Arithmetic on Abelian and Kummer varieties
2014/04/16 — Institut Fourier — Grenoble

David Lubicz, Damien Robert
Differential addition

- Notations: \(x, y, X = x + y, Y = x - y, 0_A = (a_i); \)

\[
z^i_x = \left(\sum_t \chi(t) x_{i+t} x_t \right) \left(\sum_t \chi(t) y_{i+t} y_t \right) / \left(\sum_t \chi(t) a_{i+t} a_t \right).
\]

\[
4X_{00} Y_{00} = z_{00}^{00} + z_{01}^{00} + z_{10}^{00} + z_{11}^{00};
\]

\[
4X_{01} Y_{01} = z_{00}^{00} - z_{01}^{00} + z_{10}^{00} + z_{11}^{00};
\]

\[
4X_{10} Y_{10} = z_{00}^{00} + z_{01}^{00} - z_{10}^{00} - z_{11}^{00};
\]

\[
4X_{11} Y_{11} = z_{00}^{00} - z_{01}^{00} - z_{10}^{00} + z_{11}^{00};
\]

\[\Rightarrow \quad 8S + 4M + 4I = 14M + 8S \text{ for the differential addition (here we neglect multiplications by constants).}\]

Remark

\((\sum_t \chi(t) a_{i+t} a_t) \) is simply the classical theta null point \(\vartheta\left[\chi/2 \right](0, \Omega)^2. \)
Normal additions

\[2(X_{10} Y_{00} + X_{00} Y_{10}) = z_{00}^{10} + z_{01}^{10}; \]
\[2(X_{11} Y_{01} + X_{01} Y_{11}) = z_{00}^{10} - z_{01}^{10}; \]
\[2(X_{01} Y_{00} + X_{00} Y_{01}) = z_{00}^{01} + z_{10}^{01}; \]
\[2(X_{11} Y_{10} + X_{10} Y_{11}) = z_{00}^{01} - z_{10}^{01}; \]
\[2(X_{11} Y_{00} + X_{00} Y_{11}) = z_{00}^{11} + z_{11}^{11}; \]
\[2(X_{01} Y_{10} + X_{10} Y_{01}) = z_{00}^{11} - z_{11}^{11}; \]

\[\Rightarrow (8S + 4M) + 3 \times (4M + 2M) = 22M + 8S \text{ to compute all the } \kappa_{i,j}. \]
Normal additions, explicit coordinates

- We work with the polynomial \(\psi_\alpha = Z^2 - 2\kappa_0 Z + \kappa_\alpha\kappa_0 \), whose roots are \(Z = X_\alpha Y_0 \) and \(Z' = X_0 Y_\alpha \);
- We can as well assume that \(Y_0 = 1 \) (projective coordinates);
- The equation to solve is then
 \[
 \begin{pmatrix}
 \kappa_0 & 1 \\
 Z & Z'/\kappa_0 \\
 \end{pmatrix}
 \begin{pmatrix}
 Y_i \\
 X_i \\
 \end{pmatrix}
 =
 \begin{pmatrix}
 \kappa_{0i} \\
 \kappa_{\alpha i} \\
 \end{pmatrix};
 \]
- We get \(X_i = (-\kappa_{0i} + \kappa_0 \kappa_{\alpha i})/(Z' - Z) \);
- \(24M + 8S + I = 26M + 8S \) to compute \(X \) once we know \(Z \).
Compatible additions

- Let \(P_1 = X^2 + aX + b \) and \(P_2 = X^2 + cX + d \). Then \(P_1 \) and \(P_2 \) have a common root iff \((ad - bc)(c - a) = (d - b)^2\), in this case this root is \((d - b)/(a - c)\).
- A compatible addition amount to computing a normal addition \(x + y \), and finding a root of \(\mathcal{P}_\alpha \) as a common root of the polynomial \(\mathcal{P}_\alpha' \) coming from the addition of \((x + t, y + t)\);
- So for a compatible addition we need the extra computation of \(\mathcal{P}_\alpha' \Rightarrow 10M + 8S \);
- The common root is
 \[
 \frac{\kappa'_a \kappa'_0 - \kappa_{aa} \kappa_{00}}{2(\kappa'_a - \kappa'_0)};
 \]
 \[\Rightarrow \quad 36M + 16S + 2M + 1I = 41M + 16S;\]
- In the \((x, x + t)\) representation, once we have computed \(x + y \) via a compatible addition, we can reuse some operations in the computation of \(x + y + t \), we gain \(-4S - 6M - 4S - 2M\) for a cost of \(33M + 8S\);
- Still, it may be more efficient to use a three way addition to compute \(x + y + t \) rather than another compatible addition, since this cost \(12M + 8I = 32M\);
- I have not used the projectivity all the time, probably a lot to gain...