Arithmetic on Abelian and Kummer varieties
2014/12/18 — Séminaire de Théorie des Nombres — Caen

David Lubicz, Damien Robert
Differential addition

Notations: $x, y, X = x + y, Y = x - y, 0_A = (a_i)$;

$$z_i^\chi = \left(\sum_{t \in \mathbb{Z}/2} \chi(t)x_{i+t}x_t \right) \left(\sum_{t \in \mathbb{Z}/2} \chi(t)y_{i+t}y_t \right) / \left(\sum_{t \in \mathbb{Z}/2} \chi(t)a_{i+t}a_t \right).$$

$$4X_{00}Y_{00} = z_{00}^0 + z_{00}^1 + z_{00}^{10} + z_{00}^{11};$$
$$4X_{01}Y_{01} = z_{00}^0 - z_{00}^1 + z_{00}^{10} + z_{00}^{11};$$
$$4X_{10}Y_{10} = z_{00}^0 + z_{00}^1 - z_{00}^{10} - z_{00}^{11};$$
$$4X_{11}Y_{11} = z_{00}^0 - z_{00}^1 - z_{00}^{10} + z_{00}^{11};$$

$\Rightarrow 7M + 12S + 9M_0$ for the differential addition (here we neglect multiplications by constants).

Remark

$\left(\sum_t \chi(t)a_{i+t}a_t \right)$ is simply the classical theta null point $\theta^{[\chi/2]}(0, \Omega)^2$.
Normal additions

\[2(X_{10} Y_{00} + X_{00} Y_{10}) = z_{10}^{00} + z_{10}^{01};\]
\[2(X_{11} Y_{01} + X_{01} Y_{11}) = z_{10}^{00} - z_{10}^{01};\]
\[2(X_{01} Y_{00} + X_{00} Y_{01}) = z_{01}^{00} + z_{01}^{10};\]
\[2(X_{11} Y_{10} + X_{10} Y_{11}) = z_{01}^{00} - z_{01}^{10};\]
\[2(X_{11} Y_{00} + X_{00} Y_{11}) = z_{11}^{00} + z_{11}^{11};\]
\[2(X_{01} Y_{10} + X_{10} Y_{01}) = z_{11}^{00} - z_{11}^{11};\]

\[\Rightarrow (4M + 8S + 3M_0) + 3 \times (2M + 4S + 2M_0) = 10M + 20S + 9M_0 \text{ to compute all the } \kappa_{ij}.\]
Normal additions, explicit coordinates

\(\Psi_\alpha(Z) = Z^2 - 2\frac{\kappa_{\alpha 0}}{\kappa_{00}} Z + \frac{\kappa_{\alpha \alpha}}{\kappa_{00}} \) whose roots are \(\{ \frac{X_\alpha}{X_0}, \frac{Y_\alpha}{Y_0} \} \);

- We can recover the coordinates \(X_i, Y_i \) by solving the equation

\[
\begin{pmatrix}
1 & 1 \\
Z & Z'
\end{pmatrix}
\begin{pmatrix}
Y_i / Y_0 \\
X_i / X_0
\end{pmatrix} =
\begin{pmatrix}
2\kappa_{0i} / \kappa_{00} \\
2\kappa_{\alpha i} / \kappa_{00}
\end{pmatrix};
\]

- We find

\[
X_i = \frac{X_\alpha \kappa_{0i} - X_0 \kappa_{\alpha i}}{X_\alpha \kappa_{00} - X_0 \kappa_{\alpha 0}}.
\]

\(\Rightarrow \) \((10M + 20S + 9M_0) + 8M = 18M + 20S + 9M_0 \) to compute \(X \) once we know \(Z \).
Compatible additions

- Let $P_1 = X^2 + aX + b$ and $P_2 = X^2 + cX + d$. Then P_1 and P_2 have a common root iff $(ad - bc)(c - a) = (d - b)^2$, in this case this root is $(d - b)/(a - c)$.

- A compatible addition amount to computing a normal addition $x + y$, and finding a root of P_{α} as a common root of the polynomial P'_{α} coming from the addition of $(x + t, y + t)$;

- So for a compatible addition we need the extra computation of P'_{α}
 \[\Rightarrow 6M + 12S + 5M_0 \; ; \]

- The common root is
 \[\frac{k'_{\alpha\alpha} k'_{00} - k_{\alpha\alpha} k_{00}}{2(k'_{\alpha0} - k_{\alpha0})} ; \]
 \[\Rightarrow 28M + 32S + 14M_0 ; \]

- In the $(x, x + t)$ representation, once we have computed $x + y$ via a compatible addition, we can reuse some operations in the computation of $x + y + t$;

- Still, it is more efficient to use a three way addition to compute $x + y + t$ rather than another compatible addition.

- Possible improvements: find better normalisations, use the equation of the Kummer surface ...