Computing optimal pairings on abelian varieties with theta functions

2013/08/08 — Microsoft Research

David Lubicz, Damien Robert
Outline

1. Curves, pairings and cryptography
2. Abelian varieties
3. Theta functions
4. Pairings with theta functions
5. Performance
1

Curves, pairings and cryptography
Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application $e : G_1 \times G_1 \rightarrow G_2$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2.
 \Rightarrow MOV attacks on supersingular elliptic curves.

- Identity-based cryptography [BF03].
- Short signature [BLS04].
- One way tripartite Diffie–Hellman [Jou04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [Goy+06].
The Weil pairing on elliptic curves

- Let $E : y^2 = x^3 + ax + b$ be an elliptic curve over a field k (char $k \neq 2, 3$, $4a^3 + 27b^2 \neq 0$).
- Let $P, Q \in E[\ell]$ be points of ℓ-torsion.
- Let f_P be a function associated to the principal divisor $\ell(P) - \ell(0)$, and f_Q to $\ell(Q) - \ell(0)$. We define:
 \[e_{W,\ell}(P, Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}. \]
- The application $e_{W,\ell} : E[\ell] \times E[\ell] \rightarrow \mu_\ell(\overline{k})$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number such that $\ell \mid q^d - 1$; $\overline{\mathbb{F}}_q$ is then the smallest extension containing $\mu_\ell(\overline{k})$.
The Tate pairing on elliptic curves over \mathbb{F}_q

Definition
The Tate pairing is a non degenerate (on the right) bilinear application given by

$$e_T : E_0[\ell] \times \frac{E(\mathbb{F}_q)}{\ell E(\mathbb{F}_q)} \longrightarrow \frac{\mathbb{F}^*_q}{\ell \mathbb{F}^*_q}.$$

$$(P, Q) \longmapsto f_P((Q) - (0))$$

where

$$E_0[\ell] = \{ P \in E[\ell](\mathbb{F}_q^d) \mid \pi(P) = [q]P \}.$$

- On \mathbb{F}_q^d, the Tate pairing is a non degenerate pairing

$$e_T : E[\ell](\mathbb{F}_q^d) \times \frac{E(\mathbb{F}_q^d)}{\ell E(\mathbb{F}_q^d)} \rightarrow \frac{\mathbb{F}^*_q}{\ell \mathbb{F}^*_q} \cong \mu_\ell;$$

- If $\ell^2 \nmid E(\mathbb{F}_q^d)$ then $E(\mathbb{F}_q^d)/\ell E(\mathbb{F}_q^d) \cong E[\ell](\mathbb{F}_q^d)$;

- We normalise the Tate pairing by going to the power of $(q^d - 1)/\ell$.

- This final exponentiation allows to save some computations. For instance if $d = 2d'$ is even, we can suppose that $Q = (x_2, y_2)$ with $x_2 \in E(\mathbb{F}_{q^{d'}})$. Then the denominators of $f_{\lambda, \mu, P}(Q)$ are ℓ-th powers and are killed by the final exponentiation.
Miller’s functions

- We need to compute the functions \(f_P \) and \(f_Q \). More generally, we define the Miller’s functions:

Definition

Let \(\lambda \in \mathbb{N} \) and \(X \in E[\ell] \), we define \(f_{\lambda,X} \in k(E) \) to be a function thus that:

\[
(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).
\]

- We want to compute (for instance) \(f_{\ell,P}(Q - 0) \).
Miller’s algorithm

• The key idea in Miller’s algorithm is that

\[f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} f_{\mu,X} \]

where \(f_{\lambda,\mu,X} \) is a function associated to the divisor

\[([\lambda]X) + ([\mu]X) - ([\lambda + \mu]X) - (0). \]

• We can compute \(f_{\lambda,\mu,X} \) using the addition law in \(E \): if \([\lambda]X = (x_1, y_1)\) and \([\mu]X = (x_2, y_2)\) and \(\alpha = (y_1 - y_2)/(x_1 - x_2) \), we have

\[f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}. \]
Miller’s algorithm

\[[\lambda]X = (x_1, y_1) \quad [\mu]X = (x_2, y_2) \]

\[
 f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}.
\]
Miller’s algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: \(\ell \in \mathbb{N}, P = (x_1, y_1) \in E[\ell](\mathbb{F}_q), Q = (x_2, y_2) \in E(\mathbb{F}_{q^d}). \)

Output: \(e_T(P, Q). \)

1. **Compute the binary decomposition:** \(\ell := \sum_{i=0}^{I} b_i \cdot 2^i. \) Let \(T = P, f_1 = 1, f_2 = 1. \)

2. **For \(i \) in \([I..0] \) compute**
 2.1 \(\alpha, \) the slope of the tangent of \(E \) at \(T. \)
 2.2 \(T = 2T. \) \(T = (x_3, y_3). \)
 2.3 \(f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), \) \(f_2 = f_2^2(x_2 + (x_1 + x_3) - \alpha^2). \)
 2.4 \(\text{If } b_i = 1, \) then compute
 2.4.1 \(\alpha, \) the slope of the line going through \(P \) and \(T. \)
 2.4.2 \(T = T + Q. \) \(T = (x_3, y_3). \)
 2.4.3 \(f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), \) \(f_2 = f_2(x_2 + (x_1 + x_3) - \alpha^2). \)

Return

\[
\left(\frac{f_1}{f_2} \right)^{\frac{q^d-1}{\ell}}.
\]
Jacobian of curves

C a smooth irreducible projective curve of genus g.

- **Divisor**: formal sum $D = \sum n_i P_i$, $P_i \in C(\overline{k})$.
 \[\deg D = \sum n_i. \]
- **Principal divisor**: $\sum_{P \in C(\overline{k})} v_P(f).P$; $f \in \overline{k}(C)$.

Jacobian of $C =$ Divisors of degree 0 modulo principal divisors
- + Galois action
 = Abelian variety of dimension g.
- **Divisor class of a divisor $D \in \text{Jac}(C)$** is generically represented by a sum of g points.
Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

\[y^2 = f(x), \deg f = 5. \]

\[
D = P_1 + P_2 - 2\infty \\
D' = Q_1 + Q_2 - 2\infty
\]
Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

\[y^2 = f(x), \, \deg f = 5. \]

\[D = P_1 + P_2 - 2\infty \]
\[D' = Q_1 + Q_2 - 2\infty \]
Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

\[y^2 = f(x), \text{deg } f = 5. \]
Example of Jacobians

Dimension 3

Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate-Lichtenbaum pairings:

\[
e_W(P, Q) = f_P(D_Q)/f_Q(D_P)
\]

\[
e_T(P, Q) = f_P(D_Q).
\]
Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate-Lichtenbaum pairings:

\[
\begin{align*}
e_W(P, Q) &= f_P(D_Q)/f_Q(D_P) \\
e_T(P, Q) &= f_P(D_Q).
\end{align*}
\]

- A key ingredient for evaluating $f_P(D_Q)$ comes from Weil reciprocity theorem.

Theorem (Weil)

Let D_1 and D_2 be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

\[
f_{D_1}(D_2) = f_{D_2}(D_1).
\]
Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate-Lichtenbaum pairings:

$$
e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$
$$e_T(P,Q) = f_P(D_Q).$$

- The extension of Miller’s algorithm to Jacobians is “straightforward”;
- For instance if $g = 2$, the function $f_{\lambda,\mu,P}$ is of the form

$$\frac{y - l(x)}{(x - x_1)(x - x_2)}$$

where l is of degree 3.
Abelian varieties
Abelian varieties

Definition

An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example

- Elliptic curves= Abelian varieties of dimension 1;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \geq 4$, not every abelian variety is a Jacobian.
Isogenies and pairings

Let $f : A \to B$ be a separable isogeny with kernel K between two abelian varieties defined over k:

\[
\begin{array}{ccccccc}
0 & \longrightarrow & K & \longrightarrow & A & \longrightarrow & B & \longrightarrow & 0 \\
\end{array}
\]

\[
\begin{array}{ccccccc}
0 & \longleftarrow & \hat{A} & \longleftarrow & \hat{B} & \longleftarrow & \hat{K} & \longleftarrow & 0 \\
\end{array}
\]

- \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_f : K \times \hat{K} \to \overline{k}^*$:
 1. If $Q \in \hat{K}(\overline{k})$, Q defines a divisor D_Q on B;
 2. $\hat{f}(Q) = 0$ means that f^*D_Q is equal to a principal divisor (g_Q) on A;
 3. $e_f(P, Q) = g_Q(x)/g_Q(x + P)$. (This last function being constant in its definition domain).

- The Weil pairing $e_{W, \ell}$ is the pairing associated to the isogeny $[\ell] : A \to A$:

\[
e_{W, \ell} : A[\ell] \times \hat{A}[\ell] \to \mu_{\ell}(\overline{k}).
\]
Polarisations

If \mathcal{L} is an ample line bundle, the polarisation $\varphi_{\mathcal{L}}$ is a morphism

$$A \to \hat{A}, x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}.$$

Definition

Let \mathcal{L} be a principal polarization on A. The (polarized) Weil pairing $e_{W,\mathcal{L},\ell}$ is the pairing

$$e_{W,\mathcal{L},\ell} : A[\ell] \times A[\ell] \to \mu_\ell(k)$$

$$(P, Q) \mapsto e_{W,\ell}(P, \varphi_{\mathcal{L}}(Q))$$

associated to the polarization \mathcal{L}^ℓ:

$$A \xrightarrow{[\ell]} A \xrightarrow{\mathcal{L}} \hat{A}$$
The Tate pairings on abelian varieties over finite fields

- From the exact sequence

\[0 \to A[\ell](\overline{\mathbb{F}}_{q^d}) \to A(\overline{\mathbb{F}}_{q^d}) \to \ell A(\overline{\mathbb{F}}_{q^d}) \to 0 \]

we get from Galois cohomology a connecting morphism

\[\delta : A(\overline{\mathbb{F}}_{q^d})/\ell A(\overline{\mathbb{F}}_{q^d}) \to H^1(\text{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}),A[\ell]); \]

- Composing with the Weil pairing, we get a bilinear application

\[A[\ell](\overline{\mathbb{F}}_{q^d}) \times A(\overline{\mathbb{F}}_{q^d})/\ell A(\overline{\mathbb{F}}_{q^d}) \to H^1(\text{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}),\mu_\ell) \cong \mathbb{F}_{q^d}^*/(\mathbb{F}_{q^d}^*)^\ell \cong \mu_\ell \]

where the last isomorphism comes from the Kummer sequence

\[1 \to \mu_\ell \to \mathbb{F}_{q^d}^* \to \mathbb{F}_{q^d}^* \to 1 \]

and Hilbert 90;

- Explicitly, if \(P \in A[\ell](\overline{\mathbb{F}}_{q^d}) \) and \(Q \in A(\overline{\mathbb{F}}_{q^d}) \) then the (reduced) Tate pairing is given by

\[e_T(P, Q) = e_W(P, \pi(Q_0) - Q_0) \]

where \(Q_0 \) is any point such that \(Q = [\ell]Q_0 \) and \(\pi \) is the Frobenius of \(\mathbb{F}_{q^d} \).
Cycles and Lang reciprocity

- Let (A, L) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum n_i(P_i)$ on A, we can associate the divisor $\sum t_{P_i}^* L^{n_i}$ on A;
- The cycle $\sum n_i(P_i)$ corresponds to a trivial divisor iff $\sum n_i P_i = 0$ in A;
- If f is a function on A and $D = \sum (P_i)$ a cycle whose support does not contain a zero or pole of f, we let

$$f(D) = \prod f(P_i)^{n_i}.$$

(In the following, when we write $f(D)$ we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_1 and D_2 be two cycles equivalent to 0, and f_{D_1} and f_{D_2} be the corresponding functions on A. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1)$$
The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to $(P) - (0)$ and $(Q) - (0)$. The Weil pairing is given by

$$e_W(P, Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to $(P) - (0)$ and $(Q) - (0)$. The (non reduced) Tate pairing is given by

$$e_T(P, Q) = f_{\ell D_P}(D_Q).$$
Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g+1)/2$. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.
- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.
- If A is an abelian variety of dimension g, $A[\ell]$ is a $(\mathbb{Z}/\ell\mathbb{Z})$-module of dimension $2g \Rightarrow$ the structure of pairings on abelian varieties is richer.
Theta functions
Complex abelian varieties

- A complex abelian variety is of the form $A = V / \Lambda$ where $V \cong \mathbb{C}^g$ is a \mathbb{C}-vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathcal{L} on it;
- The Chern class of \mathcal{L} corresponds to a symplectic real form E on V such that $E(ix, iy) = E(x, y)$ and $E(\Lambda, \Lambda) \subset \mathbb{Z}$;
- The commutator pairing $e_\mathcal{L}$ is then given by $\exp(2i\pi E(\cdot, \cdot))$;
- A principal polarization on A corresponds to a decomposition $\Lambda = \Omega\mathbb{Z}^g + \mathbb{Z}^g$ with $\Omega \in \mathfrak{H}_g$ the Siegel space;
- The associated Riemann form on A is then given by $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = ^t x_1 \cdot y_2 - ^t y_1 \cdot x_2$.

Damien Robert – Computing optimal pairings on abelian varieties with theta functions
Theta coordinates

- The theta functions of level n give a system of projective coordinates:

$$
\vartheta \left[\begin{array}{c} a \\ b \end{array} \right] (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t(n+a)\Omega(n+a)+2\pi i t(n+a)(z+b)} \quad a, b \in \mathbb{Q}^g
$$

- If $n = 2$, we get (in the generic case) an embedding of the Kummer variety $A/ \pm 1$.

Remark

Working on level n mean we take a n-th power of the principal polarisation. So in the following we will compute the n-th power of the usual Weil and Tate pairings.
The differential addition law \((k = \mathbb{C})\)

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{i+t}(x + y) \vartheta_{j+t}(x - y) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0) \right) = \\
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{-i'+t}(y) \vartheta_{j'+t}(y) \right) \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k'+t}(x) \vartheta_{l'+t}(x) \right).
\]

where \(\chi \in \hat{Z}(2), i, j, k, l \in Z(\bar{n})\)

\((i', j', k', l') = A(i, j, k, l)\)

\[
A = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}
\]
Example: differential addition in dimension 1 and in level 2

Algorithm

Input \(z_p = (x_0, x_1), z_Q = (y_0, y_1) \) and \(z_{p-Q} = (z_0, z_1) \) with \(z_0 z_1 \neq 0 \);
\(z_0 = (a, b) \) and \(A = 2(a^2 + b^2), B = 2(a^2 - b^2) \).

Output \(z_{p+Q} = (t_0, t_1) \).

1. \(t'_0 = (x_0^2 + x_1^2)(y_0^2 + y_1^2)/A \)
2. \(t'_1 = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B \)
3. \(t_0 = (t'_0 + t'_1)/z_0 \)
4. \(t_1 = (t'_0 - t'_1)/z_1 \)

Return \((t_0, t_1) \)
Cost of the arithmetic with low level theta functions ($\text{char } k \neq 2$)

<table>
<thead>
<tr>
<th>Method</th>
<th>Montgomery</th>
<th>Level 2</th>
<th>Jacobians coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling</td>
<td>$5M + 4S + 1m_0$</td>
<td>$3M + 6S + 3m_0$</td>
<td>$3M + 5S$</td>
</tr>
<tr>
<td>Mixed Addition</td>
<td>$7M + 6S + 1m_0$</td>
<td></td>
<td>$7M + 6S + 1m_0$</td>
</tr>
</tbody>
</table>

Multiplication cost in genus 1 (one step).

<table>
<thead>
<tr>
<th>Method</th>
<th>Mumford</th>
<th>Level 2</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doubling</td>
<td>$34M + 7S$</td>
<td>$7M + 12S + 9m_0$</td>
<td>$49M + 36S + 27m_0$</td>
</tr>
<tr>
<td>Mixed Addition</td>
<td>$37M + 6S$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Multiplication cost in genus 2 (one step).
4

Pairings with theta functions
Proposition (Lubicz-R. \([LR13]\))

- For \(P \in A\) we note \(z_P\) a lift to \(\mathbb{C}^g\). We call \(P\) a projective point and \(z_P\) an affine point (because we describe them via their projective, resp affine, theta coordinates);

- We have (up to a constant)

\[
f_{\lambda, P}(z) = \frac{\vartheta(z)}{\vartheta(z + \lambda z_P)} \left(\frac{\vartheta(z + z_P)}{\vartheta(z)} \right)^{\lambda};
\]

- So (up to a constant)

\[
f_{\lambda, \mu, P}(z) = \frac{\vartheta(z + \lambda z_P) \vartheta(z + \mu z_P)}{\vartheta(z) \vartheta(z + (\lambda + \mu) z_P)}.\]
Three way addition

Proposition (Lubicz-R. [LR13])

From the affine points \(z_P, z_Q, z_R, z_{P+Q}, z_{P+R} \) and \(z_{Q+R} \) one can compute the affine point \(z_{P+Q+R} \).
(In level 2, the proposition is only valid for “generic” points).

Proof.

We can compute the three way addition using a generalised version of Riemann’s relations:

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{i+t}(z_{P+Q+R}) \vartheta_{j+t}(z_P) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k+t}(z_Q) \vartheta_{l+t}(z_R) \right) = \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{-i'+t}(z_0) \vartheta_{j'+t}(z_{Q+R}) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k'+t}(z_{P+R}) \vartheta_{l'+t}(z_{P+Q}) \right).
\]
Three way addition in dimension 1 level 2

Algorithm

Input \(x, y, z, X = y + z, Y = x + z, Z = x + y; \)

Output \(T = x + y + z. \)

Return

\[
T_0 = \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_0(y_0z_0 + y_1z_1)} + \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_0(y_0z_0 - y_1z_1)}
\]

\[
T_1 = \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_1(y_0z_0 + y_1z_1)} - \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_1(y_0z_0 - y_1z_1)}
\]
Computing the Miller function $f_{\lambda,\mu,P}((Q) - (0))$

Algorithm

Input $\lambda P, \mu P$ and Q;
Output $f_{\lambda,\mu,P}((Q) - (0))$

1. Compute $(\lambda + \mu)P, Q + \lambda P, Q + \mu P$ using normal additions and take any affine lifts $z_{(\lambda + \mu)P}, z_{Q + \lambda P}$ and $z_{Q + \mu P}$;
2. Use a three way addition to compute $z_{Q + (\lambda + \mu)P}$;

Return

$$f_{\lambda,\mu,P}((Q) - (0)) = \frac{\vartheta(z_Q + \lambda z_P)\vartheta(z_Q + \mu z_P)}{\vartheta(z_Q)\vartheta(z_Q + (\lambda + \mu)z_P)} \cdot \frac{\vartheta((\lambda + \mu)z_P)\vartheta(z_P)}{\vartheta(\lambda z_P)\vartheta(\mu z_P)}.$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.

- This allows us to evaluate the Weil and Tate pairings and derived pairings;
- Not possible a priori to apply this algorithm in level 2.
The Tate pairing with Miller’s functions and theta coordinates

- Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$; choose any lift z_P, z_Q and z_{P+Q}.
- The algorithm loop over the binary expansion of ℓ, and at each step does a doubling step, and if necessary an addition step.

Given $z_{\lambda P}$, $z_{\lambda P+Q}$;

Doubling Compute $z_{2\lambda P}$, $z_{2\lambda P+Q}$ using two differential additions;

Addition Compute $(2\lambda + 1)P$ and take an arbitrary lift $z_{(2\lambda+1)P}$. Use a three way addition to compute $z_{(2\lambda+1)P+Q}$.

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}$, z_0 and $z_{\ell P+Q}$, z_Q.

😊 Described this way can be extended to level 2 by using compatible additions;

😊 Three way additions and normal (or compatible) additions are quite cumbersome, is there a way to only use differential additions?
The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

Using directly the formula for \(f_{\ell, p}(z) \) we get that the Weil and Tate pairings are given by

\[
e_{W, \ell}(P, Q) = \frac{\vartheta(z_Q + \ell z_P)\vartheta(0)}{\vartheta(z_Q)\vartheta(\ell z_P)} \frac{\vartheta(z_P)\vartheta(\ell z_Q)}{\vartheta(z_P + \ell z_Q)\vartheta(0)}
\]

\[
e_{T, \ell}(P, Q) = \frac{\vartheta(z_Q + \ell z_P)\vartheta(0)}{\vartheta(z_Q)\vartheta(\ell z_P)}
\]
The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

P and Q points of ℓ-torsion.

\[
\begin{array}{cccccc}
 z_0 & z_P & 2z_P & \ldots & \ell z_P = \lambda^0_0 z_0 \\
 z_Q & z_P \oplus z_Q & 2z_P + z_Q & \ldots & \ell z_P + z_Q = \lambda^1_0 z_Q \\
 2z_Q & z_P + 2z_Q \\
 \ldots & \ldots \\
 \ell Q = \lambda^0_0 A & z_P + \ell z_Q = \lambda^1_0 z_P \\
\end{array}
\]

- $e_{W, \ell}(P,Q) = \frac{\lambda^1_0 z_0}{\lambda^0_0 z_Q}$.
- $e_{T, \ell}(P,Q) = \frac{\lambda^1_0}{\lambda^0_0}$.
Why does it work?

\[
\begin{align*}
 z_0 & \quad \alpha z_P \\
 \beta z_Q & \quad \gamma (z_P \oplus z_Q) \\
 \beta^2(2z_Q) & \quad \frac{\gamma^2 \alpha^2}{\beta} (2z_P + z_Q) \\
 \hdots & \quad \hdots \\
 \beta^2(\ell z_Q) & \quad \frac{\gamma^2 \beta^2}{\alpha} (z_P + \ell z_Q) = \lambda_0^{'1} \alpha z_P \\
\end{align*}
\]

We then have

\[
\begin{align*}
 \lambda_0^{'0} & = \alpha^2 \lambda_0^0, \\
 \lambda_0^{'0} & = \beta^2 \lambda_0^0, \\
 \lambda_1^{'0} & = \frac{\gamma^\ell \alpha^{(\ell(\ell-1))}}{\beta^\ell} \lambda_1^1, \\
 \lambda_1^{'1} & = \frac{\gamma^\ell \beta^{(\ell(\ell-1))}}{\alpha^\ell} \lambda_1^1, \\
 e_{W,\ell}(P,Q) & = \frac{\lambda_1^{'0} \lambda_0^{'1}}{\lambda_1^{'0} \lambda_0^{'1}} = \frac{\lambda_1^{'0} \lambda_0^{'1}}{\lambda_1^{'0} \lambda_0^{'1}} = e_{W,\ell}(P,Q), \\
 e_{T,\ell}(P,Q) & = \frac{\lambda_1^{'1}}{\lambda_0^{'0}} \cdot \frac{\gamma^\ell}{\alpha^\ell \beta^\ell} = \frac{\gamma^\ell}{\alpha^\ell \beta^\ell} e_{T,\ell}(P,Q).
\end{align*}
\]
The case $n = 2$

- If $n = 2$ we work over the Kummer variety K over k, so $e(P, Q) \in \overline{k}^{*, \pm 1}$.
- We represent a class $x \in \overline{k}^{*, \pm 1}$ by $x + 1/x \in \overline{k}^*$. We want to compute the symmetric pairing

 $$e_s(P, Q) = e(P, Q) + e(-P, Q).$$

- From $\pm P$ and $\pm Q$ we can compute $\{\pm (P + Q), \pm (P - Q)\}$ (need a square root), and from these points the symmetric pairing.
- e_s is compatible with the \mathbb{Z}-structure on K and $\overline{k}^{*, \pm 1}$.
- The \mathbb{Z}-structure on $\overline{k}^{*, \pm}$ can be computed as follow:

$$
(x^{\ell_1 + \ell_2} + \frac{1}{x^{\ell_1 + \ell_2}}) + (x^{\ell_1 - \ell_2} + \frac{1}{x^{\ell_1 - \ell_2}}) = (x^{\ell_1} + \frac{1}{x^{\ell_1}})(x^{\ell_2} + \frac{1}{x^{\ell_2}})
$$
Ate pairing

- Let $P \in G_2 = A[\ell] \cap \text{Ker}(\pi_q - [q])$ and $Q \in G_1 = A[\ell] \cap \text{Ker}(\pi_q - 1)$; $\lambda \equiv q \mod \ell$.
- In projective coordinates, we have $\pi^d_q(P + Q) = \lambda^d P + Q = P + Q$;
- Of course, in affine coordinates, $\pi^d_q(z_{P+Q}) \neq \lambda^d z_P + z_Q$.
- But if $\pi_q(z_{P+Q}) = C \ast (\lambda z_P + z_Q)$, then C is exactly the (non reduced) ate pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

Input $P \in G_2$, $Q \in G_1$;

1. Compute $z_Q + \lambda z_P$, λz_P using differential additions;
2. Find the projective factors C_1 and C_0 such that $z_Q + \lambda z_P = C_1 \ast \pi(z_{P+Q})$ and $\lambda z_P = C_0 \ast \pi(z_P)$ respectively;

Return $(C_1/C_0)^{q^d-1}/\ell$.
Optimal ate pairing

- Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i. ($\ell \nmid m$)
- The pairing

\[
a_\lambda : G_2 \times G_1 \rightarrow \mu_\ell
\]

\[
(P, Q) \mapsto \left(\prod_i f_{c_i, P}(Q)q^i \prod_i f_{\sum_j q_j^j, c_i q^i, P(Q)} \right)^{(q^d - 1)/\ell}
\]

is non degenerate when $mdq^{d-1} \neq (q^d - 1)/r \sum_i ic_i q^{i-1} \mod \ell$.
- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \ldots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

\[
damienrobert - computing optimal pairings on abelian varieties with theta functions
\]
Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input \(\pi_q(P) = [q]P, \pi_q(Q) = Q, \lambda = m\ell = \sum c_i q^i; \)

1. **Compute the** \(z_Q + c_i z_P \) **and** \(c_i z_P; \)
2. **Apply Frobeniuses to obtain the** \(z_Q + c_i q^i z_P, c_i q^i z_P; \)
3. **Compute** \(c_i q^i z_P \oplus \sum_j c_j q^j z_P \) (up to a constant) **and then do a three way addition to compute** \(z_Q + c_i q^i z_P + \sum_j c_j q^j z_P \) (up to the same constant);
4. **Recurse until we get** \(\lambda z_P = C_0 \ast z_P \) **and** \(z_Q + \lambda z_P = C_1 \ast z_Q; \)

Return \((C_1 / C_0) \frac{q^d - 1}{\ell}. \)
The case $n = 2$

- Computing $c_i q^i z_P \pm \sum_j c_j q^j z_P$ requires a square root (very costly);
- And we need to recognize $c_i q^i z_P + \sum_j c_j q^j z_P$ from $c_i q^i z_P - \sum_j c_j q^j z_P$.
- We will use compatible additions: if we know x, y, z and $x + z$, $y + z$, we can compute $x + y$ without a square root;
- We apply the compatible additions with $x = c_i q^i z_P$, $y = \sum_j c_j q^j z_P$ and $z = z_Q$.
Compatible additions

• Recall that we know x, y, z and $x + z$, $y + z$;
• From it we can compute $(x + z) \pm (y + z) = \{x + y + 2z, x - y\}$ and of course $\{x + y, x - y\}$;
• Then $x + y$ is the element in $\{x + y, x - y\}$ not appearing in the preceding set;
• Since $x - y$ is a common point, we can recover it without computing a square root.
The compatible addition algorithm in dimension 1

Algorithm

Input \(x, y, Y = x + z, X = y + z \):

1. Computing \(x \pm y \):

\[
\alpha = (x_0^2 + x_1^2)(y_0^2 + y_1^2)/A \\
\beta = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B \\
\kappa_{00} = (\alpha + \beta), \kappa_{11} = (\alpha - \beta) \\
\kappa_{10} := x_0x_1y_0y_1/ab
\]

2. Computing \((x + z) \pm (y + z)\):

\[
\alpha' = (Y_0^2 + Y_1^2)(X_0^2 + X_1^2)/A \\
\beta' = (Y_0^2 - Y_1^2)(X_0^2 - X_1^2)/B \\
\kappa'_{00} = \alpha' + \beta', \kappa'_{11} = \alpha' - \beta' \\
\kappa'_{10} = Y_1Y_2X_1X_2/ab
\]

Return \(x + y = [\kappa_{00}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}), \kappa_{10}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}) + \kappa_{00}(\kappa_{11}\kappa'_{00} - \kappa'_{11}\kappa_{00})] \)
5

Performance
One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

Input

\(nP = (x_n, z_n); \ (n + 1)P = (x_{n+1}, z_{n+1}), \ (n + 1)P + Q = (x'_{n+1}, z'_{n+1}).\)

Output

\(2nP = (x_{2n}, z_{2n}); \ (2n + 1)P = (x_{2n+1}, z_{2n+1});\)
\((2n + 1)P + Q = (x'_{2n+1}, z'_{2n+1}).\)

1. \(\alpha = (x_n^2 + z_n^2); \ \beta = \frac{A}{B}(x_n^2 - z_n^2).\)
2. \(X_n = \alpha^2; \ X_{n+1} = \alpha(x_{n+1}^2 + z_{n+1}^2); \ X'_{n+1} = \alpha(x'_{n+1}^2 + z'_{n+1}^2);\)
3. \(Z_n = \beta(x_n^2 - z_n^2); \ Z_{n+1} = \beta(x_{n+1}^2 - z_{n+1}^2); \ Z'_{n+1} = \beta(x'_{n+1}^2 + z'_{n+1}^2);\)
4. \(x_{2n} = X_n + Z_n; \ x_{2n+1} = (X_{n+1} + Z_{n+1})/x_P; \ x'_{2n+1} = (X'_{n+1} + Z'_{n+1})/x_Q;\)
5. \(z_{2n} = \frac{a}{b}(X_n - Z_n); \ z_{2n+1} = (X_{n+1} - Z_{n+1})/z_P; \ z'_{2n+1} = (X'_{n+1} - Z'_{n+1})/z_Q;\)

Return

\((x_{2n}, z_{2n}); \ (x_{2n+1}, z_{2n+1}); \ (x'_{2n+1}, z'_{2n+1}).\)
Weil and Tate pairing over \mathbb{F}_{q^d}

\[
\begin{align*}
g = 1 & \quad 4M + 2m + 8S + 3m_0 \\
g = 2 & \quad 8M + 6m + 16S + 9m_0
\end{align*}
\]

Tate pairing with theta coordinates, $P, Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

Operations in \mathbb{F}_q: M: multiplication, S: square, m multiplication by a coordinate of P or Q, m_0 multiplication by a theta constant;

Mixed operations in \mathbb{F}_q and \mathbb{F}_{q^d}: M, m and m_0;

Operations in \mathbb{F}_{q^d}: M, m and S.

Remark

- **Doubling step for a Miller loop with Edwards coordinates**: $9M + 7S + 2m_0$;
- **Just doubling a point in Mumford projective coordinates using the fastest algorithm** [Lan05]: $33M + 7S + 1m_0$;
- **Asymptotically the final exponentiation is more expensive than Miller’s loop, so the Weil’s pairing is faster than the Tate’s pairing!**
Tate pairing

\[
g = 1 \quad 1m + 2S + 2M + 2M + 1m + 6S + 3m_0 \\
g = 2 \quad 3m + 4S + 4M + 4M + 3m + 12S + 9m_0
\]

Tate pairing with theta coordinates, \(P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d}) \) (one step)

<table>
<thead>
<tr>
<th>(g = 1)</th>
<th>Doubling</th>
<th>Addition</th>
<th>One step</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) even</td>
<td>(1M + 1S + 1M)</td>
<td>(1M + 1M)</td>
<td>(1M + 2S + 2M)</td>
</tr>
<tr>
<td>(d) odd</td>
<td>(2M + 2S + 1M)</td>
<td>(2M + 1M)</td>
<td></td>
</tr>
</tbody>
</table>

| \(g = 2 \) | \(Q \) degenerate + | \(1M + 1S + 3M \) | \(1M + 3M \) | \(3M + 4S + 4M \) |
| \(d \) even | General case | \(2M + 2S + 18M \) | \(2M + 18M \) | |

\(P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d}) \) (counting only operations in \(\mathbb{F}_{q^d} \)).
Ate and optimal ate pairings

\[
\begin{align*}
g = 1 & \quad 4M + 1m + 8S + 1m + 3m_0 \\
g = 2 & \quad 8M + 3m + 16S + 3m + 9m_0
\end{align*}
\]

Ate pairing with theta coordinates, \(P \in G_2, Q \in G_1 \) (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs \([\text{Gra}+07]\):

- **Doubling** \(1I + 29M + 9S + 7M \)
- **Addition** \(1I + 29M + 5S + 7M \)

(where \(I \) denotes the cost of an affine inversion in \(\mathbb{F}_{q^d} \)).

