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Ideals and isogenies: the oriented case

𝐸0/𝑘, 𝑘 = 𝔽𝑞, elliptic curve with a primitive orientation by a quadratic imaginary order

𝑅 = ℤ[√−𝛥] ↪ End𝑘(𝐸0)
Oriented isogeny: 𝜙 ∶ 𝐸1 → 𝐸2 that commutes with the orientations

Oriented kernel: 𝐾 stable by 𝑅
Unique 𝑅-orientation compatible on 𝐸/𝐾 with the quotient isogeny 𝐸 → 𝐸/𝐾, and the isogeny is horizontal or ascending

Example: Frobenius orientation

𝐸0/𝑘 with non trivial 𝜋𝑘-action: ordinary curves, supersingular curves over 𝔽𝑝

𝜋𝑘-oriented isogenies = rational isogenies.

Kernels, isogenies, and ideals

𝐼 ↦ 𝜙𝐼 ∶ 𝐸0 → 𝐸𝐼 oriented isogeny with kernel 𝐸0[𝐼] = {𝑃 ∈ 𝐸0(𝑘), 𝛼(𝑃) = 0, ∀𝛼 ∈ 𝐼}
𝐾 ↦ ℑ(𝐾) ≔ {𝛼 ∈ 𝑅 ∣ 𝛼(𝐾) = 0}
𝐼 → 𝐸0[𝐼] ⇔ 𝐾 ↦ ℑ(𝐾): bijections1 between 𝑅-stable kernels and integral ideals 𝐼 of 𝑅
Ideals ⇔ oriented isogenies

𝐼 ∼ 𝐽 ⇔ 𝐸𝐼 ≃ 𝐸𝐽

1At least in the separable case: 𝐸0[𝜋𝑝] is not represented by an ideal if 𝑝 inert in 𝑅
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Class group actions
𝐸𝐼 ≔ 𝐸0/𝐸0[𝐼] primitively oriented by 𝑂(𝐼) ≔ {𝛼 ∈ 𝑅 ⊗ℤ ℚ ∣ 𝛼𝐼 ⊂ 𝐼}
𝐼 is invertible ⇔ 𝑂(𝐼) = 𝑅 ⇔ the isogeny is horizontal

Pic(𝑅) ≔ {[𝐼], 𝐼 invertible ideal}

Invertible ideals 𝐼 of 𝑅 ⇔ oriented horizontal isogenies 𝜙𝐼 ∶ 𝐸 → 𝐸𝐼
[Colò-Kohel 2020, Onuki 2020]

𝜙𝐼 = 𝜙𝐼 ∶ 𝐸𝐼 → 𝐸
Special case: 𝑝 inert in 𝑅 (can only happen for an orientation on a supersingular curve 𝐸/𝔽𝑝2)

𝜋𝑝 ∶ 𝐸 → 𝐸𝜎 is not represented by an ideal

An oriented isogeny 𝜙 ∶ 𝐸 → 𝐸′ comes from an ideal iff the representations 𝜌𝑅(𝐸) and 𝜌𝑅(𝐸′) are equivalent, 𝜌𝑅(𝐸)
representation of 𝑅 on the 𝑘-vector space 𝑇0(𝐸)

Group action:

Pic(𝑅) � {𝐸 primitively 𝑅-oriented}
[𝐼] ⋅ 𝐸 ↦ 𝐸𝐼
Free and transitive action (if 𝑝 ramified or split; two orbits if 𝑝 inert in 𝑅)

𝐸[𝔪](𝑘) ≃ 𝑅/𝔪𝑅 as 𝑅-modules [Lenstra 1996] (𝑝 ∧ 𝔪 = 1)
Generalised class group action (ray class groups modulo 𝔪) to incorporate 𝔪-level structure
[ACELV 2024]
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Applications of class group actions

Let {𝐸1, … , 𝐸𝑁} be the orbit of 𝐸0 under Pic(𝑅). Then 𝐻(𝑋) = ∏(𝑋 − 𝑗(𝐸𝑖)) is the
reduction modulo 𝑝 of the Hilbert class polynomial 𝐻𝑅.

Reduction modulo 𝑝 of CM class polynomials can also be understood in term of actions by the
Shimura class group

The CRS/ CSIDH key exchange:

𝐸0 𝐸𝐼1
= 𝐼1 ⋅ 𝐸0

𝐸𝐼2
= 𝐼2 ⋅ 𝐸0 𝐸𝐼1⊗𝑅𝐼2

≃ 𝐼1𝐼2 ⋅ 𝐸0

N As a commutative group action, susceptible to Kuperberg’s subexponential quantum algorithm
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Ideals and isogenies: the supersingular case

Deuring correspondance

Maximal orders 𝒪 in 𝐵𝑝,∞ = supersingular curves 𝐸/𝔽𝑝2 (up to quadratic twists and Galois
conjugates)

𝐼 ↦ 𝐸0[𝐼], 𝐾 ↦ ℑ(𝐾): bijection between kernels and left 𝑂0-ideals (𝑂0 = End(𝐸0))
Ideals ⇔ Isogenies

End(𝐸𝐼) = 𝑂𝑅(𝐼) the right order of 𝐼; deg𝜙𝐼 = 𝑁(𝐼) ≔ nrd(𝐼)

Ideal to isogeny: 𝐼 ⇔ 𝐸0 → 𝐸𝐼 ≔ 𝐸0/𝐸[𝐼]
Not a group action!

SIDH relied on pushforwards, these depend on the paths, so need extra informations:

𝐸0 𝐸1

𝐸2 𝐸12
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The power object in an abelian category
𝐴 ∈ 𝒜 an abelian category, 𝑅 ⊂ End𝒜(𝐴)
If 𝑋 ∈ 𝒜,Hom𝒜(𝑋, 𝐴) has a natural 𝑅-module structure

If 𝑀 f.p. 𝑅-module, the power object ℋ𝒪ℳ𝑅(𝑀, 𝐴) exists in 𝒜:

Hom𝒜(𝑋, ℋ𝒪ℳ𝑅(𝑀, 𝐴)) = Hom𝑅(𝑀,Hom𝒜(𝑋, 𝐴)) ∀𝑋 ∈ 𝒜

If 𝑅 is commutative, we have an abelian category 𝒜𝑅 of 𝑅-oriented objects, and ℋ𝒪ℳ𝑅(𝑀, 𝐴)
is naturally 𝑅-oriented, and is the power object both in 𝒜 and 𝒜𝑅.

Symmetric monoidal contravariant action:

𝑀 ⋅ 𝐴 ≔ ℋ𝒪ℳ𝑅(𝑀, 𝐴)

𝑀1 ⋅ 𝑀2 ⋅ 𝐴 = (𝑀1 ⊗𝑅 𝑀2) ⋅ 𝐴
Functorial action: morphisms and objects act on morphisms and objects

The copower object 𝑀 ⊗𝑅 𝐴 also exists in 𝒜:

Hom𝒜(𝑀 ⊗𝑅 𝐴, 𝑋) = Hom𝑅(𝑀,Hom𝒜(𝐴, 𝑋)) ∀𝑋 ∈ 𝒜

If 𝑅 commutative, this is also the copower object in 𝒜𝑅 and we have a covariant action
𝑀 ↦ 𝑀 ⊗𝑅 𝐴

All monoidal actions are of this type (using an enrichement in a presheaf category)
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Explicit constructions of the power object

ℋ𝒪ℳ𝑅(𝑅𝑛, 𝐴) = 𝐴𝑛

𝑅𝑚 →𝐹 𝑅𝑛 → 𝑀 → 0

0 → ℋ𝒪ℳ𝑅(𝑀, 𝐴) → 𝐴𝑛 →𝐹𝑇 𝐴𝑚

If 𝑀 projective module, 𝑅𝑛 = 𝑀 ⊕ 𝑀′ ⇒

𝐴𝑛 = ℋ𝒪ℳ𝑅(𝑀, 𝐴) ⊕ ℋ𝒪ℳ𝑅(𝑀′, 𝐴)

Splitting of idempotents

Theorem (The action by projective modules)

If End𝑅(𝐴) = 𝑅, thenHom𝑅(𝑀2, 𝑀1) = Hom𝒜𝑅
(𝑀1 ⋅ 𝐴, 𝑀2 ⋅ 𝐴) for𝑀1, 𝑀2 f.p. projective

𝑅-modules.
The action𝑀 ↦ 𝑀 ⋅ 𝐴 gives an antiequivalence of category between f.p. projective𝑅-modules and the
Cauchy completion (for categories enriched in𝑅-modules) of𝐴 in𝒜𝑅.
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Exactness properties

Left exact on the left and right exact on the right:

0 → 𝑀2 ↪ 𝑀1 ↠ 𝑀1/𝑀2 → 0,
0 → (𝑀1/𝑀2) ⋅ 𝐴 → 𝑀1 ⋅ 𝐴 → 𝑀2 ⋅ 𝐴

0 → 𝐴1 ↪ 𝐴2 ↠ 𝐴3 → 0,
0 → 𝑀 ⋅ 𝐴1 → 𝑀 ⋅ 𝐴2 → 𝑀 ⋅ 𝐴3

The right exact functor ℋ𝒪ℳ𝑅(⋅, 𝐴) gives rise to derived functors ℰ𝓍𝓉 𝑖
𝑅(⋅, 𝐴)

Taking a free resolution of 𝑀, applying ℋ𝒪ℳ𝑅(⋅, 𝐴) and taking the cohomology gives the
ℰ𝓍𝓉 𝑖

𝑅

0 → 𝑀2 ↪ 𝑀1 ↠ 𝑀1/𝑀2 → 0,
0 → (𝑀1/𝑀2) ⋅ 𝐴 → 𝑀1 ⋅ 𝐴 → 𝑀2 ⋅ 𝐴 → ℰ𝓍𝓉1

𝑅(𝑀1/𝑀2, 𝐴) → ℰ𝓍𝓉1
𝑅(𝑀1, 𝐴) → ⋯
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The power object on abelian varieties

𝒜 abelian category of proper group schemes over the base field 𝑘
If 𝐴/𝑘 is an abelian variety with 𝑅 ⊂ End(𝐴), 𝑀 ⋅ 𝐴 is a proper group scheme in general

If 𝑅 domain,
dim𝑀 ⋅ 𝐴 = rank𝑅 𝑀 × dim𝐴

If 𝑀 projective, 𝑀 ⋅ 𝐴 is an abelian variety

More generally, we say that 𝑀 is compatible with 𝐴 if 𝑀 is torsion free and 𝑀 ⋅ 𝐴 is an abelian
variety
If 𝑅 is a domain and 0 → 𝑀 → 𝑅𝑛 → 𝑃 → 0, 𝑀 ⋅ 𝐴 is an abelian variety iff Ext1𝑅(𝑃, 𝐴) = 0.

Example

Torsion: 𝑅/𝐼 ⋅ 𝐴 = 𝐴[𝐼]
Rational points: (𝑀 ⋅ 𝐴)(𝑘′) ≃ Hom𝑅(𝑀, 𝐴(𝑘′)), 𝑘′ a 𝑘-algebra

We can define the ℰ𝓍𝓉 𝑖
𝑅 more formally by embedding group schemes over 𝑘 in the category of fppf sheafs over 𝑘.

From now on, we implicitly assume that 𝑀 is compatible with 𝐴
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Isogenies

Definition (Module isogeny)

A module isogeny is a monomorphism 𝑀2 ↪ 𝑀1 of torsion free modules with finite cokernel
𝑀1/𝑀2
⇔ monomorphism 𝑀2 ↪ 𝑀1 of torsion free modules of the same rank
⇔ finite cokernel map 𝑀2 → 𝑀1 of torsion free modules of the same rank

Proposition (Module isogeny to abelian variety isogeny)

If𝑅 domain and each𝑀𝑖 is compatible with𝐴, then𝑀1 ⋅ 𝐴 ↠ 𝑀2 ⋅ 𝐴 is an isogeny with kernel
(𝑀1/𝑀2) ⋅ 𝐴:

0 → (𝑀1/𝑀2) ⋅ 𝐴 → 𝑀1 ⋅ 𝐴 → 𝑀2 ⋅ 𝐴 → 0

i.e.,ℰ𝓍𝓉1
𝑅(𝑀1/𝑀2, 𝐴) = 0

Isogeny = epimorphism (with finite kernel) ⇔ monomorphism (=inclusion) of modules (with finite
cokernel)
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Duality

(𝐴, 𝜆𝐴)/𝑘 ppav, ⋅ the Rosatti involution on End𝑘(𝐴)
(𝑅, ⋅) ⊂ End(𝐴) domain

Then 𝑅 is a “CM order”

Either 𝑅 is totally real and 𝑥 = 𝑥
Or 𝑅 is a quadratic imaginary extension of a totally real order, and 𝑥 is the complex conjugation

(𝑀 ⋅ 𝐴)∨ ≃ 𝑀∗ ⋅ 𝐴∨, where 𝑀∗ = Hom𝑅(𝑀, 𝑅) and 𝐴∨ the dual abelian variety

(𝑀 ⋅ 𝐴)∨ ≃ 𝑀∨ ⋅ 𝐴, where 𝑀∨ = Hom𝑅(𝑀, 𝑅)

𝜓 ∶ 𝑀2 → 𝑀1, 𝜓 ⋅ 𝐴 ∶ 𝑀1 ⋅ 𝐴 → 𝑀2 ⋅ 𝐴
𝜓∨ ∶ 𝑀∨

1 → 𝑀∨
2 , 𝛾 ↦ (𝑣 ↦ 𝛾 ∘ 𝜓(𝑣))

𝜓∨ ⋅ 𝐴 ∶ 𝑀∨
2 ⋅ 𝐴∨ → 𝑀∨

1 ⋅ 𝐴∨.

This is the dual of 𝜓.
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Hermitian modules and polarisations
A polarisation 𝛷 on 𝐵 = 𝑀 ⋅ 𝐴 corresponds to:

1 A morphism 𝐵 → 𝐵∨

2 Which is autodual 𝛷 = 𝛷∨ ∶ 𝐵 ≃ 𝐵∨∨ → 𝐵∨
3 And induced by an ample line bundle

A polarisation 𝛹 on 𝑀 corresponds to:
1 A morphism 𝑀∨ → 𝑀
2 Which is autodual under the double duality: 𝑀 ≃ 𝑀∨∨, 𝑚 ↦ (𝜙 ↦ 𝜙(𝑚))
3 And is “positive”

This is an integral positive definite Hermitian form 𝐻 on 𝑀∨

We will assume 𝑅 Gorenstein for simplicity to have good biduality theorems. This is the case if the real suborder of 𝑅 is

maximal, e.g. 𝑅 quadratic imaginary.

Hermitian module action: the action by a polarised module (𝑀, 𝐻𝑀) on a polarised abelian
variety (𝐴, 𝜆𝐴) gives a polarised abelian variety (𝑀 ⋅ 𝐴, 𝐻𝑀 ⋅ 𝜆𝐴)
If 𝜆𝐴 is principal and 𝐻𝑀 unimodular, 𝐻𝑀 ⋅ 𝜆𝐴 is principal.

Example

The Shimura class group is the class group of unimodular rank 1 Hermitian 𝑅-modules

Given a CM ppav (𝐴, 𝜆𝐴), acting by the Shimura class group gives other CM ppavs
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Hermitian forms

Definition (Hermitian forms)

𝑅-sesquilinear: 𝐻 ∶ 𝑀 × 𝑀 → 𝑅, 𝐻(𝛼𝑥, 𝑦) = 𝛼𝐻(𝑥, 𝑦), 𝐻(𝑥, 𝛼𝑦) = 𝐻(𝑥, 𝑦)𝛼
Hermitian: 𝐻(𝑦, 𝑥) = 𝐻(𝑥, 𝑦)
Positive definite: 𝐻(𝑥, 𝑥) ∈ ℤ>0, ∀𝑥 ≠ 0 ∈ 𝑀
Unimodular: 𝐻 ∶ 𝑀 ≃ 𝑀∨, 𝑚 ↦ 𝐻(𝑚, ⋅)
⇔ 𝑀♯ ≔ {𝑣 ∈ 𝑀 ⊗ ℚ, 𝐻(𝑚, 𝑣) ∈ 𝑅 ∀𝑚 ∈ 𝑅} = 𝑀

Corollary (Principal polarisations, (𝐴, 𝜆𝐴) ppav)

Unimodular Hermitian𝑅-form𝐻 on𝑀 ⇒ Principal polarisation𝜆 ∶ 𝑀 ⋅ 𝐴 → (𝑀 ⋅ 𝐴)∨

𝑁-similitude𝛷 ∶ (𝑀2, 𝐻2) → (𝑀1, 𝐻1)

𝛷∗𝐻1 = 𝑁𝐻2

⇒ 𝑁-isogeny𝜙 ∶ (𝐴1, 𝜆𝐴1
) → (𝐴2, 𝜆𝐴2

) (𝐴𝑖 = 𝑀𝑖 ⋅ 𝐴)

Proposition (Contragredient = Adjoint)

If𝜙 = 𝜓 ⋅ 𝐴 ∶ (𝐴1, 𝜆1) → (𝐴2, 𝜆2) for𝜓 ∶ (𝑀2, 𝐻2) → (𝑀1, 𝐻1), then𝜙 = 𝜓 ⋅ 𝐴, where
𝜓 ∶ 𝑀1 → 𝑀2 is the adjoint:𝐻1(𝜓(𝑥), 𝑦) = 𝐻2(𝑥, 𝜓∗(𝑦))
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A general equivalence of category

Oriented case: 𝐸0/𝑘 primitively oriented by 𝑅 quadratic imaginary

Theorem (Module antiequivalence of category)

The action𝑀 ↦ 𝑀 ⋅ 𝐸0 gives an antiequivalence of category between the category of𝑅-oriented abelian
varieties a 𝐴 𝑘-isogenous to𝐸𝑔

0 and𝑅-oriented 𝑘-morphisms; and the category of f.p. torsion free
𝑅-modules𝑀 of rank 𝑔 and𝑅-modulemorphisms.
Inversemap:𝐴 ↦ Hom𝑅(𝐴, 𝐸0): module of (oriented) morphisms from𝐴 to𝐸0

awith the technical condition 𝜌𝑅(𝐴) ≃ ⊕𝑔
𝑖=1𝜌𝑅(𝐸0)

[Waterhouse 1969], [Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018],
[Kirschmer, Narbonne, Ritzenthaler, R. 2021], [Page-R. 2023]
Alternative approaches to equivalences of category of abelian varieties (e.g. via lifting to characteristic zero): [Deligne, Howe,

Centeleghe-Stix, Marseglia]…

Example

Frobenius orientation: all rational isogenies at level “above”𝐸0 in the volcano

Supersingular case: the action by f.p. left 𝔒0-modules also gives an antiequivalence of categories
to maximal supersingular abelian varieties, 𝔒0 = End(𝐸0).
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Warmup: ideals

𝐼 ↪ 𝑅 induces 𝜙𝐼 ∶ 𝐸0 = 𝑅 ⋅ 𝐸0 → 𝐸𝐼 = 𝐼 ⋅ 𝐸0

Canonical unimodular Hermitian form on 𝐼:

𝐻𝐼(𝑥, 𝑦) =
𝑥𝑦

𝑁(𝐼)

The inclusion (𝐼, 𝐻𝐼) ⊂ (𝑅, 𝐻𝑅) is a 𝑁(𝐼)-similitude

Handles ascending isogenies: 𝐼 not invertible (the 𝑅-orientation needs not be primitive on 𝐸𝐼)

𝜙 ∶ 𝐸𝐼1
→ 𝐸𝐼2

, 𝐼1, 𝐼2 invertible

Ideal point of view: 𝜙 ⇔ some integral ideal 𝐽 equivalent to 𝐼 = 𝐼2𝐼−1
1

𝐼−1 = 𝐼/𝑁(𝐼) so if 𝑥 ∈ 𝐼, 𝐽 ≔ 𝐼𝑥/𝑁(𝐼) ∼ 𝐼; 𝑁(𝐽) = 𝑁(𝑥)/𝑁(𝐼)

Module point of view: 𝜙 ⇔ 𝜓 ∶ (𝐼2, 𝐻𝑅/𝑁(𝐼2)) → (𝐼1, 𝐻𝑅/𝑁(𝐼1))
If 𝑧 ∈ 𝐼−1: 𝜓𝑧 ∶ 𝑟 ↦ 𝑧𝑟 is a 𝑁 ≔ 𝑁(𝑧)𝑁(𝐼2)/𝑁(𝐼1)-similitude

𝑧 = 𝑥/𝑁(𝐼), 𝑁 = 𝑁(𝑥)/𝑁(𝐼)
If 𝐼 integral: canonical isogeny via 𝑧 = 1 ∈ 𝑅 ⊂ 𝐼−1

Module point of view + specific isogeny 𝐸0 → 𝐸 = ideal point of view
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Forgetting the orientation on supersingular elliptic curves

𝐸0/𝔽𝑝2 supersingular, 𝑅 ⊂ 𝔒0 ≔ End(𝐸0) primitive orientation

Two type of actions: by left f.p. 𝑅-modules 𝑀𝑅 and by left f.p. 𝔒0-modules 𝑀𝔒

If 𝐴 = 𝑀𝑅 ⋅𝑅 𝐸0, 𝐴 = (𝔒0 ⊗𝑅 𝑀𝑅) ⋅𝔒0
𝐸0

Forgetting the orientation

Conversely: 𝑀𝑅 = Hom𝑅(𝐴, 𝐸0), 𝑀𝔒 = Hom(𝐴, 𝐸0)

Example (Rational isogenies from irrational endomorphisms)

In CSIDH, if we know 𝔒 = End(𝐸), we can recover 𝐼 = Hom(𝐸, 𝐸0) by linear algebra, hence the
module 𝔞 = Hom𝔽𝑝

(𝐸, 𝐸0) as the morphisms in 𝐼 commuting with 𝜋.
This simplifies an argument due to [Castryck, Panny, Vercauteren 2019].
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Similitudes to isogenies

Module morphism to morphism of abelian varieties:

𝑅𝑚1 𝑅𝑛1 𝑀1 0 ⇔ 0 𝑀1 ⋅ 𝐴 𝐴𝑛1 𝐴𝑚1

𝑅𝑚2 𝑅𝑛2 𝑀2 0 0 𝑀2 ⋅ 𝐴 𝐴𝑛2 𝐴𝑚2

𝑅𝑛 is a projective module, so we can lift module maps. The commutative diagram allows to find the kernel of 𝑀1 ⋅ 𝐴 → 𝑀2 ⋅ 𝐴.

𝑁-similitudes ⇔ 𝑁-isogenies

(𝑀2, 𝐻/𝑁) ⊂ (𝑀1, 𝐻)⇒𝜙 ∶ 𝐴1 = 𝑀1 ⋅ 𝐴 ↠ 𝐴2 = 𝑀2 ⋅ 𝐴
𝑀1 = Hom(𝑅, 𝑀1), so 𝑚1 ∈ 𝑀1 induces 𝑚1 ⋅ 𝐴 ∶ 𝐴1 → 𝐴
We say that 𝑀1 is a module orientation on 𝐴1 = 𝑀1 ⋅ 𝐴
Ker𝜙 = 𝐴1[𝑀2] ⊂ 𝐴1[𝑁]

𝐴1[𝑀2] ≔ {𝑃 ∈ 𝐴1(𝑘), (𝑚 ⋅ 𝐴)(𝑃) = 0, ∀𝑚 ∈ 𝑀2}

Equivalence practical if 𝑁 smooth, the 𝑁-torsion on 𝐴1 is accessible, and the orientation of 𝑀1
on 𝐴1 is effective
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Computing the module action

We want to compute 𝐴 = (𝑀, 𝐻) ⋅ 𝐸0

Find a smooth similitude (𝑀, 𝐻) → (𝑅𝑔, 𝐻𝑔
𝑅)

Then convert it to an isogeny 𝐸𝑔
0 → 𝐴

The 𝑅𝑔-module orientation on 𝐸𝑔
0 is effective (as long as the 𝑅-orientation on 𝐸0 is)

Clapoti(s): it suffice to build two 𝑁1, 𝑁2-similitudes with 𝑁1 ∧ 𝑁2 = 1 (or small)

N There are unimodular Hermitian 𝑅-modules (𝑀, 𝐻𝑀) such that no 𝑁-similitude 𝑅𝑔 ↪ 𝑀 exist
for any 𝑁, c.f. the arithmetic obstructions in [Kirschmer, Narbonne, Ritzenthaler, R. 2021]

Solution: look at 𝑅𝑔+1 ↪ 𝑀 × 𝑅

N Conductor gap: a 𝑁-isogeny 𝐸𝑔
0 → 𝐸 × 𝐴 (with the product polarisations) inducing a non trivial

isogeny 𝐸0 → 𝐸 satisfy
𝑓𝐸/𝐸0

∣ 𝑁
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Module kernels and kernel modules

𝐴1 = 𝑀1 ⋅ 𝐴, 𝑀1-oriented abelian variety

𝑀2 ⊂ 𝑀1 ↦ 𝐴[𝑀2] = {𝑃 ∈ 𝐴1(𝑘), (𝑚 ⋅ 𝐴1)(𝑃) = 0, ∀𝑚 ∈ 𝑀2}
𝐾 ⊂ 𝐴2 ↦ 𝑀(𝐾) = {𝑚 ∈ 𝑀1, 𝑚(𝐾) = 0}
These are Galoisian adjunctions

This restrict to a bijection between module kernels and kernel modules

In our case (𝐴 ∼ 𝐸𝑔
0), every module is a kernel module; and a kernel is a module kernel iff 𝐴1/𝐾

is in the orbit of 𝐴 by the module action.

Isogeny to similitude:

𝜙 ∶ 𝐴1 → 𝐴2 a 𝑁-isogeny of kernel 𝐾 induced by 𝜓 ∶ 𝑀2 → 𝑀1

𝐴1 = 𝑀1 ⋅ 𝐴 with effective orientation

𝑀2 ≔ {𝑚 ∈ 𝑀1, 𝑚 ⋅ (𝐾) = 0}, 𝐻2 = 𝐻1/𝑁
Needs efficient DLPs in 𝐴1[𝑁] to compute 𝑀2

The orientation of 𝑀2 on 𝐴1 descends to an effective orientation on 𝐴2
(via isogeny division, at least in nice cases)
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Direct sums and pushforwards

(𝐴1, 𝜆1) = (𝑀1, 𝐻1) ⋅ 𝐴0 and (𝐴2, 𝜆2) = (𝑀2, 𝐻2) ⋅ 𝐴0

Product polarisations: (𝐴1 × 𝐴2, 𝜆1 × 𝜆2) = (𝑀1 ⊕ 𝑀2, 𝐻1 ⊕ 𝐻2) ⋅ 𝐴0

Pushforwards:

If 𝜙1 ∶ 𝐴0 → 𝐴1 and 𝜙2 ∶ 𝐴0 → 𝐴2 correspond to 𝜓1 ∶ 𝑀1 → 𝑀 and 𝜓2 ∶ 𝑀 → 𝑀2, their
pushforward 𝐴12 corresponds to the fiber product 𝑀1 ×𝑀 𝑀2

If 𝜙1 ∶ 𝐴0 ↠ 𝐴1, 𝜙2 ∶ 𝐴0 ↠ 𝐴2 are isogenies, 𝜓1 ∶ 𝑀1 ↪ 𝑀, 𝜓2 ∶ 𝑀2 ↪ 𝑀 are
monomorphisms, and the fiber product 𝑀1 ×𝑀 𝑀2 is just the intersection 𝑀1 ∩ 𝑀2 ⊂ 𝑀

𝐴0 𝐴1 ⇔ 𝑀 𝑀1

𝐴2 𝐴12 𝑀2 𝑀1 ∩ 𝑀2
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Finding curves with many points

𝐶/𝔽𝑞 is a defect 0 curve if #𝐶(𝔽𝑞) = 1 + 𝑞 + 𝑔⌊2√𝑞⌋

Then Jac(𝐶) ∼ 𝐸𝑔
0, 𝐸0 of trace −⌊2√𝑞⌋.

Jac(𝐶) = 𝑀 ⋅ 𝐸0 (if 𝐸0 at the bottom of the volcano)

Algorithm [Kirschmer, Narbonne, Ritzenthaler, R. 2021]:
List all unimodular Hermitian modules (𝑀, 𝐻) over 𝑅 = End𝔽𝑞

(𝐸0)
1 Enumerate all 𝑂𝑅-genus, and construct an 𝑂𝑅-lattice 𝐿 for each genus
2 Explore adjacent lattices to 𝐿 until we have found all 𝑂𝑅-isometry classes in the genus
3 Build the 𝑅-isometry classes of unimodular lattices from the 𝑂𝑅-unimodular lattices

Compute all ppavs (𝐴, 𝜆𝐴) = (𝑀, 𝐻𝑀) ⋅ 𝐸0

Find which are Jacobians of defect 0 curves

N Beware of twists! In the non hyperelliptic case, a maximal Jacobian may only correspond to a
minimal curve

We use algebraic modular forms to check in which case we are
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The isogeny graph of oriented isogenies in higher dimension

Assume 𝑅 quadratic imaginary, 𝐴 ∼ 𝐸𝑔
0, so 𝐴 = 𝑀 ⋅ 𝐸0

𝑀 torsion free of rank 𝑔: 𝑀 ≃ 𝑅𝑔−1 ⊕ 𝐼 Assume 𝑅 maximal for simplicity

𝐴 ≃ 𝐸𝑔−1
0 × 𝐸𝐼 as unpolarised varieties

#Cl(𝑅) isomorphism classes of non-polarised 𝑅-oriented abelian varieties 𝑅-isogenous to 𝐸𝑔
0

Polarisations add supersingular like graph complexity if 𝑔 > 1 (End𝑅(𝐸𝑔
0) = 𝑀𝑔(𝑅))

Universal group action: 𝐼 ⋅ (𝑀, 𝐻𝑀) = (𝐼𝑀, 𝐻𝑀/𝑁(𝐼)) ⊂ (𝑀, 𝐻𝑀) (𝐼 invertible)
𝐼 ⋅ 𝐴 = 𝐴𝐼 ≔ 𝐴/𝐴[𝐼]
Intuition: multiplication by [𝑛] ⇒ multiplication by [𝐼]
Multiple orbits; linked together by oriented isogenies (which are not multiplication by [𝐼])
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Example: rational supersingular abelian surfaces

𝐸0/𝔽𝑝 supersingular, 𝑅 = End𝔽𝑝
(𝐸) = ℤ[√−𝑝] (or its maximal order)

𝑔 = 2: graph of supersingular abelian surfaces isogeneous to 𝐸2
0 over 𝔽𝑝 and 𝔽𝑝-rational

isogenies

Universal group action from Cl(𝑅)
Conjecture: ≈ 𝑝3/2 nodes (≈ #supersingular curves × #Cl(𝑅))
If ℓ = 𝔩𝔩 splits in 𝑅, 𝐴[ℓ] = 𝐴[𝔩] ⊕ 𝐴[𝔩] ⇒ action by 𝔩 and 𝔩
and ℓ + 1 (?) other oriented ℓ-isogenies.
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Weil’s restriction of supersingular elliptic curves
𝐸0/𝔽𝑝 supersingular, 𝑅 = End𝔽𝑝

(𝐸) = ℤ[√−𝑝]
If 𝐸/𝔽𝑝2 , its Weil restriction 𝑊𝔽𝑝2/𝔽𝑝

𝐸 is a p.p. abelian surface over 𝔽𝑝 (which is neither a

Jacobian nor a product of curves over 𝔽𝑝).

TheWeil restriction of an 𝑁-isogeny 𝜙/𝔽𝑝2 ∶ 𝐸1 → 𝐸2, is an 𝔽𝑝-rational isogeny between
rational the abelian surfaces 𝐴1 → 𝐴2, 𝐴𝑖 = 𝑊𝔽𝑝2/𝔽𝑝

𝐸𝑖

⇒ If 𝐸 is maximal, 𝑊𝔽𝑝2/𝔽𝑝
(𝐸) is isogeneous to 𝐸2

0

Hom𝔽𝑝
(𝑊𝔽𝑝2/𝔽𝑝

𝐸1, 𝑊𝔽𝑝2/𝔽𝑝
𝐸2) = Hom𝔽𝑝2(𝑊𝔽𝑝2/𝔽𝑝

𝐸1 ⊗𝔽𝑝
𝔽𝑝2, 𝐸2) =

Hom𝔽𝑝2(𝐸1 ⊕ 𝐸𝜎
1 , 𝐸2) = Hom𝔽𝑝2(𝐸1, 𝐸2) ⊕Hom𝔽𝑝2(𝐸1, 𝐸2)𝜎

The dimension 2 supersingular graph over 𝔽𝑝 contains, via theWeil restriction, the supersingular
graph of elliptic curves over 𝔽𝑝2 (with 𝐸 collapsed with 𝐸𝜎)

⇒ Convenient way to obtain 𝔽𝑝-rational isogenies in dimension 2

⇒ Module-Inversion in dimension 2 at least as hard as the supersingular isogeny path problem.

Weil restriction from the module point of view: If 𝜙/𝔽𝑝2 ∶ 𝐸1 → 𝐸2 is represented by 𝜓/𝑂0 ∶ 𝐼2 → 𝐼1, we can find

directly the module representation 𝛹/𝑅 ∶ 𝑀2 → 𝑀1 of 𝑊𝔽𝑝2/𝔽𝑝𝜙
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Symmetric monoidal actions

Definition (The module monoidal contravariant action)

If 𝑀 is a projective module, the action by 𝑀 is 𝑀 ⋅ 𝐴 = ℋ𝒪ℳ𝑅(𝑀, 𝐴).
If 𝜙 ∶ 𝐴1 → 𝐴2 is a 𝑁-isogeny, 𝑀 ⋅ 𝜙 ∶ 𝑀 ⊗𝑅 𝐴1 → 𝑀 ⊗𝑅 𝐴2 is a 𝑁-isogeny.

If 𝜓 ∶ 𝑀2 ↪ 𝑀1 is a 𝑁-similitude, 𝜓 ⋅ 𝐴 ∶ 𝑀1 ⋅ 𝐴 → 𝑀2 ⋅ 𝐴 is a 𝑁-isogeny.

Example (The action by ideals)

𝐼 ⊗𝑅 𝑀 ≃ 𝐼𝑀 when 𝐼 is inversible (or simply 𝑓𝐼 ∧ 𝑓𝑀 = 1), so 𝐼 ⋅ 𝐴 recovers the usual CSIDH action

Definition (Tensor product)

If 𝐴1 = 𝑀1 ⋅ 𝐴0, 𝐴2 = 𝑀2 ⋅ 𝐴0, 𝐴1 ⊗𝐴0
𝐴2 ≔ (𝑀1 ⊗𝑅 𝑀2) ⋅ 𝐴0
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The module action for isogeny based cryptography

Proposition (Higher dimensional CSIDH via the monoidal action)

𝐴0 𝐴1 = 𝑀1 ⋅ 𝐴0

𝐴2 = 𝑀2 ⋅ 𝐴0 𝐴12 = (𝑀1 ⊗𝑅 𝑀2) ⋅ 𝐴0

Ifdim𝐴0 = 𝑔0, rank𝑀1 = 𝑔1, rank𝑀2 = 𝑔2, thendim𝐴12 = 𝑔0𝑔1𝑔2.

Example (Monoidal action by rank 2 modules: 𝐴0 = 𝐸0, 𝑔1 = 𝑔2 = 2)
𝑀𝑖 projective module of rank 2 ⇔ 𝐸2

0 ↠ 𝐴𝑖 a path:

𝐸2
0 𝐴1

𝐴2 𝐴1 ⊗𝐸0
𝐴2

Common secret: the dimension 4 abelian variety 𝐴1 ⊗𝐸0
𝐴2

Damien Robert The module action on abelian varieties 31 / 35



The module action for isogeny based cryptography

Proposition (Higher dimensional CSIDH via the monoidal action)

𝐴0 𝐴1 = 𝑀1 ⋅ 𝐴0

𝐴2 = 𝑀2 ⋅ 𝐴0 𝐴12 = (𝑀1 ⊗𝑅 𝑀2) ⋅ 𝐴0

Ifdim𝐴0 = 𝑔0, rank𝑀1 = 𝑔1, rank𝑀2 = 𝑔2, thendim𝐴12 = 𝑔0𝑔1𝑔2.

/ Acting by rank 𝑔 projective modules increase the dimension if 𝑔 > 1
, Protects (hopefully!) from Kuperberg

Security: Action-DDH ≤ Action-CDH ≤ Action-Inversion

Action-Inversion ≈ HomModule-Inversion
Indeed, if 𝑀 = Hom𝑅(𝐴, 𝐸0), then 𝐴 = 𝑀 ⋅ 𝐸0

Recall that, thanks toWeil’s restriction, Module-Inversion on supersingular abelian surfaces over 𝔽𝑝 is at least as hard as

solving the supersingular isogeny path problem over 𝔽𝑝2

Action-CDH: Hope for exponential quantum security when 𝑔 > 1
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Computing the symmetric monoidal action

𝑀1 projective of rank 𝑔, 𝐴1 = 𝑀1 ⋅ 𝐸0
We want to compute 𝑀1 ⋅ 𝐴2 for an 𝑅-oriented 𝐴2 (with effective 𝑅-orientation)
General idea: look at how we construct 𝐴1 = 𝑀1 ⋅ 𝐸0 from 𝐸0, and apply the same recipe replacing
𝐸0 by 𝐴2.

The smooth case:

Suppose we can construct a smooth similitude 𝑅𝑔 ⊂ 𝑀1 (by duality, this is equivalent to
constructing a smooth isogeny 𝐸𝑔

0 → 𝐴1), this gives us a smooth similitude 𝐴𝑔
2 → 𝑀1 ⋅ 𝐴2

Via the orientation, we can transpose the kernel of 𝐸𝑔
0 → 𝐴1 to the kernel of 𝐴𝑔

2 → 𝑀1 ⋅ 𝐴2. The
codomain gives us 𝑀1 ⋅ 𝐴2

Similar to the usual way the CSIDH action is computed

The general case:

If instead 𝐴1 is computed via Clapoti(s), splitting an appropriate endomorphism on 𝐸𝑔1
0

Then we can compute 𝑀1 ⋅ 𝐴2 by splitting an appropriate endomorphism on 𝐴𝑔1
2

/ Needs to work in dimension 2𝑔1𝑔2

Damien Robert The module action on abelian varieties 32 / 35



Computing the symmetric monoidal action: the smooth case

𝑅𝑔 𝑀1 ⇔ 𝐸𝑔
0 𝐴1

𝑀𝑔
2 𝑀1 ⊗𝑅 𝑀2 𝐴𝑔

2 𝐴1 ⊗𝐸0
𝐴2 = 𝑀1 ⋅ 𝐴2

Proposition (Computing projective module actions: the smooth case)

If𝐸𝑔
0 ↠ 𝐴1 ⇔ 𝑀1 ↪ 𝑅𝑔, we can compute𝐴1 ⊗𝐸0

𝐴2 as the quotient of𝐴𝑔
2 = 𝐸𝑔

0 ⊗𝐸0
𝐴2 given by

the kernel𝐾 ⊂ 𝐴𝑔
2 induced by𝑀1 ⊗ 𝑀2 ↪ 𝑅𝑔 ⊗ 𝑀2: if𝑀1 is generated by (𝑚1, … , 𝑚𝑛), and

𝑚𝑖 = (𝛼𝑖1, … , 𝛼𝑖𝑔) ∈ 𝑅𝑔, then𝐾 = 𝐴𝑔
2[𝑚1 ⊗ 𝑀2, … , 𝑚𝑛 ⊗ 𝑀2] and

𝐴𝑔
2[𝑚𝑖 ⊗ 𝑀2] = Ker𝐴𝑔

2
(𝛼𝑖𝑗)−−−→ 𝐴2

Corollary (Computing the action in practice)

If𝐴1 is the quotient of𝐸𝑔
0 by𝐸𝑔

0[𝑚1, … , 𝑚𝑛], where
𝐸𝑔

0[𝑚𝑖] = Ker(𝐸𝑔
0 → 𝐸0, (𝑃1, … , 𝑃𝑔) ↦ ∑ 𝛼𝑖𝑗𝑃𝑗)

Then𝐴1 ⊗𝐸0
𝐴2 is the quotient of𝐴𝑔

2 by𝐴𝑔
2[𝑚1 ⊗ 𝑀2, … , 𝑚𝑛 ⊗ 𝑀2], where

𝐴𝑔
2[𝑚𝑖 ⊗ 𝑀2] = Ker(𝐴𝑔

2 → 𝐴2, (𝑃1, … , 𝑃𝑔) ↦ ∑ 𝛼𝑖𝑗𝑃𝑗)

And if𝐸𝑔
0 → 𝐴1 is a𝑁-isogeny,𝐴𝑔

2 → 𝐴1 ⊗𝐸0
𝐴2 is a𝑁-isogeny
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Computing the symmetric monoidal action: the smooth case
Commutative diagram:

𝑅𝑔1 ⊗𝑅 𝑅𝑔2 𝑀1 ⊗𝑅 𝑅𝑔2 ⇔ 𝐸𝑔1
0 ⊗𝐸0

𝐸𝑔2
0 ≃ 𝐸𝑔1𝑔2

0 𝐴1 ⊗𝐸0
𝐸𝑔2

0 ≃ 𝐴𝑔2
1

𝑅𝑔1 ⊗𝑅 𝑀2 𝑀1 ⊗𝑅 𝑀2 𝐸𝑔1
0 ⊗𝐸0

𝐴2 ≃ 𝐴𝑔1
2 𝐴1 ⊗𝐸0

𝐴2

Pairing analogy: ⊗𝐸0
= categorified bilinear map

Assume we don’t know how to compute 𝑒(𝑃1, 𝑃2) for general 𝑃1, 𝑃2, but we know 𝑒(𝑃0, 𝑃2). Then if 𝑃1 = 𝑚𝑃0, we can
compute 𝑒(𝑃1, 𝑃2) = 𝑒(𝑃0, 𝑃2)𝑚

Here we use that 𝐸𝑔
0 ⊗𝐸0

𝐴2 ≃ 𝐴𝑔
2 and our known path 𝐸𝑔

0 ↠ 𝐴1.

Monoidal actions for isogenies
𝑀′

1 ↪ 𝑀1 ↪ 𝑅𝑔 ⇔ 𝐴𝑔
2 ↠ 𝑀1 ⋅ 𝐴2 ↠ 𝑀′

1 ⋅ 𝐴2 ⇒recover it via the isogeny factorisation:
𝐴𝑔

2[𝑀1 ⊗𝑅 𝑀2] ⊂ 𝐴2
𝑔[𝑀′

1 ⊗𝑅 𝑀2]
If 𝐴2 → 𝐴′

2, then we recover 𝑀1 ⊗𝑅 𝐴2 → 𝑀1 ⊗𝑅 𝐴′
2 via isogeny division:

𝐴𝑔
2 𝑀1 ⋅ 𝐴2

𝐴′
2

𝑔 𝑀1 ⋅ 𝐴′
2
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Computing the symmetric monoidal action: the general case

𝐸𝑔
0 𝐴1 𝐸𝑔

0

𝐴𝑔
2 𝐴1 ⊗𝐸0

𝐴2 𝐴𝑔
2

Proposition (Computing projective module actions: the general case)

Assume𝐴1 is constructed from𝐸1 via Clapoti(s), i.e. constructing a𝑁1 and𝑁2-similitude𝑅𝑔 ↪ 𝑀1, and
then splitting the induced𝑁1𝑁2-endomorphism𝛾 ∶ 𝐸𝑔

0 → 𝐸𝑔
0. So𝛾 is given by an explicit matrix in

𝑀𝑔(𝑅).
Then𝛾 ⊗𝐸0

Id𝐴2
is the samematrix acting as an endomorphism𝐴𝑔

2 → 𝐴𝑔
2 via the𝑅-orientation, and

splitting this𝑁1𝑁2-endomorphism gives𝐴1 ⊗𝐸0
𝐴2.
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⊗-MIKE

𝐸0 𝐸1

𝐸2 𝑊𝔽2
𝑝/𝔽𝑝

𝐸1 ⊗𝐸0
𝑊𝔽2

𝑝/𝔽𝑝
𝐸2

Start with our good old friend 𝐸0/𝔽𝑝 supersingular (with 𝑝 e.g. the SQISign2d prime)
Alice and Bob compute (smooth or not) isogenies over 𝔽𝑝2 : 𝐸0 → 𝐸1, 𝐸0 → 𝐸2
They send 𝑗(𝐸1), 𝑗(𝐸2): no torsion information!
Validation: check that 𝐸𝑖 is supersingular
The common key is the dimension 4 ppav 𝐴12 ≔ 𝑊𝔽2

𝑝/𝔽𝑝
𝐸1 ⊗𝐸0

𝑊𝔽2
𝑝/𝔽𝑝

𝐸2
Alice can compute it by converting her isogeny 𝐸0 → 𝐸1 to the module map representing
𝐸2

0 = 𝑊𝔽2𝑝/𝔽𝑝
𝐸0 → 𝑊𝔽2𝑝/𝔽𝑝

𝐸1 and then applying the module action to 𝑊𝔽2𝑝/𝔽𝑝
𝐸2.

The smooth case requires a dimension 4 isogeny, and the non smooth case requires splitting a dimension 4 endomorphism,

so a dimension 8 isogeny…

Size: 𝑝 = 2𝜆, 𝑗(𝐸𝑖) = 2 log2(𝑝) = 4𝜆: 64B. Very compact!
NIKE. PKE a la ElGamal/SiGamal

N Need good dimension 4 modular invariants to represent 𝐴12 (e.g. suitable symmetric
polynomials in the theta constants?)

N Security? Action-CDH on supersingular abelian surfaces coming from theWeil restriction of elliptic curves
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⊗-MIKE

𝐸0 𝐸1

𝐸2 𝑊𝔽2
𝑝/𝔽𝑝

𝐸1 ⊗𝐸0
𝑊𝔽2

𝑝/𝔽𝑝
𝐸2

Example of parameters:

𝑝 = 𝑢2𝑒 − 1. Ex: 𝑝 = 5 ⋅ 2248 − 1.
Alice and Bob each compute a 2𝑒-isogeny from 𝐸0 over 𝔽𝑝2

Then the common key requires computing a 2𝑒-isogeny in dimension 4 over 𝔽𝑝

Unfortunately, for the dimension 4 isogeny, the theta null point will only be defined over 𝔽𝑝2 , so
our known isogeny formulas will require to work over 𝔽𝑝2 for the dimension 4 isogeny too

Solution: use Scholten’s construction 𝑊′
𝔽2/𝔽𝑝

instead of theWeil restriction

Start with 𝐸0 at the bottom of the 2-volcano, End(𝐸0) = 𝑅 = ℤ[√−𝑝]
The climbing 2-isogeny is given by 𝐸0 → 𝔣𝐸0, 𝔣 the conductor ideal in 𝑂𝑅 = ℤ[(1 + √−𝑝)/2]
𝑊′

𝔽𝑝2/𝔽𝑝
𝐸 = 𝔣𝑊𝔽𝑝2/𝔽𝑝

𝐸 ⇒ explicit construction in term of modules

Special case: If 𝐸0 ∶ 𝑦2 = 𝑥3 + 𝑥, 𝐸′
0 ∶ 𝑦2 = 𝑥3 − 𝑥 is its quartic twist, and 𝑊′

𝔽𝑝2/𝔽𝑝
𝐸′

0 = 𝐸′
0

2
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⊗-MIKE

𝐸0 𝐸1

𝐸2 𝑊𝔽2
𝑝/𝔽𝑝

𝐸1 ⊗𝐸0
𝑊𝔽2

𝑝/𝔽𝑝
𝐸2

Example of parameters:
𝑝 = 𝑢2𝑒 − 1. Ex: 𝑝 = 5 ⋅ 2248 − 1.
Alice and Bob each compute a 2𝑒-isogeny from 𝐸0 over 𝔽𝑝2 NNN
Then the common key requires computing a 2𝑒-isogeny in dimension 4 over 𝔽𝑝

I am beginning to have serious doubts about the security of action-CDH when both isogenies
have the same degree 2𝑒

Solution: take coprime degrees
/ Unfortunately this slows down the scheme

Either we use 2𝑒 and 3𝑓-isogenies like in SIDH, but this requires to double the size of 𝑝 to obtain
the required torsion, so this double the key size. And a 3-isogeny in dimension 4 is going to be
≈ 5× slower than a 2-isogeny
Or we build our isogenies via Clapotis, splitting an appropriate dimension 1 supersingular
endomorphism. The good new is that our curves 𝐸𝑖 will be statically uniform. The bad new is that
computing the key exchange will require splitting a dimension 4 endomorphism, hence involves
a dimension 8 isogeny, for a ≈ 32× slow down.
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