Computing optimal pairings on abelian varieties with theta functions
06/06/2013 — AGCT

David Lubicz, Damien Robert

June 6, 2013
Outline

1. Pairings on curves
2. Abelian varieties
3. Theta functions
4. Pairings with theta functions
5. Performance
The Weil pairing on elliptic curves

Let $E : y^2 = x^3 + ax + b$ be an elliptic curve over k (char $k \neq 2,3$).
Let $P, Q \in E[\ell]$ be points of ℓ-torsion.
Let f_P be a function associated to the principal divisor $\ell(P) - \ell(0)$, and f_Q to $\ell(Q) - \ell(0)$. We define:

$$e_{W,\ell}(P,Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}.$$

The application $e_{W,\ell} : E[\ell] \times E[\ell] \rightarrow \mu_\ell(k)$ is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree d is the smallest number thus that $\ell \mid q^d - 1$; \mathbb{F}_{q^d} is then the smallest extension containing $\mu_\ell(k)$.
The Tate pairing on elliptic curves over \mathbb{F}_q

Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$e_T: E_0[\ell] \times E(\mathbb{F}_q)/\ell E(\mathbb{F}_q) \rightarrow \mathbb{F}_q^*/\ell^d \mathbb{F}_q^*$$

$$(P,Q) \mapsto f_P((Q) - (0))$$

where

$$E_0[\ell] = \{P \in E[\ell](\mathbb{F}_q^d) \mid \pi(P) = [q]P\}.$$

- On \mathbb{F}_q^d, the Tate pairing is a non degenerate pairing

$$e_T: E[\ell](\mathbb{F}_q^d) \times E(\mathbb{F}_q^d)/\ell E(\mathbb{F}_q^d) \rightarrow \mathbb{F}_q^*/\ell^d \mathbb{F}_q^* \simeq \mu_\ell;$$

- We normalise the Tate pairing by going to the power of $(q^d - 1)/\ell$.
We need to compute the functions f_P and f_Q. More generally, we define the Miller’s functions:

Definition

Let $\lambda \in \mathbb{N}$ and $X \in E[\ell]$, we define $f_{\lambda,X} \in k(E)$ to be a function thus that:

$$(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).$$

We want to compute (for instance) $f_{\ell,P}((Q) - (0))$.
Miller’s algorithm

- The key idea in Miller’s algorithm is that
 \[f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} \hat{f}_{\lambda,\mu,X} \]
 where \(\hat{f}_{\lambda,\mu,X} \) is a function associated to the divisor
 \[([\lambda + \mu]X) - ([\lambda]X) - ([\mu]X) + (0). \]

- We can compute \(\hat{f}_{\lambda,\mu,X} \) using the addition law in \(E \): if \([\lambda]X = (x_1, y_1) \) and \([\mu]X = (x_2, y_2) \) and \(\alpha = (y_1 - y_2)/(x_1 - x_2) \), we have
 \[\hat{f}_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}. \]
Let C be a curve of genus g;

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor of degree 0 on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = f_P(D_Q)/f_Q(D_P)$$
$$e_T(P,Q) = f_P(D_Q).$$
Let C be a curve of genus g;

Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor of degree 0 on C representing P;

By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;

The same formulas as for elliptic curve define the Weil and Tate pairings:

\[
e_W(P,Q) = f_P(D_Q)/f_Q(D_P)
\]
\[
e_T(P,Q) = f_P(D_Q).
\]

A key ingredient for evaluating $f_P(D_Q)$ comes from Weil reciprocity theorem.

Theorem (Weil)

Let D_1 and D_2 be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

\[
f_{D_1}(D_2) = f_{D_2}(D_1).
\]
Let C be a curve of genus g;
Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor of degree 0 on C representing P;
By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
The same formulas as for elliptic curve define the Weil and Tate pairings:
\[
e_W(P,Q) = f_P(D_Q)/f_Q(D_P)
\]
\[
e_T(P,Q) = f_P(D_Q).
\]

The extension of Miller's algorithm to Jacobians is “straightforward”;
For instance if $g = 2$, the function $f_{\lambda,\mu,P}$ is of the form
\[
\frac{y - l(x)}{(x - x_1)(x - x_2)}
\]
where l is of degree 3.
Definition

An **Abelian variety** is a complete connected group variety over a base field k.

Example

- **Elliptic curves** = Abelian varieties of dimension 1;
- If C is a (projective smooth absolutely irreducible) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \geq 4$, not every abelian variety is a Jacobian.
Let \(f : A \rightarrow B \) be a separable isogeny with kernel \(K \) between two abelian varieties defined over \(k \):

\[
\begin{array}{ccccccccc}
0 & \longrightarrow & K & \longrightarrow & A & \longrightarrow & B & \longrightarrow & 0 \\
0 & \leftarrow & \hat{A} & \leftarrow & \hat{f} & \leftarrow & \hat{B} & \leftarrow & \hat{K} & \leftarrow & 0
\end{array}
\]

- \(\hat{K} \) is the Cartier dual of \(K \), and we have a non degenerate pairing \(e_f : K \times \hat{K} \rightarrow \overline{k}^* \):
 1. If \(Q \in \hat{K}(\overline{k}) \), \(Q \) defines a divisor \(D_Q \) on \(B \);
 2. \(\hat{f}(Q) = 0 \) means that \(f^*D_Q \) is equal to a principal divisor \((g_Q) \) on \(A \);
 3. \(e_f(P,Q) = g_Q(x)/g_Q(x+P) \). (This last function being constant in its definition domain).

- The Weil pairing \(e_{W,\ell} \) is the pairing associated to the isogeny \([\ell] : A \rightarrow A \).
If \mathcal{L} is an ample line bundle, the polarisation $\varphi_\mathcal{L}$ is a morphism $A \to \hat{A}$, $x \mapsto t^*_\mathcal{L} x \otimes \mathcal{L}^{-1}$.

Definition

Let \mathcal{L} be a principal polarization on A. The (polarized) Weil pairing $e_{W,\mathcal{L},\ell}$ is the pairing

$$e_{W,\mathcal{L},\ell} : A[\ell] \times A[\ell] \to \mu_\ell(k),$$

$$(P, Q) \mapsto e_{W,\ell}(P, \varphi_{\mathcal{L}}(Q))$$

associated to the polarization \mathcal{L}^ℓ:

$$A \xrightarrow{[\ell]} A \xrightarrow{\mathcal{L}} \hat{A}$$
The Tate pairings on abelian varieties over finite fields

- From the exact sequence
 \[0 \rightarrow A[\ell](\overline{F}_{q^d}) \rightarrow A(\overline{F}_{q^d}) \rightarrow A[\ell](\overline{F}_{q^d}) \rightarrow 0 \]
 we get from Galois cohomology a connecting morphism
 \[\delta : A(\overline{F}_{q^d})/\ell A(\overline{F}_{q^d}) \rightarrow H^1(\text{Gal}(\overline{F}_{q^d}/F_{q^d}), A[\ell]); \]

- Composing with the Weil pairing, we get a bilinear application
 \[A[\ell](\overline{F}_{q^d}) \times A(\overline{F}_{q^d})/\ell A(\overline{F}_{q^d}) \rightarrow H^1(\text{Gal}(\overline{F}_{q^d}/F_{q^d}), \mu_\ell) \simeq \overline{F}_{q^d}^* / F_{q^d}^\ell \simeq \mu_\ell \]
 where the last isomorphism comes from the Kummer sequence
 \[1 \rightarrow \mu_\ell \rightarrow \overline{F}_{q^d}^* \rightarrow \overline{F}_{q^d}^* \rightarrow 1 \]
 and Hilbert 90;

- Explicitly, if \(P \in A[\ell](\overline{F}_{q^d}) \) and \(Q \in A(\overline{F}_{q^d}) \) then the (reduced) Tate pairing is given by
 \[e_T(P, Q) = e_W(\overline{P}, \pi(\overline{Q_0}) - \overline{Q_0}) \]
 where \(Q_0 \) is any point such that \(Q = [\ell]Q_0 \) and \(\pi \) is the Frobenius of \(\overline{F}_{q^d} \).
Let \((A, \mathcal{L})\) be a principally polarized abelian variety;

- To a degree 0 cycle \(\sum(P_i)\) on \(A\), we can associate the line bundle \(\otimes t_{P_i}^* \mathcal{L}\) on \(A\);
- The cycle \(\sum(P_i)\) corresponds to a trivial line bundle iff \(\sum P_i = 0\) in \(A\);
- If \(f\) is a function on \(A\) and \(D = \sum(P_i)\) a cycle whose support does not contain a zero or pole of \(f\), we let

\[
 f(D) = \prod f(P_i).
\]

(In the following, when we write \(f(D)\) we will always assume that we are in this situation.)

Theorem ([Lan58])

Let \(D_1\) and \(D_2\) be two cycles equivalent to 0, and \(f_{D_1}\) and \(f_{D_2}\) be the corresponding functions on \(A\). Then

\[
 f_{D_1}(D_2) = f_{D_2}(D_1)
\]
The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to $(P) - (0)$ and $(Q) - (0)$. The Weil pairing is given by

$$e_W(P, Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to $(P) - (0)$ and $(Q) - (0)$. The (non reduced) Tate pairing is given by

$$e_T(P, Q) = f_{\ell D_P}(D_Q).$$
Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g + 1)/2$. We have more liberty to find optimal abelian varieties in function of the security parameters.

- If A is an abelian variety of dimension g, $A[\ell]$ is a \((\mathbb{Z}/\ell\mathbb{Z})\)-module of dimension $2g \Rightarrow$ the structure of pairings on abelian varieties is richer.

- Supersingular abelian varieties can have larger embedding degree than supersingular elliptic curves.

- Over a Jacobian, we can use twists even if they are not coming from twists of the underlying curve.
A complex abelian variety is of the form $A = V/\Lambda$ where V is a \mathbb{C}-vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathcal{L} on it;

The Chern class of \mathcal{L} corresponds to a symplectic real form E on V such that $E(i x, i y) = E(x, y)$ and $E(\Lambda, \Lambda) \subseteq \mathbb{Z}$;

The commutator pairing $e_\mathcal{L}$ is then given by $\exp(2i \pi E(\cdot, \cdot))$;

A principal polarization on A corresponds to a decomposition $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ with $\Omega \in \mathfrak{H}_g$ the Siegel space;

The associated Riemann form on A is then given by $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = ^t x_1 \cdot y_2 - ^t y_1 \cdot x_2$.
The theta functions of level \(n \) give a system of projective coordinates:

\[
\vartheta \left[\begin{array}{c} a \\ b \end{array} \right] (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i (n+a)\Omega(n+a)+2\pi i (n+a)(z+b)} \quad a, b \in \mathbb{Q}^g
\]

If \(n = 2 \), we get (in the generic case) an embedding of the Kummer variety \(A/\pm 1 \).

Remark

Working on level \(n \) mean we take a \(n \)-th power of the principal polarisation. So in the following we will compute the \(n \)-th power of the usual Weil and Tate pairings.
The differential addition law \((k = \mathbb{C})\)

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{i+t}(x+y) \vartheta_{j+t}(x-y) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k+t}(0) \vartheta_{l+t}(0) \right) = \\
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{-i+t}(y) \vartheta_{j+t}(y) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k'+t}(x) \vartheta_{l'+t}(x) \right).
\]

where \(\chi \in \hat{\mathbb{Z}}(2), \ i, j, k, l \in \mathbb{Z}(n)\)

\((i', j', k', l') = A(i, j, k, l)\)

\[
A = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}
\]
Example: differential addition in dimension 1 and in level 2

Algorithm

Input \(z_P = (x_0, x_1), z_Q = (y_0, y_1) \) and \(z_{P-Q} = (z_0, z_1) \) with \(z_0 z_1 \neq 0 \);
\(z_0 = (a, b) \) and \(A = 2(a^2 + b^2), B = 2(a^2 - b^2) \).

Output \(z_{P+Q} = (t_0, t_1) \).

1. \(t_0' = (x_0^2 + x_1^2)(y_0^2 + y_2^2)/A \)
2. \(t_1' = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B \)
3. \(t_0 = (t_0' + t_1')/z_0 \)
4. \(t_1 = (t_0' - t_1')/z_1 \)

Return \((t_0, t_1) \)
Miller functions with theta coordinates

Proposition (Lubicz-R. [LR13])

- For $P \in A$ we note z_P a lift to \mathbb{C}^g. We call P a projective point and z_P an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$f_{\lambda, P}(z) = \frac{\vartheta(z)}{\vartheta(z + \lambda z_P)} \left(\frac{\vartheta(z + z_P)}{\vartheta(z)} \right)^{\lambda};$$

- So (up to a constant)

$$f_{\lambda, \mu, P}(z) = \frac{\vartheta(z + \lambda z_P)\vartheta(z + \mu z_P)}{\vartheta(z)\vartheta(z + (\lambda + \mu)z_P)}.$$
Three way addition

Proposition (Lubicz-R. [LR13])

From the affine points \(z_P, z_Q, z_R, z_{P+Q}, z_{P+R} \) and \(z_{Q+R} \) one can compute the affine point \(z_{P+Q+R} \).

(In level 2, the proposition is only valid for “generic” points).

Proof.

We can compute the three way addition using a generalised version of Riemann’s relations:

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{i+t}(z_{P+Q+R}) \vartheta_{j+t}(z_P) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k+t}(z_Q) \vartheta_{l+t}(z_R) \right) =
\]

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{-i'+t}(z_0) \vartheta_{j'+t}(z_{Q+R}) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k'+t}(z_{P+R}) \vartheta_{l'+t}(z_{P+Q}) \right).
\]
Computing the Miller function $f_{\lambda, \mu, P}((Q) - (0))$

Algorithm

Input $\lambda P, \mu P$ and Q;

Output $f_{\lambda, \mu, P}((Q) - (0))$

1. **Compute** $(\lambda + \mu)P, Q + \lambda P, Q + \mu P$ using normal additions and take any affine lifts $z_{(\lambda+\mu)P}, z_{Q+\lambda P}$ and $z_{Q+\mu P}$;

2. **Use a three way addition to compute** $z_{Q+(\lambda+\mu)P}$;

Return

$$f_{\lambda, \mu, P}((Q) - (0)) = \frac{\vartheta(z_Q + \lambda z_P) \vartheta(z_Q + \mu z_P) \vartheta((\lambda + \mu)z_P) \vartheta(z_P)}{\vartheta(z_Q) \vartheta(z_Q + (\lambda + \mu)z_P) \vartheta(\lambda z_P) \vartheta(\mu z_P)}.$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.

- This allow us to evaluate the Weil and Tate pairings and derived pairings;
- Not possible *a priori* to apply this algorithm in level 2.
The Tate pairing with Miller’s functions and theta coordinates

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$; choose any lift z_P, z_Q and z_{P+Q}.

- The algorithm loop over the binary expansion of ℓ, and at each step does a doubling step, and if necessary an addition step.

Given $z_{\lambda P}$, $z_{\lambda P+Q}$;

Doubling Compute $z_{2\lambda P}$, $z_{2\lambda P+Q}$ using two differential additions;

Addition Compute $(2\lambda + 1)P$ and take an arbitrary lift $z_{(2\lambda+1)P}$. Use a three way addition to compute $z_{(2\lambda+1)P+Q}$.

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}$, z_0 and $z_{\ell P+Q}$, z_Q.

- Described this way can be extended to level 2 by using compatible additions;

- Can we get rid of three way additions?
The Weil and Tate pairing with theta coordinates (Lubicz-R. [LR10])

P and Q points of ℓ-torsion.

\[
\begin{align*}
&z_0 & z_P & 2z_P & \ldots & \ell z_P = \lambda^0_P z_0 \\
&z_Q & z_P \oplus z_Q & 2z_P + z_Q & \ldots & \ell z_P + z_Q = \lambda^1_P z_Q \\
&2z_Q & z_P + 2z_Q & & & \\
&\ldots & \ldots & & & \\
&\ell Q = \lambda^0_Q 0_A & z_P + \ell z_Q = \lambda^1_Q z_P & & & \\
\end{align*}
\]

\[
e_{W,\ell}(P,Q) = \frac{\lambda^1_P \lambda^0_Q}{\lambda^0_P \lambda^1_Q}.
\]

\[
e_{T,\ell}(P,Q) = \frac{\lambda^1_P}{\lambda^0_P}.
\]
Ate pairing

- Let \(P \in G_2 = A[\ell] \cap \text{Ker}(\pi_q - [q]) \) and \(Q \in G_1 = A[\ell] \cap \text{Ker}(\pi_q - 1); \) \(\lambda \equiv q \mod \ell. \)
- In projective coordinates, we have \(\pi^d_q(P + Q) = \lambda^d P + Q = P + Q; \)
- Of course, in affine coordinates, \(\pi^d_q(z_{P+Q}) \neq \lambda^d z_P + z_Q. \)
- But if \(\pi_q(z_{P+Q}) = C \ast (\lambda z_P + z_Q), \) then \(C \) is exactly the (non reduced) ate pairing (up to a renormalisation)!

Algorithm (Computing the ate pairing)

Input \(P \in G_2, Q \in G_1; \)

1. **Compute** \(z_Q + \lambda z_P, \lambda z_P \) using differential additions;
2. **Find the projective factors** \(C_1 \) and \(C_0 \) such that \(z_Q + \lambda z_P = C_1 \ast \pi(z_{P+Q}) \) and \(\lambda z_P = C_0 \ast \pi(z_P) \) respectively;

Return \((C_1/C_0)^{q^d-1}/\ell. \)
Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i. ($\ell \nmid m$)

The pairing

$$a_\lambda : G_2 \times G_1 \rightarrow \mu_\ell$$

$$(P, Q) \mapsto \left(\prod_i f_{c_i, P}(Q)^q^i \prod_i \sum_{j>i} c_j q^j, c_i q^i, P(Q) \right)^{(q^d-1)/\ell}$$

is non-degenerate when $md q^{d-1} \neq (q^d - 1)/r \sum_i i c_i q^{i-1} \mod \ell$.

Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \ldots, q^{\varphi(d)-1}$.

We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.

Optimal ate pairing
Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input \(\pi_q(P) = [q]P, \pi_q(Q) = Q, \lambda = m\ell = \sum c_i q^i; \)

1. Compute the \(z_Q + c_i z_P \) and \(c_i z_P; \)
2. Apply Frobeniuses to obtain the \(z_Q + c_i q^i z_P, c_i q^i z_P; \)
3. Compute \(c_i q^i z_P \oplus \sum_j c_j q^j z_P \) (up to a constant) and then do a three way addition to compute \(z_Q + c_i q^i z_P + \sum_j c_j q^j z_P \) (up to the same constant);
4. Recurse until we get \(\lambda z_P = C_0 * z_P \) and \(z_Q + \lambda z_P = C_1 * z_Q; \)

Return \((C_1/C_0)^{q^d-1\over \ell}. \)
One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

Input $nP = (x_n, z_n); (n+1)P = (x_{n+1}, z_{n+1}), (n+1)P + Q = (x'_{n+1}, z'_{n+1})$.

Output $2nP = (x_{2n}, z_{2n}); (2n+1)P = (x_{2n+1}, z_{2n+1});$

$(2n+1)P + Q = (x'_{2n+1}, z'_{2n+1})$.

1. $\alpha = (x^2_n + z^2_n); \beta = \frac{A}{B}(x^2_n - z^2_n)$.
2. $X_n = \alpha^2; X_{n+1} = \alpha(x^2_{n+1} + z^2_{n+1}); X'_{n+1} = \alpha(x'^2_{n+1} + z'^2_{n+1});$
3. $Z_n = \beta(x^2_n - z^2_n); Z_{n+1} = \beta(x^2_{n+1} - z^2_{n+1}); Z'_{n+1} = \beta(x'^2_{n+1} + z'^2_{n+1});$
4. $x_{2n} = X_n + Z_n; x_{2n+1} = (X_{n+1} + Z_{n+1})/x_P; x'_{2n+1} = (X'_{n+1} + Z'_{n+1})/x_Q;$
5. $z_{2n} = \frac{a}{b}(X_n - Z_n); z_{2n+1} = (X_{n+1} - Z_{n+1})/z_P; z'_{2n+1} = (X'_{n+1} - Z'_{n+1})/z_Q;$

Return $(x_{2n}, z_{2n}); (x_{2n+1}, z_{2n+1}); (x'_{2n+1}, z'_{2n+1})$.
Weil and Tate pairing over \mathbb{F}_{q^d}

\[
\begin{align*}
g = 1 & \quad 4M + 2m + 8S + 3m_0 \\
g = 2 & \quad 8M + 6m + 16S + 9m_0
\end{align*}
\]

Tate pairing with theta coordinates, $P, Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

Operations in \mathbb{F}_q: M: multiplication, S: square, m multiplication by a coordinate of P or Q, m_0 multiplication by a theta constant;

Mixed operations in \mathbb{F}_q and \mathbb{F}_{q^d}: M, m and m_0;

Operations in \mathbb{F}_{q^d}: M, m and S.

Remark

- **Doubling step for a Miller loop with Edwards coordinates**: $9M + 7S + 2m_0$;
- **Just doubling a point in Mumford projective coordinates using the fastest algorithm** [Lan05]: $33M + 7S + 1m_0$;
- **Asymptotically the final exponentiation is more expensive than Miller’s loop, so the Weil’s pairing is faster than the Tate’s pairing!**
Tate pairing

\[
g = 1 \quad 1m + 2s + 2M + 2M + 1m + 6s + 3m_0 \\
g = 2 \quad 3m + 4s + 4M + 4M + 3m + 12s + 9m_0
\]

Tate pairing with theta coordinates, \(P \in A[\ell](\F_q), Q \in A[\ell](\F_{q^d}) \) (one step)

<table>
<thead>
<tr>
<th>(g = 1)</th>
<th>Miller</th>
<th>Theta coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d) even</td>
<td>(1M + 1S + 1M)</td>
<td>(1M + 1M)</td>
</tr>
<tr>
<td>(d) odd</td>
<td>(2M + 2S + 1M)</td>
<td>(2M + 1M)</td>
</tr>
<tr>
<td>(g = 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Q) degenerate + (d) even</td>
<td>(1M + 1S + 3M)</td>
<td>(1M + 3M)</td>
</tr>
<tr>
<td>General case</td>
<td>(2M + 2S + 18M)</td>
<td>(2M + 18M)</td>
</tr>
</tbody>
</table>

\(P \in A[\ell](\F_q), Q \in A[\ell](\F_{q^d}) \) (counting only operations in \(\F_{q^d} \)).
Ate and optimal ate pairings

<table>
<thead>
<tr>
<th>g</th>
<th>Equation</th>
<th>(4M + 1m + 8S + 1m + 3m_0)</th>
<th>(8M + 3m + 16S + 3m + 9m_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Ate pairing with theta coordinates**, \(P \in G_2, Q \in G_1 \) (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs \([Gra+07]\):

- **Doubling** \(1I + 29M + 9S + 7M \)
- **Addition** \(1I + 29M + 5S + 7M \)

(where \(I \) denotes the cost of an affine inversion in \(\mathbb{F}_{q^d} \)).
Bibliography

