Finding a supersingular isogeny path with only one isogeny computation 2023/04/25 — Eurocrypt Rump Session, Lyon

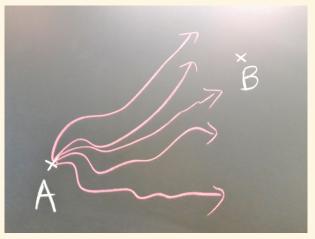
Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Goal

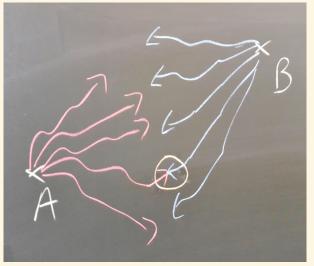
- Luca¹ wants to compute a bicycle path between Zürich and Lyon
- He is only allowed to do one isogeny request!

Existing algorithms



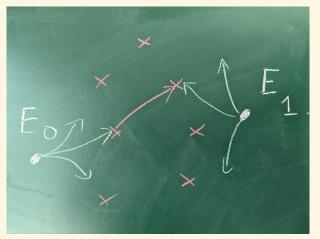
Depth search

Existing algorithms



Meet in the middle

Existing algorithms



Special points

Damien Robert

A solution

- \bullet $E, E'/\mathbb{F}_{p^2}$ two supersingular curves ($p \approx$ 256 bits)
- Goal: find a 2^e -isogeny $\phi: E_1 \to E_2$
- $E_{\lambda}: y^2 = x(x-1)(x-\lambda)$ (Legendre)
- $A = \prod_{\lambda \in \mathbb{F}_{n^2} \{0,1\}} E_{\lambda}$
- ullet $K\subset A[2]$ generated by the 2-torsion points (0,0) on each E_λ
- $\Phi: A \to B = A/K$ encodes the full supersingular 2-isogeny graph!

Complexity

- \bullet Computing a 2-isogeny in dimension $\approx 2^{512}$ may seem expensive
- Good news! Restricting to $A=\prod E_\lambda$ with E_λ supersingular we are only in dimension $\approx 2^{256}$
- ullet The point (0,0) on E_λ and on $E_{1/\lambda}$ encode the same isogeny
- ⇒ Gains a factor two!

To infinity and beyond

Abelian scheme of unbounded dimension:

$$A = \prod_{p} \prod_{\lambda \in \mathbb{F}_{p^2} - \{0,1\}} E_{\mathbb{F}_{p^2},\lambda}$$

• A single 2-isogeny encode all supersingular 2-isogeny graphs over all primes

Success?

Slogan: higher dimensional isogeny = the ability to put your bike in a train!

