On isogenies and polarisations
2013/10/08 — Geocrypt — Tahiti

Gaëtan Bisson, Romain Cosset, Alina Dudeanu, Dimitar Jetchev, David Lubicz, Damien Robert
1. Abelian varieties and polarisations
2. Theta functions
3. Maximal isotropic isogenies
4. Cyclic isogenies
Definition

A complex abelian variety A of dimension g is isomorphic to a compact Lie group V/Λ with

- A complex vector space V of dimension g;
- A \mathbb{Z}-lattice Λ in V (of rank $2g$);

such that there exists an Hermitian form H on V with $E(\Lambda, \Lambda) \subseteq \mathbb{Z}$ where $E = \text{Im} H$ is symplectic.

Such an Hermitian form H is called a polarisation on A. Conversely, any symplectic form E on V such that $E(\Lambda, \Lambda) \subseteq \mathbb{Z}$ and $E(ix, iy) = E(x, y)$ for all $x, y \in V$ gives a polarisation H with $E = \text{Im} H$.

Over a symplectic basis of Λ, E is of the form.

$$
\begin{pmatrix}
0 & D_\delta \\
-D_\delta & 0
\end{pmatrix}
$$

where D_δ is a diagonal positive integer matrix $\delta = (\delta_1, \delta_2, \ldots, \delta_g)$, with $\delta_1 \mid \delta_2 \mid \cdots \mid \delta_g$.

The product $\prod \delta_i$ is the degree of the polarisation; H is a principal polarisation if this degree is 1.
Let E_0 be the canonical principal symplectic form on \mathbb{R}^{2g} given by $E_0((x_1, x_2), (y_1, y_2)) = ^t x_1 \cdot y_2 - ^t y_1 \cdot x_2$;

If E is a principal polarisation on $A = V/\Lambda$, there is an isomorphism $j: \mathbb{Z}^{2g} \rightarrow \Lambda$ such that $E(j(x), j(y)) = E_0(x, y)$;

There exists a basis of V such that $j((x_1, x_2)) = \Omega x_1 + x_2$ for a matrix Ω;

In particular $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = ^t x_1 \cdot y_2 - ^t y_1 \cdot x_2$;

The matrix Ω is in \mathcal{H}_g, the Siegel space of symmetric matrices Ω with $\text{Im} \Omega$ positive definite;

In this basis, $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ and H is given by the matrix $(\text{Im} \Omega)^{-1}$.

Principal polarisations
Every principal symplectic form (hence symplectic basis) on \mathbb{Z}^{2g} comes from the action of $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{Sp}_{2g}(\mathbb{Z})$ on (\mathbb{Z}^{2g}, E_0);

This action gives a new equivariant bijection $j_M : \mathbb{Z}^{2g} \rightarrow \Lambda$ via $j_M((x_1, x_2)) = (A\Omega x_1 + Bx_2, C\Omega x_1 + Dx_2)$;

Normalizing this embedding via the action of $(C\Omega + D)^{-1}$ on \mathbb{C}^g, we get that $j_M((x_1, x_2)) = \Omega_M x_1 + x_2$ with $\Omega_M = (A\Omega + B)(C\Omega + D)^{-1} \in \mathfrak{H}_g$;

The moduli space of principally polarised abelian varieties is then isomorphic to $\mathfrak{H}_g / \text{Sp}_{2g}(\mathbb{Z})$.
Let $A = V/\Lambda$ and $B = V'/\Lambda'$.

Definition

An isogeny $f : A \to B$ is a bijective linear map $f : V \to V'$ such that $f(\Lambda) \subset \Lambda'$. The kernel of the isogeny is $f^{-1}(\Lambda')/\Lambda \subset A$ and its degree is the cardinal of the kernel.

Remark

Up to a renormalization, we can always assume that $V = V' = \mathbb{C}^g$, $f = \text{Id}$ and the isogeny is simply $\mathbb{C}^g/\Lambda \to \mathbb{C}^g/\Lambda'$ for $\Lambda \subset \Lambda'$.
The dual abelian variety

Definition

If $A = V/\Lambda$ is an abelian variety, its dual is $\hat{A} = \text{Hom}_{\mathbb{C}}(V, \mathbb{C})/\Lambda^*$. Here $\text{Hom}_{\mathbb{C}}(V, \mathbb{C})$ is the space of anti-linear forms and $\Lambda^* = \{f \mid f(\Lambda) \subset \mathbb{Z}\}$ is the orthogonal of Λ.

- If H is a polarisation on A, its dual H^* is a polarisation on \hat{A}. Moreover, there is an isogeny $\Phi_H : A \to \hat{A}$:

 $$x \mapsto H(x, \cdot)$$

 of degree $\deg H$. We note $K(H)$ its kernel.

- If $f : A \to B$ is an isogeny, then its dual is an isogeny $\hat{f} : \hat{B} \to \hat{A}$ of the same degree.

Remark

There is a canonical polarisation on $A \times \hat{A}$ (the Poincaré bundle):

$$(x, f) \mapsto f(x).$$
Isogenies and polarisations

Definition

- An isogeny $f : (A, H_1) \rightarrow (B, H_2)$ between polarised abelian varieties is an isogeny such that

$$f^* H_2 := H_2(f(\cdot), f(\cdot)) = H_1.$$

- By abuse of notations, we say that f is an ℓ-isogeny between principally polarised abelian varieties if H_1 and H_2 are principal and $f^* H_2 = \ell H_1$.

An isogeny $f : (A, H_1) \rightarrow (B, H_2)$ respect the polarisations iff the following diagram commutes:

```
A --------> B
|           |
V_{\Phi H_1} V_{\Phi H_2}
A --------> B
```
Definition

- An isogeny \(f : (A, H_1) \to (B, H_2) \) between polarised abelian varieties is an isogeny such that
 \[
 f^* H_2 := H_2(f(\cdot), f(\cdot)) = H_1.
 \]

- By abuse of notations, we say that \(f \) is an \(\ell \)-isogeny between principally polarised abelian varieties if \(H_1 \) and \(H_2 \) are principal and \(f^* H_2 = \ell H_1 \).

\(f : (A, H_1) \to (B, H_2) \) is an \(\ell \)-isogeny between principally polarised abelian varieties iff the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{\Phi_{\ell H_1}} & & \downarrow{\Phi_{H_2}} \\
\hat{A} & \xleftarrow{\hat{f}} & \hat{B} \\
\downarrow{\Phi_{H_1}} & & \downarrow{\Phi_{H_2}} \\
A & \xleftarrow{\ell} & B
\end{array}
\]
Jacobian

- Let C be a curve of genus g;
- Let V be the dual of the space V^* of holomorphic differentials of the first kind on C;
- Let $\Lambda \simeq H^1(C, \mathbb{Z}) \subset V$ be the set of periods (integration of differentials on loops);
- The intersection pairing gives a symplectic form E on Λ;
- Let H be the associated hermitian form on V;
 \[
 H^*(w_1, w_2) = \int_C w_1 \wedge w_2;
 \]
- Then $(V/\Lambda, H)$ is a principally polarised abelian variety: the Jacobian of C.

Theorem (Torelli)

Jac C with the associated principal polarisation uniquely determines C.

Remark (Howe)

There exists an hyperelliptic curve H of genus 3 and a quartic curve C such that Jac $C \simeq$ Jac H as non polarised abelian varieties!
Proposition

Let $\Phi : A = V / \Lambda \hookrightarrow \mathbb{P}^{m-1}$ be a projective embedding. Then the linear functions f associated to this embedding are Λ-automorphics:

$$f(x + \lambda) = a(\lambda, x)f(x) \quad x \in V, \lambda \in \Lambda;$$

for a fixed automorphy factor a:

$$a(\lambda + \lambda', x) = a(\lambda, x + \lambda')a(\lambda', x).$$

Theorem (Appell-Humbert)

All automorphy factors are of the form

$$a(\lambda, x) = \pm e^{\pi(H(x, \lambda) + \frac{1}{2}H(\lambda, \lambda))}$$

for a polarisation H on A.
Let (A, H_0) be a principally polarised abelian variety over \mathbb{C}:

$$A = \mathbb{C}^g / (\Omega \mathbb{Z}^g + \mathbb{Z}^g)$$

with $\Omega \in \mathcal{S}_g$.

All automorphic forms corresponding to a multiple of H_0 come from the theta functions with characteristics:

$$\theta_{\begin{bmatrix} a \\ b \end{bmatrix}}(z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t (n+a)\Omega(n+a)+2\pi i t(n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

Automorphic property:

$$\theta_{\begin{bmatrix} a \\ b \end{bmatrix}}(z + m_1\Omega + m_2, \Omega) = e^{2\pi i t (a \cdot m_2 - b \cdot m_1) - \pi i t m_1 \Omega m_1 - 2\pi i t m_1 \cdot z} \theta_{\begin{bmatrix} a \\ b \end{bmatrix}}(z, \Omega).$$
Theta functions of level n

- Define $\vartheta_i = \vartheta \left[\begin{array}{c} 0 \\ \frac{i}{n} \end{array} \right] (z, \frac{\Omega}{n})$ for $i \in \mathbb{Z}(n) = \mathbb{Z}^g / n\mathbb{Z}^g$ and
- This is a basis of the automorphic functions for $H = nH_0$ (theta functions of level n);
- This is the unique basis such that in the projective coordinates:

$$\begin{align*}
A & \longrightarrow \mathbb{P}_{\mathbb{C}}^{n^g-1} \\
z & \longmapsto (\vartheta_i(z))_{i \in \mathbb{Z}(n)}
\end{align*}$$

the translation by a point of n-torsion is normalized by

$$\vartheta_i(z + \frac{m_1}{n} \Omega + \frac{m_2}{n}) = e^{-\frac{2\pi i}{n} t \cdot m_1} \vartheta_{i+m_2}(z).$$

- $(\vartheta_i)_{i \in \mathbb{Z}(n)} = \begin{cases}
\text{coordinates system} & n \geq 3 \\
\text{coordinates on the Kummer variety } A/\pm 1 & n = 2
\end{cases}$

- $(\vartheta_i)_{i \in \mathbb{Z}(n)}$: basis of the theta functions of level n

- Theta null point: $\vartheta_i(0)_{i \in \mathbb{Z}(n)} = \text{modular invariant}$.
The differential addition law \((k = \mathbb{C})\)

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t)\theta_{i + t}(x + y)\theta_{j + t}(x - y) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t)\theta_{k + t}(0)\theta_{l + t}(0) \right) = \\
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t)\theta_{-i' + t}(y)\theta_{j' + t}(y) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t)\theta_{k' + t}(x)\theta_{l' + t}(x) \right).
\]

where \(\chi \in \hat{\mathbb{Z}}(2), \ i, j, k, l \in \mathbb{Z}(n)\)

\((i', j', k', l') = A(i, j, k, l)\)

\[
A = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1 \\
\end{pmatrix}
\]
Cryptographic usage of isogenies

- **Transfer** the Discrete Logarithm Problem from one Abelian variety to another;

- **Point counting algorithms** (ℓ-adic or p-adic) ⇒ **Verify** an abelian variety is secure;

- **Compute the class field polynomials** (CM-method) ⇒ **Construct** a secure abelian variety;

- **Compute the modular polynomials** ⇒ **Compute isogenies**;

- **Determine** $\text{End}(A)$ ⇒ **CRT method** for class field polynomials;

- **Speed up the arithmetic**;

- **Hash functions and cryptosystems** based on isogeny graphs.
The isogeny theorem

Theorem

- Let $\varphi : \mathbb{Z}(n) \to \mathbb{Z}(\ell n), x \mapsto \ell \cdot x$ be the canonical embedding.
- Let $K = A_2[\ell] \subset A_2[\ell n]$.
- Let $(\vartheta^A_i)_{i \in \mathbb{Z}(\ell n)}$ be the theta functions of level ℓn on $A = \mathbb{C}^g/(\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$.
- Let $(\vartheta^B_i)_{i \in \mathbb{Z}(n)}$ be the theta functions of level n of $B = A/K = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$.
- We have:

$$\left(\vartheta^B_i(x)\right)_{i \in \mathbb{Z}(n)} = \left(\vartheta^A_{\varphi(i)}(x)\right)_{i \in \mathbb{Z}(n)}$$

Example

$f : (x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9, x_{10}, x_{11}) \mapsto (x_0, x_3, x_6, x_9)$ is a 3-isogeny between elliptic curves.
An example with $g = 1$, $n = 2$, $\ell = 3$

$z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$, level ℓn

$[\ell] \quad \rightarrow \quad \ell z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$, level ℓn

$f \quad \rightarrow \quad \tilde{f}$

$z \in \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, level n

\[
\begin{array}{cccccc}
0 & 1 & \Omega & 2\Omega & 3\Omega & \ldots \\
\end{array}
\]
An example with $g = 1$, $n = 2$, $\ell = 3$

\[z \in \mathbb{C}^g/(\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g), \text{ level } \ell n \]

\[\rightarrow \]

\[\ell z \in \mathbb{C}^g/(\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g), \text{ level } \ell n \]

\[f \]

\[\tilde{f} \]

\[z \in \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g), \text{ level } n \]
An example with $g = 1$, $n = 2$, $\ell = 3$

$z \in \mathbb{C}^g/(\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$, level ℓn $\xrightarrow{[\ell]} \ell z \in \mathbb{C}^g/(\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$, level ℓn

$z \in \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, level n

\mathcal{R}_0, \mathcal{R}_1, \mathcal{R}_2
An example with $g = 1, \ n = 2, \ \ell = 3$

\[z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g), \text{ level } \ell n \xrightarrow{[\ell]} \ell z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g), \text{ level } \ell n \]

\[z \in \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \text{ level } n \]

\[f \quad \tilde{f} \]

Diagram:

1

\[R_0 \]

\[R_1 \]

\[R_2 \]

\[\Omega \]

\[3\Omega \]
An example with $g = 1$, $n = 2$, $\ell = 3$
An example with $g = 1$, $n = 2$, $\ell = 3$.

$$z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g), \text{ level } \ell n \xrightarrow{[\ell]} \ell z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g), \text{ level } \ell n$$

$$f \quad \quad \tilde{f}$$

$$z \in \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \text{ level } n$$

Diagram with points labeled $R_0, R_1, R_2, 1, \Omega, 3\Omega$.
An example with $g = 1, n = 2, \ell = 3$

$z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$, level ℓn \hspace{1cm} $[\ell] \hspace{1cm} \ell z \in \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g)$, level ℓn

$z \in \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$, level n

\[f \]

\[\tilde{f} \]
Theorem (Koizumi–Kempf)

Let F be a matrix of rank r such that $^tFF = \ell \text{Id}_r$. Let $X \in (\mathbb{C}^g)^r$ and $Y = F(X) \in (\mathbb{C}^g)^r$. Let $j \in (\mathbb{Q}^g)^r$ and $i = F(j)$. Then we have

$$\vartheta\left[\begin{array}{c} 0 \\ i_1 \end{array}\right](Y_1, \frac{\Omega}{n}) \cdots \vartheta\left[\begin{array}{c} 0 \\ i_r \end{array}\right](Y_r, \frac{\Omega}{n}) =$$

$$\sum_{a_1, \ldots, a_r \in \frac{1}{\ell} \mathbb{Z}^g/\mathbb{Z}^g} \vartheta\left[\begin{array}{c} 0 \\ j_1 \end{array}\right](X_1 + t_1, \frac{\Omega}{\ell n}) \cdots \vartheta\left[\begin{array}{c} 0 \\ j_r \end{array}\right](X_r + t_r, \frac{\Omega}{\ell n}),$$

(This is the isogeny theorem applied to $F_A : A^r \to A^r$.)

- If $\ell = a^2 + b^2$, we take $F = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$, so $r = 2$.
- In general, $\ell = a^2 + b^2 + c^2 + d^2$, we take F to be the matrix of multiplication by $a + bi + cj + dk$ in the quaternions, so $r = 4$.
The isogeny formula

\[\ell \wedge n = 1, \quad B = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \quad A = \mathbb{C}^g / (\mathbb{Z}^g + \ell \Omega \mathbb{Z}^g) \]

\[\vartheta^B_b := \vartheta \left[\frac{0}{b \ n} \right] \left(\cdot, \frac{\Omega}{n} \right), \quad \vartheta^A_b := \vartheta \left[\frac{0}{b \ n} \right] \left(\cdot, \frac{\ell \Omega}{n} \right) \]

Proposition

Let \(F \) be a matrix of rank \(r \) such that \(^tF F = \ell \text{Id}_r \). Let \(X \) in \((\mathbb{C}^g)^r\) and \(Y = XF^{-1} \in (\mathbb{C}^g)^r \). Let \(i \in (\mathbb{Z}(\bar{n}))^r \) and \(j = iF^{-1} \). Then we have

\[\vartheta^A_{i_1}(Y_1) \ldots \vartheta^A_{i_r}(Y_r) = \sum_{t_1, \ldots, t_r \in \frac{1}{\ell} \mathbb{Z}^g / \mathbb{Z}^g} \vartheta^B_{j_1}(X_1 + t_1) \ldots \vartheta^B_{j_r}(X_r + t_r), \]

\[
(t_1, \ldots, t_r) F = (0, \ldots, 0) \]

Corollary

\[\vartheta^A_k(0) \vartheta^A_0(0) \ldots \vartheta^A_0(0) = \sum_{t_1, \ldots, t_r \in K} \vartheta^B_{j_1}(t_1) \ldots \vartheta^B_{j_r}(t_r), \quad (j = (k, 0, \ldots, 0)F^{-1} \in \mathbb{Z}(\bar{n})) \]

\[
(t_1, \ldots, t_r) F = (0, \ldots, 0) \]
The Algorithm [Cosset, R.]

\[
x \in (A, \ell H_1) \quad \quad \Rightarrow \quad \quad (x, 0, \ldots, 0) \in (A^r, \ell H_1 \ast \cdots \ast \ell H_1)
\]

\[
y \in (B, H_2)
\]

\[
\tilde{f}(y) \in (A, H_1) \quad \quad \Leftarrow \quad \quad F \circ ^t F(x, 0, \ldots, 0) \in (A^r, H_1 \ast \cdots \ast H_1)
\]

\[
x \in (A, \ell H_1) \quad \quad \Rightarrow \quad \quad (x, 0, \ldots, 0) \in (A^r, \ell H_1 \ast \cdots \ast \ell H_1)
\]

\[
y \in (B, H_2)
\]

\[
\tilde{f}(y) \in (A, H_1) \quad \quad \Leftarrow \quad \quad F \circ ^t F(x, 0, \ldots, 0) \in (A^r, H_1 \ast \cdots \ast H_1)
\]
The geometric points of the kernel live in a extension k' of degree at most $\ell^g - 1$ over $k = \mathbb{F}_q$;

The isogeny formula assumes that the points are in affine coordinates. In practice, given A/\mathbb{F}_q we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;

Computing the normalization factors takes $O(\log \ell)$ operations in k';

Computing the points of the kernel via differential additions take $O(\ell^g)$ operations in k';

If $\ell \equiv 1 \pmod{4}$, applying the isogeny formula take $O(\ell^g)$ operations in k';

If $\ell \equiv 3 \pmod{4}$, applying the isogeny formula take $O(\ell^{2g})$ operations in k';

\Rightarrow The total cost is $\tilde{O}(\ell^{2g})$ or $\tilde{O}(\ell^{3g})$ operations in \mathbb{F}_q.

Remark

The complexity is much worse over a number field because we need to work with extensions of much higher degree.
Complexity over \mathbb{F}_q

- The geometric points of the kernel live in a extension k' of degree at most $\ell^g - 1$ over $k = \mathbb{F}_q$;
- The isogeny formula assumes that the points are in affine coordinates. In practice, given A/\mathbb{F}_q we only have projective coordinates \Rightarrow we use differential additions to normalize the coordinates;
- Computing the normalization factors takes $O(\log \ell)$ operations in k';
- Computing the points of the kernel via differential additions take $O(\ell^g)$ operations in k';
- If $\ell \equiv 1 \pmod{4}$, applying the isogeny formula take $O(\ell^g)$ operations in k';
- If $\ell \equiv 3 \pmod{4}$, applying the isogeny formula take $O(\ell^{2g})$ operations in k';
\Rightarrow The total cost is $\widetilde{O}(\ell^{2g})$ or $\widetilde{O}(\ell^{3g})$ operations in \mathbb{F}_q.

Theorem ([Lubicz, R.])

We can compute the isogeny directly given the equations (in a suitable form) of the kernel K of the isogeny. When K is rational, this gives a complexity of $\widetilde{O}(\ell^g)$ or $\widetilde{O}(\ell^{2g})$ operations in \mathbb{F}_q.
An \((\ell, \ell)\)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
An \((\ell, \ell)\)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
An (ℓ, ℓ)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
An \((\ell, \ell)\)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
An \((\ell, \ell)\)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
An \((\ell, \ell)\)-isogeny graph in dimension 2 [Bisson, Cosset, R.]
Let \(f : (A, H_1) \to (B, H_2) \) be an isogeny between principally polarised abelian varieties;

When \(\ker f \) is not maximal isotropic in \(A[\ell] \) then \(f^*H_2 \) is not of the form \(\ell H_1 \);

How can we go from the principal polarisation \(H_1 \) to \(f^*H_1 \)?
Non principal polarisations

Theorem (Birkenhake-Lange, Th. 5.2.4)

Let A be an abelian variety with a principal polarisation \mathcal{L}_1;

- Let $O_0 = \text{End}(A)^s$ be the real algebra of endomorphisms symmetric under the Rosati involution;
- Let $\text{NS}(A)$ be the Néron-Severi group of line bundles modulo algebraic equivalence.

Then

- $\text{NS}(A)$ is a torsor under the action of O_0;
- This induces a bijection between polarisations of degree d in $\text{NS}(A)$ and totally positive symmetric endomorphisms of norm d in O_0;
- The isomorphic class of a polarisation $\mathcal{L}_f \in \text{NS}(A)$ for $f \in O_0^+$ correspond to the action $\varphi \mapsto \varphi^* f \varphi$ of the automorphisms of A.
Cyclic isogeny

Let \(f : (A, H_1) \to (B, H_2) \) be an isogeny between principally polarised abelian varieties with cyclic kernel of degree \(\ell \);

There exists \(\varphi \) such that the following diagram commutes:

\[
\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow{\Phi_{f^*H_2}} & & \downarrow{\Phi_{H_2}} \\
\hat{A} & \xleftarrow{\hat{f}} & \hat{B} \\
\downarrow{\Phi_{H_1}} & & \downarrow{\Phi_{H_2}} \\
A & \xleftarrow{\varphi} & B
\end{array}
\]

\(\varphi \) is an \((\ell, 0, \ldots, \ell, 0, \ldots)\)-isogeny whose kernel is not isotropic for the \(H_1 \)-Weil pairing on \(A[\ell] \);

\(\varphi \) commutes with the Rosatti involution so is a real endomorphism (\(\varphi \) is \(H_1 \)-symmetric);

\(\varphi \) is totally positive.
The isogeny f induces a compatible isogeny between $\varphi H_1 = f^* H_2$ and H_2 where φH_1 is given by the following diagram

\[
\begin{array}{ccc}
A & \xrightarrow{\varphi} & A \\
\downarrow{\Phi_{\varphi H_1}} & & \downarrow{\Phi_{H_1}} \\
\hat{A} & \xrightarrow{f} & A
\end{array}
\]

- φ plays the same role as $[\ell]$ for ℓ-isogenies;
- We then define the φ-contragredient isogeny \tilde{f} as the isogeny making the following diagram commute

\[
\begin{array}{ccc}
x \in (A, \varphi^* H_1) & \xrightarrow{f} & y \in (B, \varphi H_2) \\
\downarrow{\varphi} & & \downarrow{\tilde{f}} \\
\tilde{f}(y) \in (A, H_1) & \xrightarrow{\tilde{f}} & \hat{A}
\end{array}
\]
We can use the isogeny theorem to compute f from $(A, \varphi H_1)$ down to (B, H_2) or \tilde{f} from (B, H_2) up to $(A, \varphi H_1)$ as before;

What about changing level between $(A, \varphi H_1)$ and (A, H_1)?

φH_1 fits in the following diagram:

![Diagram](image)

Applying the isogeny theorem on φ allows to find relations between $\varphi^* H_1$ and H_1 but we want φH_1.
\(\varphi \)-change of level

- \(\varphi \) is a totally positive element of a totally positive order \(O_0 \);
- A theorem of Siegel show that \(\varphi \) is a sum of \(m \) squares in \(K_0 = O_0 \otimes \mathbb{Q} \);
- Clifford’s algebras give a matrix \(F \in \text{Mat}_r(K_0) \) such that \(\text{diag}(\varphi) = F^* F \);
- We can use this matrix \(F \) to change level as before: If \(X \in (\mathbb{C}^g)^r \) and \(Y = F(X) \in (\mathbb{C}^g)^r \), \(j \in (\mathbb{Q}^g)^r \) and \(i = F(j) \), we have

\[
\vartheta \left[\begin{array}{c} 0 \\ i_1 \\ \vdots \\ i_r \end{array} \right] (Y_1, \frac{\Omega}{n}) \cdots \vartheta \left[\begin{array}{c} 0 \\ i_r \end{array} \right] (Y_r, \frac{\Omega}{n}) =
\sum_{t_1, \ldots, t_r \in K(\varphi H_1) \atop F(t_1, \ldots, t_r) = (0, \ldots, 0)} \vartheta \left[\begin{array}{c} 0 \\ j_1 \\ \vdots \\ j_r \end{array} \right] (X_1 + t_1, \frac{\varphi^{-1} \Omega}{n}) \cdots \vartheta \left[\begin{array}{c} 0 \\ j_r \end{array} \right] (X_r + t_r, \frac{\varphi^{-1} \Omega}{n}),
\]

Remark

- In general \(r \) can be larger than \(m \);
- The matrix \(F \) acts by real endomorphism rather than by integer multiplication;
- There may be denominators in the coefficients of \(F \).
The Algorithm for cyclic isogenies [Dudeanu, Jetchev, R.]

\[B = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g), \quad A = \mathbb{C}^g / (\mathbb{Z}^g + \varphi \Omega \mathbb{Z}^n) \]

\[\vartheta^B_b := \vartheta \left[\frac{0}{b}, \frac{\Omega}{n} \right], \quad \vartheta^A_b := \vartheta \left[\frac{0}{b}, \frac{\varphi \Omega}{n} \right] \]

Theorem

Let \(X \) in \((\mathbb{C}^g)^r\) and \(Y = X F^{-1} \in (\mathbb{C}^g)^r\). Let \(i \in (\mathbb{Z}(\mathbb{n}))^r\) and \(j = i F^{-1} \).

\[\vartheta^A_{i_1}(Y_1) \cdots \vartheta^A_{i_r}(Y_r) = \sum_{t_1, \ldots, t_r \in K(\varphi H_2)}^{t_1, \ldots, t_r \in K(\varphi H_2)} \vartheta^B_{j_1}(X_1 + t_1) \cdots \vartheta^B_{j_r}(X_r + t_r), \]

\((x, 0, \ldots, 0) \in (A^r, \varphi H_1 \ast \cdots \ast \varphi H_1) \)

\(t \quad F \)

\(\varphi \)

\(t \quad F(x, 0, \ldots, 0) \in (A^r, \varphi H_1 \ast \cdots \ast \varphi H_1) \)

\(F \)

\(F \circ t \quad F(x, 0, \ldots, 0) \in (A^r, H_1 \ast \cdots \ast H_1) \)
Hidden details

- We normalize the coordinates by using multi-way additions;
- The real endomorphisms are codiagonalisables (in the ordinary case), this is important to apply the isogeny theorem;
- If \(g = 2, \ K_0 = \mathbb{Q}(\sqrt{d}) \), the action of \(\sqrt{d} \) is given by a standard \((d, d)\)-isogeny, so we can compute it using the previous algorithm for \(d\)-isogenies!
- The important point is that this algorithm is such that we can keep track of the projective factors when computing the action of \(\sqrt{d} \).

Remark

Computing the action of \(\sqrt{d} \) directly may be expensive if \(d \) is big.
AVIsogenies [Bisson, Cosset, R.]

- AVIsogenies: Magma code written by Bisson, Cosset and R.
 http://avisogenies.gforge.inria.fr
- Released under LGPL 2+.
- Implement isogeny computation (and applications thereof) for abelian varieties using theta functions.
- Current release 0.6.
- Cyclic isogenies coming “soon”!