Isogeny based cryptography: from the fall of SIKE to the rise of higher dimensional isogenies
2024/02/22 - Workshop Inria - University of Waterloo - Université de Bordeaux

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

université
 *BORDEAUX

Classical public key cryptography

- One way function:
- Multiplication: $p, q \mapsto p q$, vs Factorisation
- Exponentiation in an elliptic curve: $n \mapsto n \cdot P$, vs Discrete Logarithm
() Everybody can encrypt
(:) Nobody can decrypt

Classical public key cryptography

- Trapdoor one way function
- Multiplication: $p, q \mapsto p q$, vs Factorisation
- Exponentiation in an elliptic curve: $n \mapsto n \cdot P$, vs Discrete Logarithm
() Everybody can encrypt
() The secret trapdoor allows to decrypt

Elliptic curves vs RSA

- RSA 2048 bits: ssh-rsa

AAAAB3NzaC1yc2EAAAADAQABAAABgQC1c6zqJctqMRoYWVjovfPzwKGoFgv8j6y1W6f2zGbv0if 9hdw6X1u+ooI6IwkQWr9kPrM8xl9EJ/Q1ajeESPknLUHkqrVmrfFrYsyr6DKDapdAztCfT72IXy 4Fq12PzPKTfUw67vZTqEsGH2L5x0kYrWD+P/vA/+CQpwjMq9IZ7GRE2Yf6EHpcV6ifDqRSVlyGN z/NzBDWBQNxdCORI7DG+L3tV0x0DJKqXbvw/edVo6StAiWr0b67SYrxeUMhmvLgqFWWtq9Gayt/ 4bLotah081RBUqVNQr9bSaLTY0ke/sEi0eHxiXfG3Uh7fLkVWYd+mwDcyRBGReNAik6u4ZKcCCU y7P9UXuhLnBGpzjhUu/zuqckBR4NJDx+icq37cni1S9Aa0/ftb8L2ryGRMeiy89HPYhQBPzBaif xpQ7XA6Vyv8VhE5an9Bewv7spHtQ50xlXkAu6BJtNcIwbt601Wu6PuXDAc4gnyqa1MI3XIh36oE ONIwRrrqvig0mixl0k=

- ECC 256 bits: ssh-ed25519

AAAAC3NzaC1lZDI1NTE5AAAAIFQD0TtvWadRfCXTXuT2pT7E5KWJZjPH4g0JyWvmiSJm
© ECC: very fast and compact
(:) Signatures: 64B. Pairings: 32B
(:) ECC and RSA broken by quantum computers [Shor 1994]

- NIST post-quantum call (2017), further call for post-quantum signatures (2023)

Diffie-Hellmann Key Exchange

- $P \in G$ an abelian group, e.g. $G=E\left(\mathbb{F}_{q}\right)$ an elliptic curve
- Alice: $P_{A}=a \cdot P$,
- Bob: $P_{B}=b \cdot P$,
- Common secret key: $S=a b \cdot P=b a \cdot P$.

Post-quantum Diffie-Hellman Key exchange:

- Noisy version (codes, lattices)
(2) Group action: commutative group G acting on $X(a, b \in G, P \in X)$.

Key exchange on a (commutative) graph

Key exchange on a (commutative) graph

Alice starts from ' a ', follows the path 001110 , and get ' w '.

Key exchange on a (commutative) graph

Bob starts from 'a', follows the path 101101, and get 'I'.

Key exchange on a (commutative) graph

Alice starts from ' 1 ', follows the path 001110, and get ' g '.

Key exchange on a (commutative) graph

Bob starts from ' w ', follows the path 101101, and get ' g '.

Key exchange on a (commutative) graph
The full exchange:

Key exchange on a (commutative) graph

Bigger graph (62 nodes)

Isogeny based cryptography: from the fall of SIKE to the rise of hi

Key exchange on a (commutative) graph

Even bigger graph (676 nodes)

Commutative isogeny graphs for key exchange

- Needs a graph with good mixing properties:

A path of length $O(\log N)$ gives a uniform node \Rightarrow Ramanujan/expander graph.

- Does not fit in memory $\left(N=2^{256}\right)$.
\Rightarrow Needs an algorithm taking a node as input and giving the neighbour nodes as output.

Isogeny based cryptography
(;) Post-quantum
(-) Compact keys. SQISign signatures $=177$ Bytes (Lattices 666B-2420B)
(2) Slow. SQISign (NIST submission): Signature $=550 \mathrm{~ms}$, Verification $=8 \mathrm{~ms}$
(-) Very new field (<10 years)
(:) Flagship protocol SIKE (post quantum key exchange) broken in 2022.

This talk:

- Recent advances since 2022
- How to improve the efficiency of isogeny based cryptography
- SQISignHD: Signatures of 109 Bytes in 28 ms [Dartois, Leroux, R., Wesolowski 2023]

Isogeny graph of elliptic curves $E / \mathbb{F}_{q} \quad$ (Graph of size $N \approx \sqrt{q}$):

Ordinary (or oriented) elliptic curves $E / \mathbb{F}_{p} \quad$ [Couveignes (1997)], [Rostovtsev-Stolbunov (2006)]
(). Key exchange from a commutative group action of G on X :
$G=\mathrm{Cl}(\operatorname{End}(E)), X=$ \{oriented elliptic curves $\}$
© Signatures, PRFs, threshold signatures, oblivious signatures...
(3) Hidden shift problem solvable in quantum subexponential $L(1 / 2)$ time for an abelian group action via Kuperberg's algorithm.

Supersingular isogeny graphs $E / \mathbb{F}_{p^{2}} \quad$ [De Feo, Jao, Plut 2011]

- Deuring's correspondance: supersingular isogenies = ideals in non commutative quaternion algebras
(3) Isogeny path problem: exponential quantum security (best known algorithm in $\widetilde{O}\left(p^{1 / 2}\right)$)
© No commutative group action anymore

Isogeny based cryptography

Dimension 1 isogenies

- $E: y^{2}=x^{3}+A x^{2}+x, T=\left(u:{ }_{-}: v\right) \in E[2]$
- Isogeny: $E \rightarrow E^{\prime}=E /\langle T\rangle,\left(X::_{-}: Z\right) \rightarrow\left(X(u X-v Z):_{_}: Z(v X-u Z)\right)$ of degree 2 . $E^{\prime}: y^{2}=x^{3}+A^{\prime} x^{2}+x, A^{\prime}=\frac{2\left(v^{2}-2 u^{2}\right)}{v^{2}}$
(-) Isogeny of large degree 2^{n} : decomposes as n isogenies of degree 2
© Isogeny of large prime degree ℓ : no such decomposition!
(2) Inefficiencies, Restricted group action

Commutative group action:

- CRS, CSIDH: key exchange
- SiGamal: public key encryption
- SeaSign, CSI-Fish, signatures

Supersingular isogenies:

- SIDH/SIKE, BSIDH, k-SIDH, SHealS: key exchange
- Séta: public key encryption
- SQISign: signatures via the effective Deuring correspondance

The Break

- 2011 [De Feo, Jao, Plût]: SIDH (Supersingular Isogeny Key-Exchange)
- 2017: SIKE (Supersingular Isogeny Key Encapsulation) submitted to NIST's PQC competition
- 2022-07-05: SIKE goes to fourth round

The Break

- 2011 [De Feo, Jao, Plût]: SIDH (Supersingular Isogeny Key-Exchange)
- 2017: SIKE (Supersingular Isogeny Key Encapsulation) submitted to NIST's PQC competition
- 2022-07-05: SIKE goes to fourth round
- 2022-07-30: [Castryck, Decru], "An efficient key recovery attack on SIDH"

Heuristic polynomial break on a special supersingular curve, using dimension 2 isogenies

- 2022-08-08: [Maino, Martindale], "An attack on SIDH with arbitrary starting curve" Heuristic subexponential break on any supersingular curve, using dimension 2 isogenies
- 2022-08-10: [R.], "Breaking SIDH in polynomial time"

Proven polynomial break on any supersingular curve, using dimension 2,4 or 8 isogenies

Remaining isogeny based cryptosystems after the break

Commutative group action:

- CRS, CSIDH: key exchange
- SiGamal: public key encryption
- SeaSign, CSI-Fish, signatures

Supersingular isogenies:

- SIDH/SHE,BSIDH,k-SIDH,SHeals: key exchange
- Séta: public key encryption
- SQISign: signatures via the effective Deuring correspondance

The rise of higher dimensional isogenies

- [R. 2022] embedding lemma: any isogeny of large degree can be decomposed into a product of isogenies of small degree by going to higher dimension ($g=8$ and sometimes $g=4$ or $g=2$).
() Considerable flexibility
(3) New algorithmic tools: canonical lifts, dividing an isogeny, point counting, endomorphism rings...[R. 2022]
(-) Algorithms for higher dimensional isogenies (of small degree) less understood than in dimension 1
- [Lubicz, R. et al.] 15+ years of work
- AVIsogenies [Bisson, Cosset, R.]: software to compute any N-isogeny in any dimension
- [Dartois, Maino, Pope, R. 2023]: $10 \times$ speed up for 2^{n}-isogenies in dimension 2. Low level constant time Rust implementation: $40 \times$ speed-up ($400 \times$ speed up in total!)
- A 2^{126}-isogeny in dimension 2 over a field of 500 bits in 2.85 ms

The current state of isogeny based cryptography

Commutative group action:

- CRS, CSIDH, SeaSign, CSI-Fish, SCALLOP (dimension 1)
- SCALLOP-HD (dimension 2)

CLAPOTIS [Page-R. 2023] (dimension 2 or 4): unrestricted group action!
Supersingular isogenies:

- Key exchange: M-SIDH, ter-SIDH (dimension 1), IS-CUBE (dimension 2)
- Public key cryptography: FESTA, QFESTA, FESTA-HD (encryption in dimension 1 or 2, decryption in dimension 2 or 4)
- Signatures: SQISign (dimension 1)

SQISignHD [Dartois, Leroux, R., Wesolowski 2022] (signature in dimension 1 or 2, verification in dimension 2 or 4)
Signatures of 109 bytes in 28 ms , Better security proof, Upcoming: faster verification

- VRFs (Evaluation in dimension 1 or 2, Verification in dimension 2 or 4)

Future directions:

- Extremely recent (1 year), still finding new ways to exploit higher dimensional isogenies
- Challenge: exploit higher dimensional isogeny graphs

