Isogenies between abelian varieties – an algorithmic survey
2022/09/21 — Isogeny days, Leuven

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest
Outline

1 Motivations

2 Polarised abelian varieties

3 Isogenies and polarisations

4 Algorithms for isogenies
Postdoc

- The ANR CIAO is looking for a one year postdoc in Bordeaux
 https://anr.fr/Projet-ANR-19-CE48-0008
- Topics: anything related to isogeny based cryptography
- Position available until 2024-04 (should be extendable by 6 months)
- Email: http://www.normalesup.org/~robert/pro/infos.html
Outline

1. Motivations
2. Polarised abelian varieties
3. Isogenies and polarisations
4. Algorithms for isogenies
Usage of isogenies

- Speed up the arithmetic (eg split the multiplication by $[2]$ or $[3]$);
- Determine $\text{End}(A)$ (volcano...);
- Point counting algorithms (ℓ-adic or p-adic: SEA, Satoh ...)
 - Publicity: [Kieffer 2021] SEA like algorithm in $\widetilde{O}_K(\log^4 q)$ for abelian surfaces with RM by O_K.
- Compute class polynomials (CM-method)
- Compute modular polynomials
- Arithmetic for \mathbb{F}_q: construct normal basis of a finite field, irreducible polynomials, automorphism invariant smoothness basis [Couveignes-Lercier]…
- Find curves with many points
- Explore isogeny graphs (eg find a component with no Jacobians in dimension 4)
- Evaluate modular forms
Isogenies in classical cryptography

- Discrete Logarithm Problem, Pairings
- Transfer the DLP (Weil descent…)
- Reduce the impact of side channel attacks
- Random self reducibility, worst case to average case reductions.
Isogeny based cryptography

- Hash functions
- Key exchange (SIDH, CSIDH)
- Signatures (SQISign)
Higher dimensional isogenies?

- **Classical cryptography**: dimension 1 and 2. A bit in dimension 3 (class polynomials).
- **Isogeny based cryptography**: dimension 1 (hash functions in dimension 2 too).
- So mainly for algorithmic number theory (descent…)
- Certainly no use for **elliptic curve** based cryptosystems.
Higher dimensional isogenies?

- **Classical cryptography**: dimension 1 and 2. A bit in dimension 3 (class polynomials).
- **Isogeny based cryptography**: dimension 1 (hash functions in dimension 2 too).
- So mainly for algorithmic number theory (descent…)
- Certainly no use for **elliptic curve** based cryptosystems.
The embedding lemma

- A N-isogeny $f : A \to B$ in dimension g can always be efficiently embedded into a N' isogeny $F : A' \to B'$ in dimension $8g$ (and sometimes $4g, 2g$) for any $N' \geq N$.

$$
\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow \quad \uparrow \\
A' \xrightarrow{F} B'
\end{array}
$$

- Considerable flexibility (at the cost of going up in dimension).
The embedding lemma

- A N-isogeny $f : A \rightarrow B$ in dimension g can always be efficiently embedded into a N' isogeny $F : A' \rightarrow B'$ in dimension $8g$ (and sometimes $4g, 2g$) for any $N' \geq N$.

\[F = \begin{pmatrix}
 a_1 & -a_2 & -a_3 & -a_4 & \hat{f} & 0 & 0 & 0 \\
 a_2 & a_1 & a_4 & -a_3 & 0 & \hat{f} & 0 & 0 \\
 a_3 & -a_4 & a_1 & a_2 & 0 & 0 & \hat{f} & 0 \\
 a_4 & a_3 & -a_2 & a_1 & 0 & 0 & 0 & \hat{f} \\
 -f & 0 & 0 & 0 & a_1 & a_2 & a_3 & a_4 \\
 0 & -f & 0 & 0 & -a_2 & a_1 & -a_4 & a_3 \\
 0 & 0 & -f & 0 & -a_3 & a_4 & a_1 & a_2 \\
 0 & 0 & 0 & -f & -a_4 & -a_3 & a_2 & a_1
\end{pmatrix}

- Considerable flexibility (at the cost of going up in dimension).

- Write $N' - N = a_1^2 + a_2^2 + a_3^2 + a_4^2$.
The embedding lemma

- A N-isogeny $f : A \rightarrow B$ in dimension g can always be efficiently embedded into a N' isogeny $F : A' \rightarrow B'$ in dimension $8g$ (and sometimes $4g, 2g$) for any $N' \geq N$.

\[A \xrightarrow{f} B \\
\uparrow \quad \quad \quad \quad \quad \uparrow \\
A' \xrightarrow{F} B' \]

- Considerable flexibility (at the cost of going up in dimension).

- Breaks SIDH ([Castryck-Decru], [Maino-Martindale] in dimension 2, [R.] in dimension 4 or 8) ⇒ if $N_A > N_B$, take $N' = N_A, N = N_B$

The dimension 8 attack is in proven quasi-linear time, see http://www.normalesup.org/~robert/pro/publications/slides/2022-09-Bordeaux-SIDH.pdf for details.

- An isogeny always have a representation allowing evaluation in polylogarithmic time $\log^{O(1)} N$

[R.] ⇒ take $N' \geq N$ powersmooth.

(Finding this representation takes quasi-linear time.)
The embedding lemma

SIDH

2011-2022
Isogeny diamonds

- \(f_1 : A \to A_1 \) \(n_1 \)-isogeny, \(f'_1 : A_1 \to B \) \(n'_1 \)-isogeny, \(f_2 : A \to A_2 \) \(n_2 \)-isogeny, \(f'_2 : A_2 \to B \) \(n'_2 \)-isogeny, \(f'_2 \circ f_2 = f'_1 \circ f_1 \).

- \(F = \begin{pmatrix} f_1 & \tilde{f}'_1 \\ -f_2 & \tilde{f}'_2 \end{pmatrix} \) is an \(\begin{pmatrix} n_1 + n_2 & 0 \\ 0 & n'_1 + n'_2 \end{pmatrix} \)-isogeny.

- **Isogeny diamonds**: If \(n'_1 = n_2 \) (so \(n'_2 = n_1 \)), \(F \) is an \(N \)-isogeny where \(N = n_1 + n_2 \) ([Kani] for \(g = 1 \), [R.] for \(g > 1 \)).
Algorithms for N-isogenies

Jacobian model:

- Vélu’s formula for elliptic curves [Vélu 1971]
- [Kohel, 1999]: Vélu’s formula from equations of K;
- [Richelot, 1836, 1837]: 2-isogenies between Jacobians of genus 2 hyperelliptic curves, [Mestre 2013] for general g;
- Various explicit formula for small degree isogenies in dimension 2;
- [Smith 2008]: 2-isogenies for quartic genus 3 curves;
- [R. 2007]: the analog of Vélu’s formula for genus 2 does not seem to work?
- [Couveignes-Ezome (2015)]: Algorithm in $\widetilde{O}(N^g)$ in the Jacobian model (complete algorithm for $g = 2$, [Milio 2019] for $g = 3$).
- Restricted to $g \leq 3$.

Damien Robert
Algorithms for \(N\)-isogenies

Jacobian model:
- Vélu’s formula for elliptic curves [Vélu 1971]
- [Couveignes-Ezome (2015)]: Algorithm in \(\tilde{O}(N^g)\) in the Jacobian model (complete algorithm for \(g = 2\), [Milio 2019] for \(g = 3\)).

Theta model:
- 2-isogenies: duplication formula for theta functions [Riemann ?]
- [Lubicz-R. 2012]: \(\ell^2\)-isogenies between abelian varieties in \(O(\ell^g)\) and \(\ell^g(g+1)/2\) \(\ell\)-th roots.
 This corresponds to taking an \(\ell\)-isogeny, and then each choice of roots prolongs this \(\ell\)-isogeny into a different \(\ell^2\)-isogeny (we get all \(\ell^2\)-isogenies whose kernel stays of rank \(g\)), see also [Castryck, Decru, Vercauteren] work on radical isogenies.
- [Cosset-R. (2014)]: \(\ell\)-isogenies in \(O(\ell^g)\) if \(\ell \equiv 1 \pmod{4}\), \(O(\ell^{2g})\) if \(\ell \equiv 3 \pmod{4}\);
- [Lubicz-R. (2022)]: An \(N\)-isogeny in dimension \(g\) can be evaluated in linear time \(O(N^g)\) arithmetic operations in the theta model given generators of its kernel.
- **Warning**: exponential dependency \(2^g\) or \(4^g\) in the dimension \(g\).
- [Lubicz-R. (2015)]: isogenies from equations of the kernel
- [Dudeanu, Jetchev, R., Vuille (2022)]: cyclic isogenies for abelian varieties with RM.
Outline

1. Motivations

2. Polarised abelian varieties

3. Isogenies and polarisations

4. Algorithms for isogenies
Polarised abelian varieties over \(\mathbb{C} \)

Definition

A complex abelian variety \(A \) of dimension \(g \) is isomorphic to a compact Lie group \(V / \Lambda \) with

- A complex vector space \(V \) of dimension \(g \) (linear data);
- A \(\mathbb{Z} \)-lattice \(\Lambda \) in \(V \) (of rank \(2g \)) (arithmetic data);
- A polarisation (quadratic data)

Example

- A vector space \(V \cong \mathbb{C}^g \) is described by a basis;
- A lattice \(\Lambda = \Omega \mathbb{Z}^g \oplus \mathbb{Z}^g \) is described by a period matrix \(\Omega \);
- The quotient \(\mathbb{C}^g / \Lambda \) is a torus. It is not an abelian variety in general!
- The moduli space of torus is of dimension \(g^2 \).
- If \(\Omega \in \mathcal{H}_g \), \(H = \text{Im} \Omega^{-1} \) is a principal polarisation.
- The moduli space of abelian varieties is of dimension \(g(g + 1)/2 \).
- NB: when \(g = 1 \) both spaces have dimension 1.
A = V / Λ. A polarisation on A is:

- An Hermitian form H on V with $\text{Im} \ H(\Lambda, \Lambda) \subset \mathbb{Z}$;
- A symplectic form E on H with $E(\Lambda, \Lambda) \subset \mathbb{Z}: E = \text{Im} \ H$
- A (symmetric) morphism $\Phi : A \to \widehat{A}$: $\Phi = \Phi_H : z \mapsto H(z, \cdot) \in \widehat{A} = \text{Hom}_\mathbb{C}(V, \mathbb{C})$
- (The algebraic equivalence class of) a divisor \mathcal{D} [Apell-Humbert].
To work algorithmically with an abelian variety, we need (projective) coordinates \(u_1, \ldots, u_m \);

A point \(P \in A \) is represented by its coordinates \((u_1(P) : \cdots, u_m(P)) \).

Coordinates are given by sections of (very ample) divisors;

Linearly equivalent divisors \(D \simeq D' \) give isomorphic coordinates;

\(\text{Pic}(A) \): divisors modulo linear equivalence.

\(D \sim D' \) are algebraically equivalent \(\iff \) \(D' \) is linearly equivalent to a translate of \(D \), ie \(D' \simeq t_x D \) (if \(D \) is ample);

\(D' \simeq t_x D \Rightarrow D' \sim D \) and the converse is true if \(\Phi_D \) is surjective, ie the polarisation is non degenerate.

Algebraically equivalent divisors = same coordinates up to translation;

\(\text{Néron-Severi group} \ NS(A) = \text{Pic}(A)/\text{Pic}^0(A) \): divisors modulo algebraic equivalence.

More precisely: \(NS(A) \) is the fppf sheaf associated to the functor \(\text{Pic}(A)/\text{Pic}^0(A) \). Here \(\text{Pic}^0(A) \) is the connected component of the Picard group, it corresponds to divisors algebraically equivalent to 0, or equivalently to divisors \(D_0 \) such that \(\Phi_{D_0} = 0 \), ie \(t_P^* D_0 \simeq D_0 \) for all \(P \in A \).

So an algebraic class \(\lambda = [D] \) may be rational with no representative \(D \) defined over \(k \). This does not happen when \(k = \mathbb{F}_q \), representatives form a torsor under \(\widehat{A} = \text{Pic}^0(A) \), and this torsor is trivial, ie has a section, since \(H^1(\mathbb{F}_q, \widehat{A}) = 0 \).

In general, the pullback \(D' = (1 \times \lambda)^* P \) of the Poincaré sheaf satisfy \(\Phi_{D'} = 2\lambda \), so \(2\lambda \) is always represented by a rational divisor.
Facets of polarisations

Polarisation $\lambda =$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \hat{A}$.
 $\lambda = \Phi_{\Theta} : A \to \hat{A}, P \mapsto t_P^* \Theta - \Theta$.
 $\text{Ker } \lambda \simeq (\mathbb{Z}^g / D \mathbb{Z}^g)^2$ with $D = (d_1, \ldots, d_g), d_i \mid d_{i+1}$: λ is of type (d_1, \ldots, d_g).
 $\deg \Theta := \prod d_i$.
- a pairing $T_\ell A \times T_\ell A \to \mathbb{Z}(\ell) (1), (P, Q) \mapsto e_\lambda (P, Q) = e_A (P, \lambda Q)$;
Facets of polarisations

Polarisation $\lambda =$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \hat{A}$.
 \[\lambda = \Phi_\Theta : A \to \hat{A}, P \mapsto t_P^*\Theta - \Theta. \]
 \[\text{Ker } \lambda \cong (\mathbb{Z}^g / D\mathbb{Z}^g)^2 \text{ with } D = (d_1, \ldots, d_g), d_i \mid d_{i+1} : \lambda \text{ is of type } (d_1, \ldots, d_g). \]
 \[\text{deg } \Theta := \prod d_i. \]
- a pairing $T_\ell A \times T_\ell A \to Z(\ell)(1), (P, Q) \mapsto e_\lambda(P, Q) = e_A(P, \lambda Q)$;

The polarisation λ is

- Non degenerate if $\lambda : A \to \hat{A}$ is an isogeny;
- Positive if $\lambda = \Phi_\Theta$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.
Facets of polarisations

Polarisation $\lambda =$

- a divisor Θ up to algebraic equivalence;
- a (symmetric) morphism $\lambda : A \to \hat{A}$.

$\lambda = \Phi_{\Theta} : A \to \hat{A}, P \mapsto t_P^* \Theta - \Theta$.
Ker $\lambda \simeq (\mathbb{Z}^g/D\mathbb{Z}^g)^2$ with $D = (d_1, \ldots, d_g), d_i | d_{i+1}$: λ is of type (d_1, \ldots, d_g).

$\deg \Theta := \prod d_i$.

- a pairing $T_\ell A \times T_\ell A \to \mathbb{Z}(\ell)(1), (P, Q) \mapsto e_\lambda(P, Q) = e_A(P, \lambda Q)$;

The polarisation λ is

- Non degenerate if $\lambda : A \to \hat{A}$ is an isogeny;
- Positive if $\lambda = \Phi_{\Theta}$ and Θ is ample (\Rightarrow non degenerate).
- Principal if λ is (positive and) an isomorphism.

Example

If H polarisation on $A = V/\Lambda: H \simeq \begin{pmatrix} \lambda_1 & \cdots & 0 \\ 0 & \ddots & \lambda_g \end{pmatrix}, \lambda_i \in \mathbb{R}, E = \text{Im} H \simeq \begin{pmatrix} 0 & D \\ -D & 0 \end{pmatrix}$ with

$D = \begin{pmatrix} d_1 & \cdots & 0 \\ 0 & \ddots & \cdots \\ 0 & \cdots & d_g \end{pmatrix}$ on $\Lambda, d_1 | d_2 \cdots | d_g, \text{Ker } \Phi_H \simeq \Lambda^\perp/\Lambda \simeq (\mathbb{Z}^g/D\mathbb{Z}^g)^2$.

- H non degenerate $\iff \lambda_i \neq 0$;
- H positive $\iff \lambda_i > 0$;
Facets of polarisations

Polarisation \(\lambda = \)

- a divisor \(\Theta \) up to algebraic equivalence;
- a (symmetric) morphism \(\lambda : A \to \widehat{A} \).

\[
\lambda = \Phi_\Theta : A \to \widehat{A}, P \mapsto t_P^* \Theta - \Theta.
\]

\(\ker \lambda \simeq (\mathbb{Z}^g/D\mathbb{Z}^g)^2 \) with \(D = (d_1, \ldots, d_g), d_i | d_{i+1} : \lambda \) is of type \((d_1, \ldots, d_g) \).

\(\deg \Theta := \prod d_i. \)

- a pairing \(T_\ell A \times T_\ell A \to \mathbb{Z}(\ell)(1), (P, Q) \mapsto e_\lambda(P, Q) = e_A(P, \lambda Q); \)

The polarisation \(\lambda \) is

- Non degenerate if \(\lambda : A \to \widehat{A} \) is an isogeny;
- Positive if \(\lambda = \Phi_\Theta \) and \(\Theta \) is ample (\(\Rightarrow \) non degenerate).
- Principal if \(\lambda \) is (positive and) an isomorphism.

Coordinates: if \(\Theta \) is an ample divisor:

- \(\dim H^0(\Theta) = \Theta^g / g! = \deg \Theta, "degree" \) of the polarisation (Riemann-Roch).

So if \(\Theta \) is a principal polarisation, \(\dim H^0(N\Theta) = Ng^2. \)

More generally, if \(D \) is ample, \(\dim H^0(D) = \prod_{i=1}^g d_i = \deg D = \deg \Phi_D^{1/2} : \) the degree of the isogeny \(\Phi_D \) associated to \(D \) is the square of the “degree” of \(D \).

- \(3\Theta \) is very ample (Lefschetz).
- \(2\Theta \) descends to \(K_A = A/ \pm 1 \) if \(\Theta \) is a principal polarisation, and is very ample there if \(\Theta \) is indecomposable.
- \(2\Theta \) is very ample if it is base point free;
Jacobians

- C curve of genus g.
- $\text{Jac}(C) \cong \text{Pic}^0(C)$ its Jacobian.
- $\text{Jac}(C) \sim C^{(g)}$
- $\Theta_C = \{ \text{degenerate divisors on } C \}$ (the Theta divisor) is a principal polarisation on $\text{Jac}(C)$.
 Ex: when $g = 2$, $C \cong \Theta_C C \subset \text{Jac}(C)$.
- C is determined by $(\text{Jac}(C), \Theta_C)$ (Torelli)
 They have the same field of moduli, but if C is not hyperelliptic the field of definition of $(\text{Jac}(C), \Theta_C)$ can be smaller than the field of definition of C.
Example

- C/\mathbb{C} curve of genus g;
- V the dual of the space $V^\vee = H^0(C, \Omega^1_C)$ of holomorphic differentials of the first kind on C;
- $\Lambda \simeq H_1(C, \mathbb{Z}) \subset V$ the set of periods.

The Abel-Jacobi map Φ is the integration of differentials on loops: $H^0(C, \Omega^1_C) \times H_1(C, \mathbb{Z}) \rightarrow \mathbb{C}$, $(\omega, \gamma) \mapsto \int_\gamma \omega$; it induces $\Phi : H_1(C, \mathbb{Z}) \rightarrow \text{Hom}(H^0(C, \Omega^1_C), \mathbb{C})$ and Λ is the image of Φ.

By Poincare-Serre's duality: $\text{Alb}(C) \simeq H^0(C, \Omega^1_C)^\vee / H_1(C, \mathbb{Z}) \simeq H^0(C, \mathcal{O}_C) / H^1(C, \mathbb{Z}) \simeq H^1(X, \mathcal{O}_C^*) \simeq \text{Pic}^0(C) = \text{Jac}(C)$.

- The intersection pairing $H_1(C, \mathbb{Z}) \times H_1(C, \mathbb{Z}) \rightarrow \mathbb{Z}$ gives a symplectic form E on Λ;
- H the associated Hermitian form on V (via the integration pairing):

$$H^*(w_1, w_2) = \int_C w_1 \wedge w_2;$$

- $(V/\Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Damien Robert

Isogenies
Elliptic curves vs abelian varieties

E elliptic curve

- $D \mapsto \deg D$ induces an isomorphism $NS(E) \cong \mathbb{Z}$;
- $[(0_E)]:$ unique principal polarisation
- $E \cong \hat{E}$ via $P \mapsto (P) - (0_E)$
- $\Gamma(0_E) = \langle 1 \rangle, \Gamma(2(0_E)) = \langle 1, x \rangle$: embedding of $E/\pm 1$,
- $\Gamma(3(0_E)) = \langle 1, x, y \rangle$: Weierstrass model $y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$.

The same principally polarised abelian variety A (ppav) could be, depending on its polarisation Θ_A:

- A product of elliptic curves;
- Non decomposable;
- The Jacobian of an hyperelliptic curve;
- The Jacobian of a non hyperelliptic curve ($g \geq 3$);
- Not a Jacobian ($g \geq 4$).
Outline

1. Motivations
2. Polarised abelian varieties
3. Isogenies and polarisations
4. Algorithms for isogenies
Isogenies and dual isogenies

- \(f : A \to B \) morphism ⇔ algebraic map + group morphism
 (it suffices to check \(f (0_A) = 0_B \) by rigidity);
- \(f \) isogeny ⇔ \(\text{Ker } f \) finite + surjective
 ⇔ \(\dim A = \dim B \) and surjective ⇔ \(\dim A = \dim B \) and \(\text{Ker } f \) finite;
- Divisibility: \(g_1 \circ f = g_2 \circ f \Rightarrow g_1 = g_2, \)
 \(f \circ g_1 = f \circ g_2 \Rightarrow g_1 = g_2. \)
- Dual isogeny \(\hat{f} : \hat{B} = \text{Pic}^0 (B) \to \hat{A} = \text{Pic}^0 (A), \)
 \(\hat{f} (Q) = f^* \mathcal{D} \).
- \((g \circ f) = \hat{f} \circ \hat{g}; \)

- Pairings:

 \[0 \to K \to A \xrightarrow{f} B \to 0 \text{ induces } 0 \to \hat{K} \to \hat{B} \xrightarrow{\hat{f}} \hat{A} \to 0 \text{ with } \hat{K} \simeq \text{Hom}(K, \mathbb{G}_m). \]
 Apply \(\text{Hom}(\cdot, \mathbb{G}_m) \) and use \(\hat{A} \simeq \text{Ext}^1 (A, \mathbb{G}_m) \)
- \(e_f : K \times \hat{K} \to \mathbb{G}_m \) Weil-Cartier pairing
- \(f = [\ell] : e_{W, \ell} : A[\ell] \times \hat{A}[\ell] \to \mu_\ell \) Weil pairing;
- Compatibility of pairings and isogenies: on \(T_\ell A \times T_\ell \hat{B}, \)
 \[e_f (x, y) = e_B (f (x), y) = e_A (x, \hat{f} (y)). \]
- Biduality: \(\hat{A} \simeq A, \hat{f} \simeq f \) (canonically).

 By the universal property of \(\hat{A} = \text{Pic}^0 (A), \)
 id : \(\hat{A} \to \hat{A} \) corresponds to the Poincaré sheaf \(P \) on \(A \times \hat{A}, \) and \(P \) is "symmetric",
 \(e_P ((x, x'), (y, y')) = e(x, y') e(x', y) \)⁻¹.
Isogenies and polarisations

- $f : A \to B$ isogeny.
- v_1, \ldots, v_m coordinates on B given by sections of \mathcal{D}_B.
- Then $u_i := v_i \circ f$ are coordinates on A given by sections of $\mathcal{D}_A := f^* \mathcal{D}_B$.
- $\deg \mathcal{D}_A = \deg f \cdot \deg \mathcal{D}_B$.

- $f : (A, \lambda_A) \to (B, \lambda_B)$ isogeny of ppavs.
- If λ_A is induced by Θ_A (resp. λ_B by Θ_B), a model of A (resp. B) will be given by coordinates of $m \Theta_A$ (resp. $m \Theta_B$), where $m = 2, 3, 4 \ldots$ is small.
- We want to relate Θ_A with $f^* \Theta_B$ (or relate $m \Theta_A$ with $f^* m \Theta_B$).
N-isogenies

Definition

An isogeny $f : (A, \lambda_A) \to (B, \lambda_B)$ between ppav is an **N-isogeny** if $f^* \Theta_B \sim N \Theta_A$.

- $\Phi_{f^* \Theta_B}(P) = t_P f^* \Theta_B - f^* \Theta_B = f^* (t^*_f (P) \Theta_B - \Theta_B) = f^* \Phi_{\Theta_B}(f(P)) = (\hat{f} \circ \Phi_{\Theta_B} \circ f)(P)$;
- $f^* \lambda_B := \hat{f} \circ \lambda_B \circ f$;
- f is an N-isogeny $\iff f^* \lambda_B = N \lambda_A$;

$$
\begin{array}{c}
A \xrightarrow{f} B \\
\downarrow \lambda_A \quad \downarrow \lambda_B \\
\hat{A} \xleftarrow{\hat{f}} \hat{B}
\end{array}
$$
N-isogenies

Definition

An isogeny $f : (A, \lambda_A) \to (B, \lambda_B)$ between ppav is an N-isogeny if $f^* \Theta_B \sim N \Theta_A$.

- $\Phi_{f^* \Theta_B}(P) = t_P f^* \Theta_B - f^* \Theta_B = f^* (t_{f(P)} \Theta_B - \Theta_B) = f^* \Phi_{\Theta_B}(f(P)) = (\hat{f} \circ \Phi_{\Theta_B} \circ f)(P)$;
- $f^* \lambda_B := \hat{f} \circ \lambda_B \circ f$;
- f is an N-isogeny $\iff f^* \lambda_B = N \lambda_A$;
- Contragredient isogeny: $\check{f} = \lambda_A^{-1} \hat{f} \lambda_B : B \to A$;

- f is an N-isogeny $\iff \check{f} f = N \iff f \check{f} = N$.

Example

An isogeny $f : E_1 \to E_2$ between elliptic curves is **automatically** an N-isogeny where $N = \deg f$.
\textbf{\(N\)-isogenies and isotropic kernels}

- Compatibility with pairings: on \(T_\ell A \times T_\ell B, e_{\lambda_B}(f(x), y) = e_{\lambda_A}(x, \tilde{f}(y))\).
- \(f : (A, \lambda_A) \to (B, \lambda_B) N\)-isogeny \(\Rightarrow\) Ker \(f\) is maximal isotropic in \(A[N]\) for the Weil pairing
- Ker \(f = \text{Im} \tilde{f} \mid B[N]\), Ker \(f\) is dual to Ker \(\tilde{f}\)

Conversely, if \(K \subset A[N]\) maximal isotropic, \(N\lambda_A\) descends to a principal polarisation on \(B = A/K\).

The pairing \(e_{\lambda_A,N} = \phi_{N\lambda_A}\) on \(A[N] \times A[N]\) is also the commutator pairing of Mumford's theta group \(G(N\Theta_A)\). If \(K\) is isotropic, it admits a lift \(\tilde{K}\) in \(G(N\Theta_A)\), so \(N\Theta_A\) descends to a divisor \(\Theta_B\) on \(B = A/K\). The degree relation shows that deg \(\Theta_B = 1\) if \(K\) is maximal.

- If \(f : (A, \lambda_A) \to (B, \lambda_B)\) has maximal isotropic kernel in \(A[N]\), \(N\lambda_A\) descends to a principal polarisation \(\lambda'_B\) on \(B\).
- But we may have \(\lambda'_B \neq \lambda_B\).
- \(\tilde{f} \circ f = N\) is a stronger condition that ensures compatibility of \(f\) with \(\lambda_B\).
- \(f\) is an \(N\)-isogeny \(\Leftrightarrow e_{\lambda_B}(f(x), f(y)) = e_{\lambda_A}(x, y)^N\) on \(T_\ell A \times T_\ell A\).
Properties of contragredient isogenies

Biduality: $\tilde{\tilde{f}} = f$.

Composition: $f : A \to B$ a N-isogeny, $g : B \to C$ a M-isogeny, $g \circ f : A \to C$.

- $\tilde{g} \circ f = \tilde{f} \circ \tilde{g} : C \to A$;
- $(\tilde{g} \circ f) \circ (g \circ f) = \tilde{f} \circ \tilde{g} \circ g \circ f = NM$.
- The composition $g \circ f$ is an NM-isogeny.
- Conversely, if $g \circ f$ is an N-isogeny and f (resp. g) is an M-isogeny, then g (resp. f) is an N/M-isogeny.
- An N-isogeny is always the composition of ℓ_i-isogenies for $\ell_i \mid N$.

Product polarisation:

- $(A, \lambda_A) \times (B, \lambda_B) = (A \times B, \lambda_A \times \lambda_B)$ where $\lambda_A \times \lambda_B : A \times B \to \widehat{A} \times \widehat{B}$ is the product.
- $F = \begin{pmatrix} a & c \\ b & d \end{pmatrix} : (A \times B, \lambda_A \times \lambda_B) \to (C \times D, \lambda_C \times \lambda_D)$.
- $\widehat{F} = \begin{pmatrix} \widehat{a} & \widehat{b} \\ \widehat{c} & \widehat{d} \end{pmatrix} : \widehat{C} \times \widehat{D} \to \widehat{A} \times \widehat{B}$.
- $\widetilde{F} = \begin{pmatrix} \tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d} \end{pmatrix} : C \times D \to A \times B$.
- Exercice: check that the 8×8-matrix at the beginning of the talk is a N'-isogeny.
Polarisations and symmetric endomorphisms

- \((A, \lambda_A)\) ppav
- \(\phi \in \text{End}^\lambda(A) \mapsto \lambda_A \circ \phi\) induces a bijection between endomorphisms \(\phi\) invariant under the Rosatti involution \((\tilde{\phi} = \phi)\) and polarisations: \(\text{NS}(A) \simeq \text{End}^\lambda(A)\).
- Let \(\beta \in \text{End}^\lambda(A), f\) is a \(\beta\)-isogeny if \(\tilde{f} f = \beta\).
- If \(f : A \to B\) is any isogeny, \(\lambda_A, \lambda_B\) principal polarisations, then \(f\) is a \(\beta\)-isogeny where \(\beta = \tilde{f} f\). In particular \(\text{Ker} f\) is maximal isotropic for the \(e_\beta\) pairing on \(A[\beta]\).

Example

- Via the product principal polarisation \((A \times B, \lambda_A \times \lambda_B), F = \begin{pmatrix} a & c \\ b & d \end{pmatrix}\) is symmetric \((\tilde{F} = F)\) iff \(\tilde{a} = a, \tilde{d} = d, \tilde{b} = c\).
- \(\text{NS}(A \times B) = \text{NS}(A) \times \text{NS}(B) \times \text{Hom}(A, B)\).

- An \(\ell\)-isogeny of abelian varieties has kernel of type \((\mathbb{Z}/\ell \mathbb{Z})^g\).
- An \(\ell^2\)-isogeny of elliptic curves can have kernel of type \(\mathbb{Z}/\ell^2 \mathbb{Z}\) or \(\mathbb{Z}/\ell \mathbb{Z} \times \mathbb{Z}/\ell \mathbb{Z}\).
- An \(\ell^2\)-isogeny of abelian surfaces can have kernel of type \((\mathbb{Z}/\ell^2 \mathbb{Z})^2\) or \(\mathbb{Z}/\ell \mathbb{Z} \times \mathbb{Z}/\ell \mathbb{Z} \times \mathbb{Z}/\ell^2 \mathbb{Z}\) or \((\mathbb{Z}/\ell \mathbb{Z})^4\).
- If an abelian surface \((A, \lambda_A)\) has RM \(\text{End}^{\lambda_A}(A) = O_K\) a real quadratic order and \(\ell = \beta \beta^c\), a \(\beta\)-isogeny will have cyclic kernel \(\mathbb{Z}/\ell \mathbb{Z}\).
Outline

1. Motivations
2. Polarised abelian varieties
3. Isogenies and polarisations
4. Algorithms for isogenies
Algorithms for N-isogenies (overview)

- **Input:** generators P_1, \ldots, P_g of K, a maximal isotropic kernel for $A[N]$, a point $P \in A$ given by coordinates u_i, where u_i are sections of $m\Theta_A$.

- **Output:** A description of $B = A/K$, and the coordinates $v_i(Q)$ where $Q = f(P)$, where v_i are sections of $m\Theta_B$ (Θ_B a descent of $N\Theta_A$ by $f : A \to B$).

1. Construct $\mathcal{D} = f^*m\Theta_B$ on A.
 This is a divisor invariant by translation by K and algebraically equivalent to $Nm\Theta_A$. The converse is true by descent theory.

2. Construct the coordinates $v_i \circ f$ on A.
 These are sections of \mathcal{D} invariant by translation on K, and the converse is true:
 $$\Gamma(B, m\Theta_B) \cong \Gamma(A, f^*m\Theta_B)^K.$$

3. Evaluate these coordinates on P: $v_i(Q) = v_i \circ f(P)$.
Vélu’s formula

- Weierstrass coordinates \(x, y\) on \(E = \text{sections of } 3(0_E)\). (\(x\) is a section of \(2(0_E)\), \(y\) of \(3(0_E)\).)
- \(K\) maximal isotropic in \(E[N]\).
- \(\mathcal{D} = \sum_{P \in K} t_P^*(3(0_E)) = \sum_{P \in K} 3(P)\) is certainly invariant by \(K\);
- So \(\mathcal{D}\) descends to \(3(0_{E'})\) on \(E' = E/K\);
- \(x, y\) are sections of \(\mathcal{D}\) but are not invariant by translation;
- \(X(P) = \sum_{T \in K} X(P + T)\) and \(Y(P) = \sum_{T \in K} Y(P + T)\) are sections of \(\mathcal{D}\) invariant by translation;
- They descend to Weierstrass coordinates on \(E'\);
- This is Vélu’s formula (up to a constant).
- Cost: \(O(N)\).
- Recover equations for \(E'\) via the formal group law.
Revisiting Vélu’s formula

- Recall: $\mathcal{D} = \sum_{P \in \mathcal{K}} t^*_P 3(0_E)$;
- We want to construct sections U of \mathcal{D} that are of the form $U = v \circ f$, v a coordinate on E'.
- Equivalently: U is invariant by translation by K.
- In particular: $\text{div } U$ is a divisor invariant by translation by K such that $\text{div } U + \mathcal{D} \geq 0$.
- If $\mathcal{E} = \text{div } f_\mathcal{E}$ is a principal divisor invariant by translation, $f_\mathcal{E}$ may not be invariant by translation!

Lemma

Let $\mathcal{E} = \sum_i a_i \sum_{T \in \mathcal{K}} (P_i + T) = \text{div } f_\mathcal{E}$ a principal divisor and $P_0 := \sum a_i P_i$. Then $f_\mathcal{E}$ is invariant by translation iff $P_0 \in \mathcal{K}$.

Proof.

If $T \in \mathcal{K}, f_\mathcal{E}(x + T)/f_\mathcal{E}(x) = e_f(T, f(P_0)) = e_N(T, P_0)$. So $f_\mathcal{E}$ is invariant by $K \iff P_0 \in E[\ell]$ is orthogonal to $K \iff P_0 \in \mathcal{K} \iff f(P_0) = 0$.

\[
\]
Revisiting Vélu’s formula

- Recall: \(\mathcal{D} = \sum_{P \in K} t_P^* 3(0_E); \)
- We want to construct sections \(\mathcal{U} \) of \(\mathcal{D} \) that are of the form \(\mathcal{U} = \nu \circ f, \nu \) a coordinate on \(E' \).
- Equivalently: \(\mathcal{U} \) is invariant by translation by \(K \).
- In particular: \(\text{div} \ \mathcal{U} \) is a divisor invariant by translation by \(K \) such that \(\text{div} \ \mathcal{U} + \mathcal{D} \geq 0 \).
- If \(\mathcal{E} = \text{div} f_\mathcal{E} \) is a principal divisor invariant by translation, \(f_\mathcal{E} \) may not be invariant by translation!

Lemma

Let \(\mathcal{E} = \sum_i a_i \sum_{T \in K} (P_i + T) = \text{div} f_\mathcal{E} \) a principal divisor and \(P_0 := \sum a_i P_i \). Then \(f_\mathcal{E} \) is invariant by translation iff \(P_0 \in K \).

Example

- Take \(Q_1, Q_2 \in E(k), \mathcal{E} = \sum_{T \in K} ((Q_1 + T) + (-Q_1 + T) - (Q_2 + T) - (-Q_2 + T)), \)
- \(f_\mathcal{E} = \prod_{T \in K} \frac{x-x(Q_1+T)}{x-x(Q_2+T)} \) (convention: \(x - 0_E := 1 \)).
- \(f_\mathcal{E} \) is invariant by translation and descends to \(\frac{X-f(Q_1)}{X-f(Q_2)} \) on \(E/K, X \) a Weierstrass coordinate.
- When \(Q_2 = 0_E \), we recover formula from [Costello-Hisil, 2017], [Renes, 2017].
- Used by the sqrtVelu algorithm!
Vélu’s formula in higher dimension?

- \((A, \Theta_A)\) ppav, \(K\) maximal isotropic in \(A[N]\)
- \(\mathcal{D} = \sum_{P \in K} t_P^*(m\Theta_A)\) is certainly invariant by \(K\);
- If \(u\) is a section of \(m\Theta_A\), \(U(P) = \sum_{T \in K} u(P + T)\) is certainly a section of \(\mathcal{D}\) invariant by \(K\).
- But \(\mathcal{D} \sim N^g m\Theta_A\);
- So it descends to a divisor \(\sim N^{g-1} m\Theta_B\)!
- Our coordinates have degree too big (unless \(g = 1\)).
The theta group

- $Nm\Theta_A$ is not invariant by K
- So it does not descend to $m\Theta_B$
- But it is linearly equivalent to \mathcal{D}, a divisor invariant by K: $\mathcal{D} = Nm\Theta_A + \text{div } g$.
- So $\text{div}(g/t^*_Tg) = t^*_TNm\Theta_A - Nm\Theta_A$.
- Goal: construct \mathcal{D}. Equivalently construct g.

- Find functions g_T such that $\text{div } g_T = t^*_TNm\Theta_A - Nm\Theta_A$
- Try to glue these functions into a global function g (cocycle condition): $g_T(P) = g(P)/g(P + T)$.

- Theta group: $G(Nm\Theta_A) = \{(T, g_T) \mid \text{div } g_T = t^*_TNm\Theta_A - Nm\Theta_A\}$
- Gluing condition $\Leftrightarrow K \rightarrow G(Nm\Theta_A), T \mapsto (T, g_T)$ is a group section;

- Twisted trace: if U is a section of $Nm\Theta_A$, $U'(P) = \sum_{T \in K} g_T(P)U(P + T)$ is a section of \mathcal{D} invariant by K, hence descends to $B = A/K$.

Damien Robert
Isogenies
General framework for an N-isogeny algorithm

Find functions g_T, $\text{div } g_T = t^* Nm\Theta_A - Nm\Theta_A$ for each $T \in K$, that glue together.

1. Use symmetry: Θ_A symmetric divisor, g_T symmetric.
2. Unique choice if N is odd, two choices for each T when N is even \Rightarrow annoying!

Twisted Vélu’s formula: if $K = \langle T \rangle$, $X(P) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} \zeta_N^i X(P + T)$, $Y(P) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} \zeta_N^i Y(P + T)$.

Eg: if N is even, $X(P) = \sum_{i \in \mathbb{Z}/N\mathbb{Z}} (-1)^i X(P + T)$ descends to a section on the symmetric divisor $2f(W)$, $W \in E[2] - K$.
General framework for an N-isogeny algorithm

Find functions $g_T, \text{div} g_T = t^* Nm\Theta_A - Nm\Theta_A$ for each $T \in K$, that glue together.

Generate sections U of $Nm\Theta_A$.

- The multiplication map $\Gamma(m_1 \Theta_A) \otimes \Gamma(m_2 \Theta_A) \to \Gamma((m_1 + m_2)\Theta_A), u \otimes v \mapsto uv$ is surjective if $m_1 \geq 3, m_2 \geq 2$ [Mumford, Koizumi, Kempf].
- $\sum_{\alpha \in \hat{A}} \Gamma(A, m_1 \Theta_A \otimes P_\alpha) \Gamma(A, m_2 \Theta_A \otimes P_{-\alpha}) = \Gamma(A, (m_1 + m_2)\Theta_A)$ [Mumford] for $m_1, m_2 > 0$.

So we can always generate all sections of $\Gamma(Nm\Theta_A)$ using multiplications of sections of $\Gamma(m\Theta_A)$, eventually using also translations if $m \leq 2$.
Find functions g_T, $\text{div } g_T = t^*_T Nm\Theta_A - Nm\Theta_A$ for each $T \in K$, that glue together.

Generate sections U of $Nm\Theta_A$.

Take the twisted traces of the sections U.

This gives coordinates (section of $m\Theta_B$) on B.

More work required to recover a suitable model of B (depends on the model).
General framework for an N-isogeny algorithm

1. Find functions g_T, $\text{div} g_T = t^*_T Nm \Theta_A - Nm \Theta_A$ for each $T \in K$, that glue together.
2. Generate sections U of $Nm \Theta_A$.
3. Take the twisted traces of the sections U.
4. This gives coordinates (section of $m \Theta_B$) on B

More work required to recover a suitable model of B (depends on the model).

Summary [R. 2021]: from an effective version of the Theorem of the square:

\[
t^*_{P+Q} \Theta_A + \Theta_A - t^*_P \Theta_A - t^*_Q \Theta_A = \text{div} \mu_{P,Q},
\]

there is a general framework to
1. Compute the addition law;
2. Compute the Weil and Tate pairings;
3. Compute isogenies.
Isogenies in the theta model

- **Analytic theta functions:**
 \[\theta\left[\begin{array}{c} a \\ b \end{array} \right] (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t (n+a) \Omega (n+a) + 2\pi i t (n+a) (z+b)} \quad a, b \in \mathbb{Q}^g; \]

- Universal
- Work with theta functions of level \(m = 2 \) or \(m = 4 \): \(m^g \) coordinates.
- **Rationality:** rational \(\Gamma(m, 2m) \)-symplectic structure.
- \(N \)-isogenies in \(O(N^g) \).
- Implementations in Magma (AVIsogenies) and Sage (ThetAV)

- General framework for \(\beta \)-isogenies but requires bootstrapping (still more work needed!).
- Theta functions \(\theta_{A \times B} \) for the **product theta structure** on \(A \times B \) are simply product of theta functions \(\theta_A \cdot \theta_B \).
- \(\left(\begin{array}{cc} N_1 & 0 \\ 0 & N_2 \end{array} \right) \)-isogenies in \(O(N_1^g N_2^g) \).

Moduli: \(\chi(\tau) = \prod \theta\left[\begin{array}{c} a/2 \\ b/2 \end{array} \right] (\tau) \) describes interesting **modular locus:** the locus of product of elliptic curves when \(g = 2 \) (\(\chi_{10} \)), the locus of products and Jacobians of hyperelliptic curves when \(g = 3 \) (\(\chi_{18} \)).

The modular form \(g(A, w_A) = \prod_{(B,w_B)} \chi_{10}(B, w_B) \) of weight \(10(\ell^3 + \ell^2 + \ell + 1) \) (whose product is across all normalised \(\ell \)-isogenies) describes the locus \(H_{\ell^2} \) of \(\ell \)-split abelian surfaces (the Humbert surface of discriminant \(\ell^2 \)). Expressed as a polynomial \(P \) in terms of \(\psi_4, \psi_6, \chi_{10}, \chi_{12} \), \(P \) is of size \(O(\ell^{12}) \) and can be computed in quasi-linear time by evaluation-interpolation. Checking if \((A, \Theta_A) / \mathbb{F}_q \) is \(\ell \)-split can then be done by evaluating \(P(A, \Theta_A) \) in time \(O(\ell^9 \log q) \), or directly via the analytic method in \(\tilde{O}(\ell^3 (\log q + d^2)) \).
Isogenies in the Jacobian model

- \(\iota : C \to \text{Jac}(C) \);
- If \(g \) is a function on \(C \), it induces a function \(\iota_\ast g \) on \(\text{Jac}(C) \) via \((\iota_\ast g)(\sum n_i(P_i)) = \prod g(P_i)^{n_i} \).
- All functions on \(\text{Jac}(C) \) can be built from \(\iota_\ast g \) and determinants;
- NB: for pairings computations, the functions \(\iota_\ast g \) are enough!
- \(N \)-isogenies between Jacobians in \(\widetilde{O}(N^g) \) when \(g = 2 \) [Couveignes-Ezome 2015] and \(g = 3 \) [Milio 2019]
- Implementations in Magma.
- The extension to product of Jacobians should not be too hard.
Algorithms for isogenies

- Better algorithms for β-isogenies;
- $\widetilde{O}(N^{g/2})$-algorithms?
- Batch isogeny evaluation?
- More compact models of abelian varieties?

Evaluating an isogeny on a point is only a **small topic** of algorithms related to isogenies: modular polynomials, explicit Kodaira-Spencer isomorphism, differential equations, …