃2+𝑃3
𝑔𝐷,𝑃2,𝑃3

(associativity).
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Representing cubical points and extra arithmetic

If (𝑋1, … , 𝑋𝑚) are a basis of 𝛤(ℒ), then 𝑍(�̃�) determines 𝑋𝑖(�̃�) via 𝑋𝑖(�̃�) = 𝑥𝑖(𝑃)𝑍(�̃�)
where 𝑥𝑖 = 𝑋𝑖/𝑍 is a function on 𝐴.

A choice of cubical point is thus a choice of affine coordinates (𝑋1(�̃�), … , 𝑋𝑚(�̃�)) above the
projective coordinates (𝑋1(𝑃) ∶ … ∶ 𝑋𝑚(𝑃)) of 𝑃
This allows to define �̃� whenever 𝑃 is not a base point of 𝐷

Inversion: If ℒ is symmetric, a (symmetric) cubical structure also determines −�̃� from �̃�

Translation by a point 𝑇 of 𝑛-torsion: If 𝐷 = 𝑛𝛩𝐴, 𝛩𝐴 a principal polarisation (we will say 𝐷 is of
level 𝑛), then we also have a translation map 𝑀𝑇 ∶ �̃� ↦ 𝑃 + 𝑇.

𝑀𝑇 is linear in the 𝑋𝑖 and only depends on the choice of 𝑇.

[Mor85, § 3, § 4]: The biextension associated to the cubical structure is trivial when restricted to 𝐴[𝑛] × 𝐴, from which we

recover the theta group 𝐺(𝐷) and its linear action on 𝛤(𝐷)
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Analytic cubical points

Let 𝐴 = ℂ𝑔/(ℤ𝑔 + 𝛺ℤ𝑔) a principally polarised complex abelian variety;

The addition law on 𝐴 lifts to the addition law on (ℂ𝑔, +)
The analytic period matrix 𝛺 defines a canonical level structure on 𝐴[𝑛] for all 𝑛 (in a compatible
way)

Let 𝛩𝛺 be the principal polarisation associated to 𝛺, and 𝐷 = 𝑛𝛩𝛺.
Basis of 𝛤(𝐴, 𝐷): the analytic theta functions 𝜃𝑖(𝑧𝑃, 𝛺/𝑛)
𝑃 ∈ 𝐴 is represented by the projective coordinates (𝜃𝑖(𝑃))
If 𝑧𝑃 ∈ ℂ𝑔 is above 𝑃, we can represent 𝑧𝑃 by the affine coordinates (𝜃𝑖(𝑧𝑃)).
A choice of 𝑧𝑃 ⇒ a choice of cubical point �̃�
Knowing 𝜃𝑖(𝑧1), 𝜃𝑖(𝑧2) does not allow to find 𝜃𝑖(𝑧1 + 𝑧2).
But if we have an analytic cube 0, 𝑧1, 𝑧2, 𝑧3, 𝑧2 + 𝑧3, 𝑧1 + 𝑧3, 𝑧1 + 𝑧2, 𝑧1 + 𝑧2 + 𝑧3, the
knowledge ou the 𝜃𝑖(𝑧𝑗), 𝜃𝑖(𝑧𝑗 + 𝑧𝑘) is enough to recover the coordinates 𝜃𝑖(𝑧1 + 𝑧2 + 𝑧3):
this is precisely the cubical law!

Multiexponentiation: recover the 𝜃𝑖(∑𝑗 𝑛𝑗𝑧𝑗).
Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)

Cubical structure = algebraic consequences of our analytic structure
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Elliptic curves (level 1)

Level 1: 𝐷 = (0𝐸), 𝑍1 with a zero of order 1 at 𝑂 = 0𝐸.

Cubical point: �̃� = (𝑃, 𝑍1(�̃�)).
𝑍1(0𝐸) = 0. 𝑂 defined by (𝑍/(𝑥/𝑦)) (𝑂) = 1.

𝑔(0𝐸)(𝑃1, 𝑃2, 𝑃3) =
𝑙𝑃1,𝑃2(𝑃3)

(𝑥(𝑃3)−𝑥(𝑃1))(𝑥(𝑃3)−𝑥(𝑃2)) = 𝑥(𝑃1+𝑃2)−𝑥(𝑃3)
𝑙𝑃1,𝑃2(−𝑃3)

Differential addition: 𝑍1( ̃𝑃 + 𝑄)𝑍1( ̃𝑃 − 𝑄) = 𝑍1(�̃�)2𝑍1(𝑄)2(𝑥(𝑄) − 𝑥(𝑃))
Doubling: 𝑍1(2�̃�) = 𝑍(�̃�)42𝑦(𝑃)
Inverse: 𝑍1(−�̃�) = −𝑍1(�̃�).

Example

Let 𝑃 = (𝑥(𝑃), 𝑦(𝑃)), 𝑍1(�̃�) = 1. Then 𝑍1(𝑛�̃�) = 𝜓𝑛(𝑃), 𝜓𝑛 the division polynomial.

And in level 3, if �̃� = (𝑥(𝑃), 𝑦(𝑃), 1),

𝑛�̃� = (𝜙𝑛(𝑃)𝜓𝑛(𝑃), 𝜔𝑛(𝑃), 𝜓3
𝑛(𝑃)),

with 𝜙𝑛, 𝜔𝑛 the extended division polynomials.
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Elliptic curves (level 2)

Level 2: 𝐷 = 2(0𝐸), with sections 𝑋2, 𝑍2 = 𝑍2
1

Cubical point: �̃� = (𝑋2(�̃�), 𝑍2(�̃�)
𝑂 = (1, 0).
Symmetry: 𝑍2(−�̃�) = 𝑍2

1(−�̃�) = 𝑍2(�̃�).

𝑔𝐷 = 𝑔2
(0𝐸) depends only on the 𝑥-coordinates of the 𝑃𝑖, 𝑃𝑖 + 𝑃𝑗

⇒ Cubical arithmetic in level 2 valid on cubes on the Kummer line 𝐸/ ± 1.

N.B.: for 𝑥-only arithmetic, knowing 𝑥(𝑃1), 𝑥(𝑃2), 𝑥(𝑃3), 𝑥(𝑃1 + 𝑃2), 𝑥(𝑃1 + 𝑃3) is enough
to recover 𝑥(𝑃2 + 𝑃3), 𝑥(𝑃1 + 𝑃2 + 𝑃3) (see [LR16]) so does not quite require the full cube.
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Formulas on elliptic curves

Example (Montgomery model in level 2: 𝑦2 = 𝑥3 + 𝒜𝑥2 + 𝑥)
𝑍(2�̃�) = 4𝑋(�̃�)𝑍(�̃�)(𝑋(�̃�)2 + 𝒜𝑋(�̃�)𝑍(�̃�) + 𝑍(�̃�)2)

𝑍( ̃𝑃 + 𝑄)𝑍( ̃𝑃 − 𝑄) = (𝑋(𝑄)𝑍(�̃�) − 𝑋(�̃�)𝑍(𝑄))
2

⇒ The standard Montgomery ladder gives (almost) the cubical ladder �̃� ↦ 𝑛�̃�
𝑇 = (0 ∶ 1) 2-torsion, 𝑇 = (0, 1), 𝑃 + 𝑇 = (𝑍2(�̃�), 𝑋2(�̃�)).
Montgomery curves have very efficient cubical formulas!

Example (Elliptic nets = cubical arithmetic in level 1 [Sta08])

Given 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗, the elliptic net 𝑊(𝑛1, … , 𝑛𝑚) is simply 𝑍1(∑ 𝑛𝑖𝑃𝑖)
Amazingly, knowing sufficiently many of these 𝑍1 is enough to recover all of them (via the elliptic
net recurrence relation)
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Summary
Cubical point �̃� = point 𝑃 with additional marking (in 𝔾𝑚)

Cubical arithmetic: coherent way to keep track of this marking

⇒ New algorithmic tools!

Going further

The“correct point of view” is that of cubical isomorphisms of fppf-torsors (this makes the cubical
arithmetic well defined on any point)

Cubical point �̃�= choice of rigidification of our torsor at 𝑃; cubical coordinates = encoding of this
rigidification

Moret-Bailly: “au royaume des torseurs, il n’y a pas de signe”
Contrast this with the sign ambiguity inherent in theWeil pairing, even [Gro72] has sign mistakes!

Grothendieck-Breen’s theorem holds for abelian schemes 𝐴/𝑆 and semi-abelian schemes (and
more) over a normal base: equivalence of categories between cubical torsors and rigidified
torsors

Allows to study degenerations of abelian varieties

Cubical arithmetic induces theta group and biextension arithmetic, the algebraic structures
behind isogenies and pairings respectively.

Universality: [Bre83, Theorem 8.9]: the cubical structure on ℒ encodes all the quadratic
information associated to the polarisation ℒ
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Cubical functions

𝐸 elliptic curve, 𝐷 = (0𝐸)
�̃� ↦ 𝑍(�̃� + ∑ 𝑛𝑖�̃�𝑖) is a “function”with divisor 𝑡∗

∑ 𝑛𝑖𝑃𝑖
𝐷.

Depends on the choices of 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗.

But also of �̃�, ̃𝑅 + 𝑃𝑖

⇒ Not a genuine function. Cubical function.

But combining these cubical functions we can get genuine elliptic functions.

Example

𝑅 ↦ 𝑔𝑃1,𝑃2
(𝑅) =

𝑍( ̃𝑅 + 𝑃1 + 𝑃2)𝑍(�̃�)
𝑍( ̃𝑅 + 𝑃1)𝑍( ̃𝑅 + 𝑃2)

is a genuine function 𝑔𝐷,𝑃1,𝑃2
with divisor 𝑡∗

𝑃1+𝑃2
𝐷 + 𝐷 − 𝑡∗

𝑃1
𝐷 − 𝑡∗

𝑃2
𝐷.

It only depends on the choices of 𝑃1, 𝑃2, ̃𝑃1 + 𝑃2.
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Cubical functions for pairings

𝑃 ∈ 𝐸[ℓ](𝑘), 𝑄 ∈ 𝐸(𝑘)
Tate pairing: 𝑓ℓ,𝑃((𝑄) − (0𝐸)) with 𝑓ℓ,𝑃 a function of divisor ℓ𝐷 − ℓ𝑡∗

𝑃𝐷

Cubical function: 𝑄 ↦ ( 𝑍(𝑄)
𝑍(𝑃+𝑄)

)
ℓ

Not a genuine function!

Instead rewrite the divisor as 𝑡ℓ𝑃𝐷 + (ℓ − 1)𝐷 − ℓ𝑡∗
𝑃𝐷 and use:

𝑓ℓ,𝑃(𝑄) =
𝑍(ℓ�̃� + 𝑄)𝑍(𝑄)ℓ−1

𝑍( ̃𝑃 + 𝑄)ℓ

Theorem

The Tate pairing is given by

𝑒𝑇,ℓ(𝑃, 𝑄) =
𝑍(ℓ�̃� + 𝑄)

𝑍(ℓ�̃�)
⎛⎜
⎝

𝑍(�̃�)𝑍(𝑄)
𝑍( ̃𝑃 + 𝑄)𝑍(𝑂)

⎞⎟
⎠

ℓ

TheWeil pairing is given by

𝑒𝑊,ℓ(𝑃, 𝑄) =
𝑍(ℓ�̃� + 𝑄)𝑍(ℓ𝑄)
𝑍(ℓ�̃�)𝑍(ℓ𝑄 + �̃�)
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Double and add algorithm

We can normalize our functions by setting 𝑍( ̃𝑃 + 𝑄) = 𝑍(�̃�) = 𝑍(𝑄) = 1

𝑓𝑚,𝑃((𝑄) − (0)) = 𝑍(𝑚�̃�+𝑄)
𝑍(𝑚�̃�)

Double and add:
𝑍((𝑚1+𝑚2)�̃�+𝑄)

𝑍((𝑚1+𝑚2)�̃�)
= 𝑍(𝑚1�̃�+𝑄)

𝑍(𝑚1�̃�)
⋅ 𝑍(𝑚2�̃�+𝑄)

𝑍(𝑚2�̃�)
⋅ 𝑍((𝑚1+𝑚2)�̃�+𝑄)𝑍(𝑄)

𝑍((𝑚1�̃�+𝑄)𝑍(𝑚2�̃�+𝑄)
We recover the double and add formula for Miller’s algorithm:

𝑓𝑚1+𝑚2,𝑃(𝑄) = 𝑓𝑚1,𝑃(𝑄)𝑓𝑚2,𝑃(𝑄)𝑔𝐷,𝑚1𝑃,𝑚2𝑃(𝑄).

The cubical arithmetic allows to compute 𝑍(𝑚�̃� + 𝑄) and 𝑍(𝑚�̃�) separately!

Much more flexible!

These are not genuine functions, so not defined using only 𝑥, 𝑦 coordinates!
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Alternate formulas for theWeil pairing

If ℎℓ,𝑃 is a function with divisor [ℓ]∗(𝐷 − 𝑡∗
𝑃𝐷), then the (original definition of the)Weil pairing

𝑒𝑊,ℓ(𝑃, 𝑄) is given by ℎℓ,𝑃(𝑄 + 𝑅)/ℎℓ,𝑃(𝑅) for any point 𝑅
Cubical function �̃� ↦ 𝑍(ℓ�̃�)/𝑍(ℓ�̃� + �̃�)
Keeping track of the projective factors, we see that we can build the genuine ℎℓ,𝑃 as

ℎℓ,𝑃(𝑅) =
𝑍(ℓ�̃�)𝑍(ℓ�̃� + �̃�)
𝑍(ℓ�̃� + �̃�)𝑍(�̃�)

Using thisWeil pairing alternate formula with 𝑅 = 0, we find again

𝑒𝑊,ℓ(𝑃, 𝑄) =
𝑍(ℓ�̃� + 𝑄)𝑍(ℓ𝑄)
𝑍(ℓ�̃�)𝑍(ℓ𝑄 + �̃�)

Notice how we can compute ℎℓ,𝑃 efficiently via the cubical ladder! By contrast Miller’s algorithm
for ℎℓ,𝑃 needs the coordinates of the ℓ-torsion points 𝑇 ∈ 𝐸[ℓ] and of 𝑃0 such that ℓ𝑃0 = 𝑃;
and cannot use a double and add method because the points on the support of the divisor
[ℓ]∗(𝐷 − 𝑡∗

𝑃𝐷) = ∑𝑇∈𝐸[ℓ] ((𝑇) − (𝑇 − 𝑃0)) only have multiplicity one.

Extends toWeil-Cartier pairings 𝑒𝜙(𝑃, 𝑄) by using cubical isogeny formulas 𝜙 for 𝜙.

But not clear how to compute 𝜙�̃� + 𝑄 without knowing a preimage 𝑄0 ∈ 𝜙−1(𝑄) and using 𝜙(�̃� + 𝑄0)
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Summary

The cubical arithmetic allows us to easily build functions with prescribed divisors

We can use intermediate cubical functions in our computations, as long as the end result is a
genuine elliptic function

Greater flexibility!

New insights: Doliskani’s probabilistic supersingularity test is a self pairing test: all points on 𝐸
have trivial self Tate pairing if 𝐸 is supersingular.

Faster pairing formulas for Montgomery curves

Going further:

If 𝑃 is of ℓ-torsion, and we choose cubical points �̃�, 𝑄, ̃𝑃 + 𝑄, we have ℓ�̃� = 𝜆𝑃 ⋆ 𝑂,
ℓ�̃� + 𝑄 = 𝜆𝑃,𝑄 ⋆ 𝑄, with 𝜆𝑃, 𝜆𝑃,𝑄 ≠ 1 in general

The pairing formulas show that these monodromy values (in 𝔾𝑚) give the Tate andWeil pairings

The mathematical framework for the monodromy interpretation of the pairings is Mumford’s
notion of biextension (see [Gro72; Sta08, Chapter 14])

[Rob24]: monodromy interpretation of the Ate and optimal Ate pairings on abelian varieties

Cubical arithmetic induces (and is finer) than biextension arithmtetic

This gives some extra flexibility in our arithmetic for pairing computations: we just need formulas
that are valid for the biextension arithmetic, even if they are not valid for the cubical arithmetic.
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Vélu’s formulas

𝐸1/𝑘 ∶ 𝑦2
1 = 𝑥3

1 + 𝑎𝑥1 + 𝑏1 elliptic curve, 𝐾 = ⟨𝑇⟩ cyclic kernel of order ℓ, 𝐸2 = 𝐸1/𝐾

𝑥2(𝑃) ≔ ∑ℓ−1
𝑖=0(𝑥1(𝑃 + 𝑖𝑇)− ∑ℓ−1

𝑖=1 𝑥1(𝑖𝑇)

𝑦2(𝑃) ≔ ∑ℓ−1
𝑖=0(𝑦1(𝑃 + 𝑖𝑇)− ∑ℓ−1

𝑖=1 𝑦1(𝑖𝑇)

𝑥2 has for polar divisor ∑ℓ−1
𝑖=0 2(𝑖𝑇) and is invariant by the translation by 𝑇, hence defines a

section of 2(0𝐸2
) on 𝐸2

Likewise, 𝑦2 defines a section of 3(0𝐸2
) on 𝐸2

TheWeierstrass equation between 𝑥2, 𝑦2 can be found by evaluating on a few points or working
in the formal group of 𝐸1.
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Vélu’s formulas in higher dimension?

(𝐴1, 𝛩𝐴1
)/𝑘 ppav of dimension 𝑔, 𝐾 = ⟨𝑇1, … , 𝑇𝑔⟩ ⊂ 𝐴1[ℓ] isotropic kernel of rank 𝑔,

𝜙 ∶ 𝐴1 → 𝐴2 = 𝐴1/𝐾
𝜙 is an ℓ-isogeny: 𝜙∗𝛩𝐴2

= ℓ𝛩𝐴1

𝑥1, … , 𝑥𝑚 ∈ 𝛤(𝑛𝛩𝐴1
) system of coordinates of level 𝑛 on 𝐴1

𝑥′
𝑖(𝑃) = ∑𝑇∈𝐾 𝑥𝑖(𝑃 + 𝑇)+constant

𝑥′
𝑖 invariant by translation by 𝑇 ∈ 𝐾, so defines a coordinate on 𝐴2

We just need to evaluate on a few points and recover the equations for 𝐴2…
Except this does not seem to work?

𝑥𝑖 = 𝑋𝑖/𝑋0. Putting everything in the same denominator, the trace 𝑥′
𝑖 has degree ℓ𝑔 on 𝐴1, so is

of degree ℓ𝑔−1 on 𝐴2
Here the degree is taken with respect to 𝑛𝛩𝐴1

and 𝑛𝛩𝐴2
respectively

More precisely: ∑𝑇∈𝐾 𝑡∗
𝑇𝑛𝛩𝐴1

∼ ℓ𝑔𝛩𝐴1

This divisor is invariant by translation by 𝑇 ∈ 𝐾, so descends to a divisor ∼ ℓ𝑔−1𝑛𝛩𝐴2
on 𝐴2,

but it is of too large degree (unless 𝑔 = 1)
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Cubical Vélu’s formulas in higher dimension

Rather than taking a trace of the affine coordinates 𝑥𝑖 = 𝑋𝑖/𝑋0, we want to take a trace on the
projective coordinates 𝑋𝑖 directly

For instance the trace of 𝑋ℓ
𝑖 gives 𝑋′

𝑖(𝑃) = ∑𝑇∈𝐾 𝑋ℓ
𝑖(𝑃 + 𝑇).

This is of correct degree!

But the coordinates (𝑋𝑖(𝑃 + 𝑇)) are only defined up to projective factors 𝜆𝑇 that depends on
𝑇 ∈ 𝐾!

The values 𝑋ℓ
𝑖(𝑃 + 𝑇) do not make sense!

Except it does as a coordinate 𝑋ℓ
𝑖(𝑃 + 𝑇) on a cubical point.

Taking a cubical trace works!
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Technical details: theta groups and the cubical arithmetic

We need to build a divisor 𝛩𝜙 on 𝐴1 such that:
1 𝛩𝜙 is invariant by translation by 𝐾
2 𝛩𝜙 ∼ ℓ𝑛𝛩𝐴1

Descent theory: (symmetric) lifts 𝐾 of 𝐾 in the theta group 𝐺(ℓ𝑛𝛩𝐴1
) ⇔ (symmetric) divisors

𝛩𝜙

Symmetric 𝛩𝜙 unique (up to linear equivalence) if 𝑛 even and ℓ odd

[Rob21]: explicit formulas of the action of 𝐺(ℓ𝑛𝛩𝐴1
) on 𝛤(ℓ𝑛𝛩𝐴1

) allows to take the trace of

actions under 𝐾 and compute the isogeny 𝜙
These explicit formulas exist in the theta model [LR12; CR15; LR22]

[Rob24]: the cubical arithmetic on level 𝑛 allows to recover the theta group action of level ℓ𝑛
Cubical arithmetic ⇒ explicit isogeny formulas
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Excellent cubical lifts

Proposition

𝑇 ∈ 𝐴[ℓ], ℓ odd.𝑇 a cubical point above𝑇. TFAE:
1 (ℓ𝑗 + 𝑖)𝑇 = 𝑖𝑇 for all 𝑖, 𝑗 ∈ ℤ
2 ℓ𝑇 = 𝑂 and (ℓ + 1)𝑇 = 𝑇
3 (ℓ′ + 1)𝑇 = −ℓ′𝑇 for ℓ = 2ℓ′ + 1

A point𝑇 satisfying these properties is said to be an excellent cubical lift of𝑇, there are ℓ of them: if𝑇 is
excellent then 𝜁 ⋆ 𝑇 is too for 𝜁 ∈ 𝜇ℓ

𝑇 ∈ 𝐴[ℓ], 𝑇 arbitrary cubical lift

ℓ𝑇 = 𝜆0 ⋆ 𝑂, (ℓ + 1)𝑇 = 𝜆0𝜆1 ⋆ 𝑇
(ℓ′ + 1)𝑇 = 𝛼 ⋆ −ℓ′𝑇
𝜆1 = 𝑒𝑇,ℓ(𝑇, 𝑇) (non reduced Tate pairing)

𝜆2
0 = 𝜆ℓ

1, 𝜆1 = 𝛼2, 𝜆0 = 𝛼ℓ

The excellent lifts are given by 𝛾 ⋆ 𝑇 for 𝛾ℓ = 𝛼
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Theta group action from excellent lifts

If 𝑇 ∈ 𝐴[ℓ], a cubical point 𝑇 of level 𝑛 induces a cubical point 𝑇⊗ℓ of level 𝑛ℓ, hence an
element 𝑔𝑇 ∈ 𝐺(ℓ𝑛𝛩𝐴) of the theta group

𝑇 and 𝜁 ⋆ 𝑇 induce the same point 𝑇⊗ℓ for 𝜁 ∈ 𝜇ℓ

The excellent lifts 𝑇 all induce the unique symmetric element 𝑔𝑇 of order ℓ in 𝐺(ℓ𝑛𝛩𝐴)
Excellent lift of 𝐾: 𝐾 = ⟨𝑇⊗ℓ ∣ 𝑇 ∈ 𝐾⟩ (subgroup of 𝐺(ℓ𝑛𝛩𝐴) since 𝐾 is isotropic).

Definition

If 𝑃 ∈ 𝐴, 𝑃 + 𝑇 is an excellent lift relative to �̃� and 𝑇 (for 𝑇 excellent) if �̃� + ℓ𝑇 = �̃�.
In that case, �̃� + (𝑗ℓ + 𝑖)𝑇 = �̃� + 𝑖𝑇

There are ℓ possible relative excellent lifts 𝑃 + 𝑇 that all induce the same point 𝑃 + 𝑇⊗ℓ

The action of 𝑔𝑇 ∈ 𝐺(ℓ𝑛𝛩𝐴) is given by

𝑇⊗ℓ ⋅ �̃�⊗ℓ = 𝑃 + 𝑇⊗ℓ

N.B.: if 𝑃, 𝑄 ∈ 𝐴[ℓ], �̃�, 𝑄 excellent lift, then one can take ̃𝑃 + 𝑄 excellent relative to both
(𝑄, �̃�) and (�̃�, 𝑄) (i.e. ℓ�̃� + 𝑄 = 𝑄 and �̃� + ℓ𝑄 = �̃�) iff 𝑃, 𝑄 are isotropic for theWeil pairing.
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Cubical isogeny formulas

Theorem

Let𝑋𝑖 ∈ 𝛤(𝑛𝛩𝐴1
). Fix excellent lifts𝑇 for𝑇 ∈ 𝐾 and𝑃 + 𝑇 relative to �̃�.

Then
𝑋′

𝑖(𝑃) = ∑
𝑇∈𝐾

𝑋ℓ
𝑖(𝑃 + 𝑇)

gives a coordinate on𝐴2 = 𝐴1/𝐾.

Recovering equations for 𝐴2 from the 𝑋′
𝑖 will depend on the type of model we seek

The action of 𝐺(𝑛𝛩𝐴1
) on the 𝑋𝑖 allows us to recover the action of 𝐺(𝑛𝛩𝐴2

) on the 𝑋′
𝑖

(assume ℓ ∧ 𝑛 = 1 for simplicity), hence (for instance) a theta model of level 𝑛 for 𝐴2

Flexible: if ℓ = ∑ 𝑎2
𝑢, we can use 𝑋′

𝑖(𝑃) = ∑𝑇∈𝐾 ∏𝑢 𝑋𝑖(𝑎𝑢(�̃� + 𝑇))
N.B.: 𝑃 ↦ 𝑋𝑖(𝑎𝑢𝑃) is of degree 𝑎2

𝑢

Cubical isogeny 𝜙: compatibility between cubes of level 𝑛ℓ on 𝐴1 and cubes of level 𝑛 on 𝐴2
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Summary

Generalisation of Vélu’s formula to higher dimension via cubical traces

Flexible framework (choice of coordinate to put in the trace)

Going further:

The mathematical framework for computing isogenies is descent theory, hence theta groups

Amazing fact: cubical arithmetic in level 𝑛 allows to compute the theta group action in level ℓ𝑛!

Isogenies lift to cubical isogenies (compatible with cubes) and cubical traces naturally compute
cubical isogenies

Compatibility of pairings and isogenies is a special case of the compatibility of cubical isogenies
and cubical arithmetic
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Preimages

𝜙 ∶ 𝐸1 → 𝐸2 isogeny of elliptic curves (for simplicity) with cyclic kernel 𝐾 = ⟨𝑇⟩ of order ℓ
We saw how to compute isogeny images 𝑃 ↦ 𝜙(𝑃)

Goal: compute isogeny preimages: 𝜙−1(𝑄)
For ease of notations: let ̂𝜙 ∶ 𝐸2 → 𝐸1 be the contragredient isogeny, we will compute the
preimages ̂𝜙−1(𝑃) ⊂ 𝐸2

Radical isogenies: the preimages 𝑇2 ∈ ̂𝜙−1(𝑇) are in bijection with the non-backtracking
isogenies 𝜙2 ∶ 𝐸2 → 𝐸3
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Torsors

𝜙/𝑘 ∶ 𝐸1 → 𝐸2, 𝑃 ∈ 𝐸1(𝑘)
If ̂𝜙−1(𝑃) contains a rational point 𝑄 ∈ 𝐸2(𝑘), then the fiber is in bijection with Ker ̂𝜙 via

̂𝜙−1(𝑃) = 𝑄 + Ker ̂𝜙
It certainly contains such a point over the separable closure of 𝑘 (assume 𝜙 separable)

⇒ ̂𝜙−1(𝑃) is an (étale) Ker ̂𝜙-torsor

If Ker𝜙 = ⟨𝑇⟩ with 𝑇 ∈ 𝐸1(𝑘), then Ker𝜙 ≃ ℤ/ℓℤ, so Ker ̂𝜙 ≃ 𝜇ℓ (via theWeil-Cartier
pairing)

̂𝜙−1(𝑃) is an (étale) 𝜇ℓ-torsor

⇒ Hilbert 90: we have an isomorphism of schemes over 𝑘: ̂𝜙−1(𝑃) ≃ {𝑥ℓ = 𝐶}

Theorem

By the geometric interpretation of the Tate pairing,𝐶 = 𝑒𝑇,ℓ(𝑇, 𝑃) (non reduced Tate pairing)

Goal: make this isomorphism explicit
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Cubical arithmetic for preimages

Goal: compute ̂𝜙−1(𝑃), 𝜙 ∶ 𝐸1 → 𝐸2 with kernel 𝐾 = ⟨𝑇⟩

Fix an excellent lift 𝑇
Fix �̃� and an excellent lift 𝑃 + 𝑇 relative to �̃� and 𝑇.

1 Start with an arbitrary lift 𝑃 + 𝑇
2 Compute �̃� + ℓ𝑇 = 𝜆𝑃�̃�

N.B.: 𝜆𝑃 is the Tate pairing of 𝑃 with 𝑇!
3 Then 𝜆1/ℓ

𝑃 ⋆ 𝑃 + 𝑇 is an excellent lift relative to �̃�, 𝑇

Construct the cubical points �̃� + 𝑖𝑇 for 𝑖 = 0, … , ℓ − 1
These give the coordinates (in level 𝑛ℓ) of a point 𝑄 ∈ ̂𝜙−1(𝑃)!
The ℓ choices for 𝜆1/ℓ

𝑃 give the ℓ preimages.
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Descending level

Theorem

If𝑋1, … , 𝑋𝑛 are a basis of section of level𝑛 on𝐸1, then the𝑋𝑚(�̃� + 𝑖𝑇) form a basis of sections of
level ℓ𝑛 on𝐸2, evaluated on𝑄

We want to describe 𝑄 with coordinates 𝑋′
𝑖 of level 𝑛

Goal: take linear combinations of the 𝑋𝑚(�̃� + 𝑖𝑇) of the form 𝑋′
𝑚(𝑄)𝑋′

0
ℓ−1(𝑄).

We recover projective coordinates of level 𝑛 for 𝑄

Method: use descent through a well chosen isogeny
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Descending level on an abelian variety

Write ℓ = 1 + 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 and take 𝐹 ∶ 𝐴5 → 𝐴5 given by the matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 𝑎 𝑏 𝑐 𝑑
𝑎 −1 0 0 0
𝑏 0 −1 0 0
𝑐 0 0 −1 0
𝑑 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The kernel of 𝐹 is given by the image of 𝐴[ℓ] into 𝐴5 via 𝑃 ↦ (𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃, 𝑑𝑃)

There is a block diagonal matrix 𝑀 = (1 0
0 𝑀2

) such that 𝑡𝐹𝑀𝐹 = ℓ Id.

So 𝐹 is an ℓ-isogeny (𝐴, 𝛩𝐴)5 → (𝐴, 𝛩𝐴) × (𝐴4, 𝛩′) (𝛩′ non principal non product
polarisation)

Applying the isogeny formulas to 𝐹 allows to recover the level 𝑛 coordinates on 𝐴 by projecting
to the left factor

N.B: here we are already in level ℓ𝑛 on the domain so the isogeny formulas are simple.
The kernel is of size ℓ2𝑔 but half of the points give a trivial action, so we take a trace under ℓ𝑔

terms.

Complexity for descending from level ℓ𝑛 to level 𝑛: 𝑂(ℓ𝑔)
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Multiradical isogenies

𝐴 of dimension 𝑔, 𝐾 = ⟨𝑇1, … , 𝑇𝑔⟩, 𝜙 ∶ 𝐴 → 𝐵

ℓ𝑔(𝑔+1)/2 choice of excellent lifts for 𝑇𝑖, ̃𝑇𝑖 + 𝑇𝑗 ⇒ all our possible ℓ𝑔(𝑔+1)/2 multiradical
isogenies (after descending back to level 𝑛)

These involve the (sqrt of the) “self” Tate pairings 𝑒𝑇,ℓ(𝑇𝑖, 𝑇𝑗) (ℓ odd)

If 𝑃 ∈ 𝐴, ℓ𝑔 choices for ̃𝑃 + 𝑇𝑖 ⇒ all ℓ𝑔 possible preimages 𝑄 ∈ ̂𝜙−1(𝑃) (after descending
back to level 𝑛)

These involves the Tate pairings 𝑒𝑇,ℓ(𝑇𝑖, 𝑃)
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Summary

Cubical arithmetic allows to go up and down in level, not only on the same abelian variety but
also across an isogeny

Explicit algorithms to compute preimages and radical isogenies

The Tate pairings naturally appear in these algorithms

Open questions:

Interpretation of the cubical coordinates of the neutral points of 0𝐴 and 0𝐵 as modular forms (in
the spirit of [KNRR21])?

Simpler descent formulas?

Radical SqrtVelu formulas?

In progress: explicit radical formulas for Montgomery curves
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Cubical arithmetic and DLP

𝑃 ∈ 𝐸(𝔽𝑞) a point of ℓ-torsion, 𝑄 = 𝑠 ⋅ 𝑃
DLP: given (𝑃, 𝑄) recover 𝑠
Assume ℓ ∤ 𝑞 − 1, then 𝜇ℓ ∩ 𝔽𝑞 = {1}
(Otherwise use pairings to reduce the DLP to 𝔽∗

𝑞)

Then there is only one canonical excellent lift �̂� ≔ �̃� above 𝑃 with coordinates in 𝔽𝑞 (there is

only one rational root of 𝑥ℓ = 𝑒𝑇,ℓ(𝑃, 𝑃))
�̂�, �̂� are easy to compute

We have 𝑠 ⋅ �̂� = �̂�
This lifts the DLP to a cubical DLP

Now assume that someone leaks (�̃�, 𝑄 = 𝑠 ⋅ �̃�) for some cubical point (not canonical) �̃� above 𝑃
Write �̃� = 𝜆 ⋆ �̂�
Then 𝑄 = 𝑠 ⋅ �̃� = 𝜆𝑠2 ⋆ 𝑠 ⋅ �̂� = 𝜆𝑠2 ⋆ 𝑄.

We know (𝜆, 𝜆𝑠2). A DLP in 𝔽∗
𝑞 allows to recover 𝑠2, hence 𝑠 (modulo the multiplicative order

of 𝜆).

If 𝜆 has large enough order, we obtain 𝑠.
This assumes 𝑞 − 1 has not too many factor so that there are not too many sqrt of 𝑠2 to check.
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The monodromy leak

For the attack to work, we need someone to leak �̃�, 𝑄 = 𝑠 ⋅ �̃�
How would that be possible? Nobody uses cubical arithmetic for standard ECC, right?

Actually, many implementations use the Montgomery ladder.

And this is (almost!) the cubical ladder.

Montgomery ladder: Start from (𝑋(𝑃), 𝑍(𝑃) = 1) and compute (𝑋(𝑠𝑃), 𝑍(𝑠𝑃))
Then output 𝑥(𝑠𝑃) = 𝑋(𝑠𝑃)/𝑍(𝑠𝑃). If division not in constant time, this leaks 𝑍(𝑠𝑃).
Hence this leaks 𝑠 ⋅ �̃� for �̃� = (𝑥(𝑃), 1)
N.B.: Montgomery ladder is not quite the cubical ladder, so we solve a different degree two
equation to recover 𝑠.

The general DLP:

If we have only (𝑃, 𝑄), we take arbitrary choices of �̃�, 𝑄.

We have 𝑄 = 𝑡 ⋅ �̃� for some 𝑡 ≡ 𝑠 mod ℓ (if �̃� is chosen to have order ℓ(𝑞 − 1))
Apply the monodromy leak attack to recover 𝑡 modulo 𝑞 − 1
Problem: ℓ is coprime to 𝑞 − 1, so this gives zero information on 𝑠 mod ℓ.
The monodromy leak only works when we know that 0 < 𝑡 < ℓ!
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Perspectives

DLP, pairing inversion from the cubical point of view?

Cubical arithmetic allows to reduce the elliptic curve DLP to a DLP between“quasi”-cyclic
matrices of size ℓ × ℓ. Not very useful but gives new point of view on pairings attacks (take an
eigenvalue of these matrices to reduce to a DLP in dimension 1)

Investigate the arithmetic of non symmetric biextensions induced by (non symmetric) isogenies

𝑅-sesquilinear pairings [Sta24] from the cubical point of view? (Replace 𝔾𝑚 torsors by
𝔾⊗𝑅

𝑚 -torsors?)

Related: computing multidimensional endomorphism ladders ∑ 𝛼𝑖�̃�𝑖?

Self pairings [CHM+23] from the cubical point of view?

[Bre83]: if we have a symmetric cubical torsor structure on (𝐺, ℒ), 𝐺 ⊂ 𝐴[𝑛], then there is a
canonical trivialisation of the induced cubical structure on [2𝑛]∗ℒ.

Similarity with self pairings: if 𝑃 is of 𝑛-torsion, then the self pairing 𝑒(𝑃, 𝑃) lives in 𝜇2𝑛.
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