Computing optimal pairings on abelian varieties with theta functions

23/05/2013 – EPFL

David Lubicz, Damien Robert
Outline

1. Curves, pairings and cryptography
2. Abelian varieties
3. Theta functions
4. Pairings with theta functions
5. Performance
1

Curves, pairings and cryptography
Elliptic curves

Definition (char $k \not= 2, 3$)

An elliptic curve is a plane curve with equation

\[y^2 = x^3 + ax + b \quad 4a^3 + 27b^2 \neq 0. \]

Exponentiation:

\[(\ell, P) \mapsto \ell P\]

Discrete logarithm:

\[(P, \ell P) \mapsto \ell\]
Pairing-based cryptography

Definition

A pairing is a non-degenerate bilinear application $e : G_1 \times G_1 \rightarrow G_2$ between finite abelian groups.

Example

- If the pairing e can be computed easily, the difficulty of the DLP in G_1 reduces to the difficulty of the DLP in G_2.
 \Rightarrow MOV attacks on supersingular elliptic curves.

- Identity-based cryptography [BF03].
- Short signature [BLS04].
- One way tripartite Diffie–Hellman [Jou04].
- Self-blindable credential certificates [Ver01].
- Attribute based cryptography [SW05].
- Broadcast encryption [Goy+06].
The Weil pairing on elliptic curves

• Let \(E : y^2 = x^3 + ax + b \) be an elliptic curve over \(k \) (\(\text{char} \ k \neq 2, 3 \)).

• Let \(P, Q \in E[\ell] \) be points of \(\ell \)-torsion.

• Let \(f_P \) be a function associated to the principal divisor \(\ell(P) - \ell(0) \), and \(f_Q \) to \(\ell(Q) - \ell(0) \). We define:

\[
e_{W,\ell}(P, Q) = \frac{f_P((Q) - (0))}{f_Q((P) - (0))}.
\]

• The application \(e_{W,\ell} : E[\ell] \times E[\ell] \to \mu_\ell(\overline{k}) \) is a non degenerate pairing: the Weil pairing.

Definition (Embedding degree)

The embedding degree \(d \) is the smallest number thus that \(\ell \mid q^d - 1 \); \(\mathbb{F}_{q^d} \) is then the smallest extension containing \(\mu_\ell(\overline{k}) \).
The Tate pairing on elliptic curves over \mathbb{F}_q

Definition

The Tate pairing is a non degenerate (on the right) bilinear application given by

$$e_T : E_0[\ell] \times E(\mathbb{F}_q) / \ell E(\mathbb{F}_q) \rightarrow \mathbb{F}_q^* / \ell \mathbb{F}_q^* = \mathbb{F}_q^*/\ell.$$

$$(P, Q) \mapsto f_P \left((Q) - (0) \right)$$

where

$$E_0[\ell] = \{P \in E[\ell](\mathbb{F}_q^d) \mid \pi(P) = [q]P\}.$$

• On \mathbb{F}_q^d, the Tate pairing is a non degenerate pairing

$$e_T : E[\ell](\mathbb{F}_q^d) \times E(\mathbb{F}_q^d) / \ell E(\mathbb{F}_q^d) \rightarrow \mathbb{F}_q^* / \ell \mathbb{F}_q^* \simeq \mu_\ell;$$

• If $\ell^2 \nmid E(\mathbb{F}_q^d)$ then $E(\mathbb{F}_q^d) / \ell E(\mathbb{F}_q^d) \simeq E[\ell](\mathbb{F}_q^d)$;

• We normalise the Tate pairing by going to the power of $(q^d - 1)/\ell$.

• This final exponentiation allows to save some computations. For instance if $d = 2d'$ is even, we can suppose that $Q = (x_2, y_2)$ with $x_2 \in E(\mathbb{F}_q^{d'})$. Then the denominators of $\tilde{f}_{\lambda, \mu, P}(Q)$ are ℓ-th powers and are killed by the final exponentiation.
Miller’s functions

• We need to compute the functions \(f_P \) and \(f_Q \). More generally, we define the Miller’s functions:

Definition
Let \(\lambda \in \mathbb{N} \) and \(X \in E[\ell] \), we define \(f_{\lambda,X} \in k(E) \) to be a function thus that:

\[
(f_{\lambda,X}) = \lambda(X) - ([\lambda]X) - (\lambda - 1)(0).
\]

• We want to compute (for instance) \(f_{\ell,P}((Q) - (0)) \).
Miller’s algorithm

- The key idea in Miller’s algorithm is that

\[f_{\lambda+\mu,X} = f_{\lambda,X} f_{\mu,X} f_{\lambda,\mu,X} \]

where \(f_{\lambda,\mu,X} \) is a function associated to the divisor

\[([\lambda + \mu]X) - ([\lambda]X) - ([\mu]X) + (0). \]

- We can compute \(f_{\lambda,\mu,X} \) using the addition law in \(E \): if \([\lambda]X = (x_1, y_1)\) and \([\mu]X = (x_2, y_2)\) and \(\alpha = (y_1 - y_2)/(x_1 - x_2) \), we have

\[f_{\lambda,\mu,X} = \frac{y - \alpha(x - x_1) - y_1}{x + (x_1 + x_2) - \alpha^2}. \]
Miller’s algorithm on elliptic curves

Algorithm (Computing the Tate pairing)

Input: $\ell \in \mathbb{N}, P = (x_1, y_1) \in E[\ell](\mathbb{F}_q), Q = (x_2, y_2) \in E(\mathbb{F}_{q^d})$.
Output: $e_T(P, Q)$.

1. Compute the binary decomposition: $\ell := \sum_{i=0}^{I} b_i 2^i$. Let $T = P, f_1 = 1, f_2 = 1$.

2. For i in $[I..0]$ compute
 2.1 α, the slope of the tangent of E at T.
 2.2 $T = 2T. T = (x_3, y_3)$.
 2.3 $f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2^2(x_2 + (x_1 + x_3) - \alpha^2)$.
 2.4 If $b_i = 1$, then compute
 2.4.1 α, the slope of the line going through P and T.
 2.4.2 $T = T + Q. T = (x_3, y_3)$.
 2.4.3 $f_1 = f_1^2(y_2 - \alpha(x_2 - x_3) - y_3), f_2 = f_2(x_2 + (x_1 + x_3) - \alpha^2)$.

Return

$$\left(\frac{f_1}{f_2}\right)^{\frac{q^d-1}{\ell}}.$$
Jacobian of curves

C a smooth irreducible projective curve of genus g.

- Divisor: formal sum $D = \sum n_i P_i$, $P_i \in C(\bar{k})$.
 \[\text{deg } D = \sum n_i.\]

- Principal divisor: $\sum_{P \in C(\bar{k})} \nu_P(f).P$; $f \in \bar{k}(C)$.

Jacobian of C = Divisors of degree 0 modulo principal divisors

- + Galois action
 = Abelian variety of dimension g.

- Divisor class of a divisor $D \in \text{Jac}(C)$ is generically represented by a sum of g points.
Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2: $y^2 = f(x)$, $\deg f = 5$.

\[D = P_1 + P_2 - 2\infty \]
\[D' = Q_1 + Q_2 - 2\infty \]
Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:
\[y^2 = f(x), \ \deg f = 5. \]

\[D = P_1 + P_2 - 2\infty \]
\[D' = Q_1 + Q_2 - 2\infty \]
Example of Jacobians

Dimension 2: Addition law on the Jacobian of an hyperelliptic curve of genus 2:

\[y^2 = f(x), \deg f = 5. \]

\[D = P_1 + P_2 - 2\infty \]
\[D' = Q_1 + Q_2 - 2\infty \]
\[D + D' = R_1 + R_2 - 2\infty \]
Example of Jacobians

Dimension 3

Jacobians of hyperelliptic curves of genus 3.
Jacobians of quartics.
Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

 $$e_W(P, Q) = \frac{f_P(D_Q)}{f_Q(D_P)}$$
 $$e_T(P, Q) = f_P(D_Q).$$
Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P,Q) = \frac{f_P(D_Q)}{f_Q(D_P)}$$

$$e_T(P,Q) = f_P(D_Q).$$

- A key ingredient for evaluating $f_P(D_Q)$ comes from Weil reciprocity theorem.

Theorem (Weil)

Let D_1 and D_2 be two divisors with disjoint support linearly equivalent to (0) on a smooth curve C. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1).$$
Pairings on Jacobians

- Let $P \in \text{Jac}(C)[\ell]$ and D_P a divisor on C representing P;
- By definition of $\text{Jac}(C)$, ℓD_P corresponds to a principal divisor (f_P) on C;
- The same formulas as for elliptic curve define the Weil and Tate pairings:

$$e_W(P, Q) = \frac{f_P(D_Q)}{f_Q(D_P)}$$
$$e_T(P, Q) = f_P(D_Q).$$

- The extension of Miller’s algorithm to Jacobians is “straightforward”;
- For instance if $g = 2$, the function $f_{\lambda, \mu, P}$ is of the form

$$y - l(x)$$
$$\frac{(x - x_1)(x - x_2)}$$

where l is of degree 3.
2

Abelian varieties
Abelian varieties

Definition
An Abelian variety is a complete connected group variety over a base field k.

- Abelian variety = points on a projective space (locus of homogeneous polynomials) + an abelian group law given by rational functions.

Example
- Elliptic curves= Abelian varieties of dimension 1;
- If C is a (smooth) curve of genus g, its Jacobian is an abelian variety of dimension g;
- In dimension $g \geq 4$, not every abelian variety is a Jacobian.
Isogenies and pairings

Let $f : A \to B$ be a separable isogeny with kernel K between two abelian varieties defined over k:

$$
\begin{array}{ccccccc}
0 & \longrightarrow & K & \longrightarrow & A & \longrightarrow & B & \longrightarrow & 0 \\
& & \uparrow f & & \uparrow & & \uparrow & & \\
0 & \longleftarrow & \hat{A} & \longleftarrow & \hat{B} & \longleftarrow & \hat{K} & \longleftarrow & 0
\end{array}
$$

- \hat{K} is the Cartier dual of K, and we have a non degenerate pairing $e_f : K \times \hat{K} \to \overline{k}^*$:
 1. If $Q \in \hat{K}(k)$, Q defines a divisor D_Q on B;
 2. $\hat{f}(Q) = 0$ means that f^*D_Q is equal to a principal divisor (g_Q) on A;
 3. $e_f(P, Q) = g_Q(x)/g_Q(x + P)$. (This last function being constant in its definition domain).

- The Weil pairing e_ℓ is the pairing associated to the isogeny $[\ell] : A \to A$.
Reformulations

• Since f^*D_Q is trivial, by Grothendieck descent theory D_Q (seen as a line bundle) is the quotient of $A \times \mathbb{A}^1$ by an action of K:

$$g_x(t, \lambda) = (t + x, g_x^0(t)(\lambda))$$

where the cocycle g_x^0 is a character χ (Appell-Humbert).

$$e_f(P, Q) = \chi(P).$$

• The following diagram is commutative:

$$
\begin{array}{ccc}
 f^*D_Q & \xrightarrow{\psi_Q} & \mathcal{O}_A \\
 \downarrow{\psi_P} & & \downarrow{e_f(P, Q)} \\
 \tau_P^*f^*D_Q & \xrightarrow{\tau_P^*\psi_Q} & \tau_P^*\mathcal{O}_A
\end{array}
$$

(ψ_P is the normalized isomorphism)
Pairings and polarisations

- If \mathcal{L} is an ample line bundle corresponding to a divisor Θ, the polarisation $\varphi_\mathcal{L}$ is a morphism $A \rightarrow \hat{A}$, $x \mapsto t_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$.
- We note $K(\mathcal{L})$ the kernel of the polarization.
- Since $\hat{\varphi}_\mathcal{L} = \varphi_\mathcal{L}$, $e_\mathcal{L}$ is defined on $K(\mathcal{L}) \times K(\mathcal{L})$.
- The following diagram is commutative up to a multiplication by $e_\mathcal{L}(P, Q)$:

$$
\begin{array}{c}
\mathcal{L} \\
\downarrow \psi_Q \\
\tau_Q^* \mathcal{L}
\end{array}
\xrightarrow{\psi_P}
\begin{array}{c}
\tau_P^* \mathcal{L} \\
\downarrow \tau_P^* \psi_Q \\
\tau_{P+Q}^* \mathcal{L}
\end{array}
$$

$$
\text{Diagram:}
\begin{align*}
\tau_P^* \mathcal{L} & \quad \xrightarrow{\psi_P} \quad \tau_P^* \mathcal{L} \\
\tau_{P+Q}^* \mathcal{L} & \quad \xrightarrow{\tau_Q^* \psi_P} \quad \tau_{P+Q}^* \mathcal{L}
\end{align*}
$$
Pairings and polarisations

• The Theta group \(G(\mathcal{L})\) is the group \(\{(x, \psi_x)\}\) where \(x \in K(\mathcal{L})\) and \(\psi_x\) is an isomorphism
 \[\psi_x : \mathcal{L} \rightarrow \tau^*_x \mathcal{L} .\]
 The composition is given by \((y, \psi_y)(x, \psi_x) = (y + x, \tau^*_x \psi_y \circ \psi_x)\).

• \(G(\mathcal{L})\) is an Heisenberg group:
 \[
 \begin{array}{c}
 1 \rightarrow k^* \rightarrow G(\mathcal{L}) \rightarrow K(\mathcal{L}) \rightarrow 0
 \end{array}
 \]

• Let \(g_p = (P, \psi_p) \in G(\mathcal{L})\) and \(g_Q = (Q, \psi_Q) \in G(\mathcal{L})\).
 \[e_\mathcal{L}(P, Q) = g_p g_Q g_p^{-1} g_Q^{-1}.\]
The Weil pairing

Definition

Let \mathcal{L} be a principal polarization on A. The (polarized) Weil pairing $e_{W,\mathcal{L},\ell}$ is the pairing

$$e_{W,\mathcal{L},\ell}: A[\ell] \times A[\ell] \rightarrow \mu_\ell(\bar{k}).$$

associated to the polarization

So $e_{W,\mathcal{L},\ell}(P, Q) = e_{\mathcal{L},\ell}(P, Q) = e_\ell(P, \varphi_{\mathcal{L}}(Q))$.

$$
\begin{array}{c}
A[\ell] \quad \varphi_{\mathcal{L}} \quad \varphi_{\mathcal{L},\ell} \\
\downarrow \quad \downarrow \\
A[\ell] \quad A \quad \hat{A}
\end{array}
$$
The Tate pairings on abelian varieties over finite fields

• From the exact sequence
\[0 \to A[\ell](\overline{\mathbb{F}}_{q^d}) \to A(\overline{\mathbb{F}}_{q^d}) \to [\ell]A(\overline{\mathbb{F}}_{q^d}) \to 0 \]
we get from Galois cohomology a connecting morphism \(\delta : A(\overline{\mathbb{F}}_{q^d})/\ell A(\overline{\mathbb{F}}_{q^d}) \to H^1(\text{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), A[\ell]) \);

• Composing with the Weil pairing, we get a bilinear application
\[A[\ell](\overline{\mathbb{F}}_{q^d}) \times A(\overline{\mathbb{F}}_{q^d})/\ell A(\overline{\mathbb{F}}_{q^d}) \to H^1(\text{Gal}(\overline{\mathbb{F}}_{q^d}/\mathbb{F}_{q^d}), \mu_\ell) \cong \mathbb{F}_{q^d}^*/\mathbb{F}_{q^d}^\ell \cong \mu_\ell \]
where the last isomorphism comes from the Kummer sequence
\[1 \to \mu_\ell \to \overline{\mathbb{F}}_{q^d}^* \to \overline{\mathbb{F}}_{q^d}^* \to 1 \]
and Hilbert 90;

• Explicitly, if \(P \in A[\ell](\overline{\mathbb{F}}_{q^d}) \) and \(Q \in A(\overline{\mathbb{F}}_{q^d}) \) then the (reduced) Tate pairing is given by
\[e_T(P, Q) = e_W(\pi(P_0) - P_0, Q) \]
where \(P_0 \) is any point such that \(P = [\ell]P_0 \) and \(\pi \) is the Frobenius of \(\overline{\mathbb{F}}_{q^d} \).
Cycles and Lang reciprocity

- Let (A, Θ) be a principally polarized abelian variety;
- To a degree 0 cycle $\sum (P_i)$ on A, we can associate the divisor $\sum t_{P_i}^* \Theta$ on A;
- The cycle $\sum (P_i)$ corresponds to a trivial divisor iff $\sum P_i = 0$ in A;
- If f is a function on A and $D = \sum (P_i)$ a cycle whose support does not contain a zero or pole of f, we let

$$f(D) = \prod f(P_i).$$

(In the following, when we write $f(D)$ we will always assume that we are in this situation.)

Theorem ([Lan58])

Let D_1 and D_2 be two cycles equivalent to 0, and f_{D_1} and f_{D_2} be the corresponding functions on A. Then

$$f_{D_1}(D_2) = f_{D_2}(D_1)$$
The Weil and Tate pairings on abelian varieties

Theorem

Let $P, Q \in A[\ell]$. Let D_P and D_Q be two cycles equivalent to $(P) - (0)$ and $(Q) - (0)$. The Weil pairing is given by

$$e_W(P, Q) = \frac{f_{\ell D_P}(D_Q)}{f_{\ell D_Q}(D_P)}.$$

Theorem

Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$, and let D_P and D_Q be two cycles equivalent to $(P) - (0)$ and $(Q) - (0)$. The (non reduced) Tate pairing is given by

$$e_T(P, Q) = f_{\ell D_P}(D_Q).$$
Cryptographic usage of pairings on abelian varieties

- The moduli space of abelian varieties of dimension g is a space of dimension $g(g+1)/2$. We have more liberty to find optimal abelian varieties in function of the security parameters.
- Supersingular elliptic curves have a too small embedding degree. [RS09] says that for the current security parameters, optimal supersingular abelian varieties of small dimension are of dimension 4.
- If A is an abelian variety of dimension g, $A[\ell]$ is a $(\mathbb{Z}/\ell\mathbb{Z})$-module of dimension $2g \Rightarrow$ the structure of pairings on abelian varieties is richer.
Theta functions
A complex abelian variety is of the form $A = V / \Lambda$ where V is a \mathbb{C}-vector space and Λ a lattice, with a polarization (actually an ample line bundle) \mathcal{L} on it;

The Chern class of \mathcal{L} corresponds to a symplectic real form E on V such that $E(ix, iy) = E(x, y)$ and $E(\Lambda, \Lambda) \subset \mathbb{Z}$;

The commutator pairing $e_{\mathcal{L}}$ is then given by $\exp(2i\pi E(\cdot, \cdot))$;

A principal polarization on A corresponds to a decomposition $\Lambda = \Omega \mathbb{Z}^g + \mathbb{Z}^g$ with $\Omega \in \mathfrak{H}_g$ the Siegel space;

The associated Riemann form on A is then given by $E(\Omega x_1 + x_2, \Omega y_1 + y_2) = ^t x_1 \cdot y_2 - ^t y_1 \cdot x_2$.
Theta coordinates on abelian varieties

- Every abelian variety (over an algebraically closed field) can be described by theta coordinates of level $n > 2$ even. (The level n encodes information about the n-torsion).
- The theta coordinates of level 2 on A describe the Kummer variety of A.
- For instance if $A = \mathbb{C}^g / (\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ is an abelian variety over \mathbb{C}, the theta coordinates on A come from the analytic theta functions with characteristic:

$$\vartheta \left[\begin{array}{c} a \\ b \end{array} \right] (z, \Omega) = \sum_{n \in \mathbb{Z}^g} e^{\pi i t (n+a) \Omega (n+a) + 2 \pi i t (n+a)(z+b)} \quad a, b \in \mathbb{Q}^g$$

Remark

Working on level n mean we take a n-th power of the principal polarisation. So in the following we will compute the n-th power of the usual Weil and Tate pairings.
The differential addition law \(k = \mathbb{C} \)

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{i+t}(x + y) \theta_{j+t}(x - y) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k+t}(0) \theta_{l+t}(0) \right) = \\
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{-i'+t}(y) \theta_{j'+t}(y) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \theta_{k'+t}(x) \theta_{l'+t}(x) \right).
\]

where \(\chi \in \hat{\mathbb{Z}}(2), i, j, k, l \in \mathbb{Z}(\bar{n}) \)

\((i', j', k', l') = A(i, j, k, l) \)

\[
A = \frac{1}{2} \begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{pmatrix}
\]
Example: differential addition in dimension 1 and in level 2

Algorithm

Input \(z_P = (x_0, x_1), z_Q = (y_0, y_1) \) and \(z_{P-Q} = (z_0, z_1) \) with \(z_0z_1 \neq 0 \);
\(z_0 = (a, b) \) and \(A = 2(a^2 + b^2), B = 2(a^2 - b^2) \).

Output \(z_{P+Q} = (t_0, t_1) \).

1. \(t'_0 = (x_0^2 + x_1^2)(y_0^2 + y_1^2)/A \)
2. \(t'_1 = (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B \)
3. \(t_0 = (t'_0 + t'_1)/z_0 \)
4. \(t_1 = (t'_0 - t'_1)/z_1 \)

Return \((t_0, t_1)\)
Cost of the arithmetic with low level theta functions \((\text{char } k \neq 2)\)

<table>
<thead>
<tr>
<th>Doubling Mixed Addition</th>
<th>Montgomery Level 2</th>
<th>Jacobians coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(5M + 4S + 1m_0)</td>
<td>(3M + 6S + 3m_0)</td>
</tr>
<tr>
<td></td>
<td>(7M + 6S + 1m_0)</td>
<td></td>
</tr>
</tbody>
</table>

Multiplication cost in genus 1 (one step).

<table>
<thead>
<tr>
<th>Doubling Mixed Addition</th>
<th>Mumford Level 2</th>
<th>Level 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(34M + 7S)</td>
<td>(7M + 12S + 9m_0)</td>
</tr>
<tr>
<td></td>
<td>(37M + 6S)</td>
<td>(49M + 36S + 27m_0)</td>
</tr>
</tbody>
</table>

Multiplication cost in genus 2 (one step).
Pairings with theta functions
Miller functions with theta coordinates

Proposition ([LR13])

- For $P \in A$ we note z_P a lift to \mathbb{C}^g. We call P a projective point and z_P an affine point (because we describe them via their projective, resp affine, theta coordinates);
- We have (up to a constant)

$$f_{\lambda,P}(z) = \frac{\theta(z)}{\theta(z + \lambda z_P)} \left(\frac{\theta(z + z_P)}{\theta(z)} \right)^\lambda;$$

- So (up to a constant)

$$f_{\lambda,\mu,P}(z) = \frac{\theta(z + \lambda z_P) \theta(z + \mu z_P)}{\theta(z) \theta(z + (\lambda + \mu) z_P)}.$$
Three way addition

Proposition ([LR13])

From the affine points \(z_P, z_Q, z_R, z_{P+Q}, z_{P+R} \) and \(z_{Q+R} \) one can compute the affine point \(z_{P+Q+R} \).
(In level 2, the proposition is only valid for “generic” points).

Proof.

We can compute the three way addition using a generalised version of Riemann’s relations:

\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{i+t}(z_{P+Q+R}) \vartheta_{j+t}(z_P) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k+t}(z_Q) \vartheta_{l+t}(z_R) \right) =
\]
\[
\left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{-i+t}(z_0) \vartheta_{j'+t}(z_{Q+R}) \right) \cdot \left(\sum_{t \in \mathbb{Z}(2)} \chi(t) \vartheta_{k'+t}(z_{P+R}) \vartheta_{l'+t}(z_{P+Q}) \right).
\]

\(\square \)
Three way addition in dimension 1 level 2

Algorithm

Input The points \(x, y, z, X = y + z, Y = x + z, Z = x + y \);

Output \(T = x + y + z \).

Return

\[
T_0 = \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_0(y_0z_0 + y_1z_1)} + \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_0(y_0z_0 - y_1z_1)}
\]

\[
T_1 = \frac{(aX_0 + bX_1)(Y_0Z_0 + Y_1Z_1)}{x_1(y_0z_0 + y_1z_1)} - \frac{(aX_0 - bX_1)(Y_0Z_0 - Y_1Z_1)}{x_1(y_0z_0 - y_1z_1)}
\]
Computing the Miller function $f_{\lambda,\mu,P}((Q) - (0))$

Algorithm

Input $\lambda P, \mu P$ and Q;

Output $f_{\lambda,\mu,P}((Q) - (0))$

1. **Compute** $(\lambda + \mu)P$, $Q + \lambda P$, $Q + \mu P$ using normal additions and take any affine lifts $z_{(\lambda+\mu)P}$, $z_{Q+\lambda P}$ and $z_{Q+\mu P}$;

2. **Use a three way addition to compute** $z_{Q+(\lambda+\mu)P}$;

Return

$$f_{\lambda,\mu,P}((Q) - (0)) = \frac{\vartheta(z_Q + \lambda z_P)\vartheta(z_Q + \mu z_P)}{\vartheta(z_Q)\vartheta(z_Q + (\lambda + \mu)z_P)} \cdot \frac{\vartheta((\lambda + \mu)z_P)\vartheta(z_P)}{\vartheta(\lambda z_P)\vartheta(\mu z_P)}.$$

Lemma

The result does not depend on the choice of affine lifts in Step 2.

😊 This allow us to evaluate the Weil and Tate pairings and derived pairings;

😢 Not possible *a priori* to apply this algorithm in level 2.
The Tate pairing with Miller’s functions and theta coordinates

- Let $P \in A[\ell](\mathbb{F}_{q^d})$ and $Q \in A(\mathbb{F}_{q^d})$; choose any lift z_P, z_Q and z_{P+Q}.
- The algorithm loop over the binary expansion of ℓ, and at each step does a doubling step, and if necessary an addition step.

Given $z_{\lambda P}, z_{\lambda P+Q}$;

Doubling Compute $z_{2\lambda P}, z_{2\lambda P+Q}$ using two differential additions;

Addition Compute $(2\lambda + 1)P$ and take an arbitrary lift $z_{(2\lambda+1)P}$. Use a three way addition to compute $z_{(2\lambda+1)P+Q}$.

- At the end we have computed affine points $z_{\ell P}$ and $z_{\ell P+Q}$. Evaluating the Miller function then gives exactly the quotient of the projective factors between $z_{\ell P}, z_0$ and $z_{\ell P+Q}, z_Q$.

😊 Described this way can be extended to level 2 by using compatible additions;

😊 Three way additions and normal (or compatible) additions are quite cumbersome, is there a way to only use differential additions?
The Weil and Tate pairing with theta coordinates \([LR10]\)

\(P\) and \(Q\) points of \(\ell\)-torsion.

\[
\begin{align*}
z_0 & \quad z_P & 2z_P & \ldots & \ell z_P = \lambda^0_P z_0 \\
z_Q & \quad z_P \oplus z_Q & 2z_P + z_Q & \ldots & \ell z_P + z_Q = \lambda^1_P z_Q \\
2z_Q & \quad z_P + 2z_Q & & \ldots & \\
\ell Q = \lambda^0_Q 0_A & \quad z_P + \ell z_Q = \lambda^1_Q z_P
\end{align*}
\]

- \(e_{W,\ell}(P, Q) = \frac{\lambda^1_P \lambda^0_Q}{\lambda^0_P \lambda^1_Q}\).
- \(e_{T,\ell}(P, Q) = \frac{\lambda^1_P}{\lambda^0_P}\).
Why does it works?

\[
\begin{align*}
 z_0 & \quad & \alpha z_p & \quad & \alpha^4(2z_p) & \quad & \ldots & \quad & \alpha^2(\ell z_p) = \lambda'_{p} z_0 \\
 \beta z_Q & \quad & \gamma(z_p \oplus z_Q) & \quad & \frac{\gamma^2 \alpha^2}{\beta} (2z_p + z_Q) & \quad & \ldots & \quad & \frac{\gamma^2 \alpha^{(2)}}{\beta^{(2)}} (\ell z_p + z_Q) = \lambda'_{p} \beta z_Q \\
 \beta^4(2z_Q) & \quad & \frac{\gamma^2 \beta^2}{\alpha} (z_p + 2z_Q) & \quad & \ldots & \quad & \ldots \\
 \beta^{\ell^2}(\ell z_Q) & = \lambda'_{Q} z_0 & \quad & \frac{\gamma^\ell \beta^{(\ell)}(\ell z_Q)}{\alpha^{(\ell)}} (z_p + \ell z_Q) & = \lambda'_{Q} \alpha z_p \\
\end{align*}
\]

We then have

\[
\begin{align*}
 \lambda'_{p} & = \alpha^{\ell^2} \lambda_{p}^{0}, & \lambda'_{Q} & = \beta^{\ell^2} \lambda_{Q}^{0}, & \lambda'_{p} & = \frac{\gamma^\ell \alpha^{(\ell)(\ell-1)}}{\beta^{\ell}} \lambda_{p}^{1}, & \lambda'_{Q} & = \frac{\gamma^\ell \beta^{(\ell)(\ell-1)}}{\alpha^{\ell}} \lambda_{Q}^{1}, \\
 e'_{W,\ell}(P, Q) & = \frac{\lambda'_{p} \lambda'_{Q}}{\lambda_{p}^{0} \lambda_{Q}^{1}} = \frac{\lambda_{p}^{1} \lambda_{Q}^{0}}{\lambda_{p}^{0} \lambda_{Q}^{1}} = e_{W,\ell}(P, Q), \\
 e'_{T,\ell}(P, Q) & = \frac{\lambda'_{p}}{\lambda_{p}^{0}} = \frac{\gamma^\ell \lambda_{p}^{1}}{\alpha^{\ell} \beta^{\ell} \lambda_{p}^{0}} = \frac{\gamma^\ell}{\alpha^{\ell} \beta^{\ell}} e_{T,\ell}(P, Q).
\end{align*}
\]
The case \(n = 2 \)

- If \(n = 2 \) we work over the Kummer variety \(K \) over \(k \), so \(e(P, Q) \in \overline{k}^{*, \pm 1} \).
- We represent a class \(x \in \overline{k}^{*, \pm 1} \) by \(x + 1/x \in \overline{k}^* \). We want to compute the symmetric pairing
 \[
e_s(P, Q) = e(P, Q) + e(-P, Q).
\]
- From \(\pm P \) and \(\pm Q \) we can compute \(\{\pm(P + Q), \pm(P - Q)\} \) (need a square root), and from these points the symmetric pairing.
- \(e_s \) is compatible with the \(\mathbb{Z} \)-structure on \(K \) and \(\overline{k}^{*, \pm 1} \).
- The \(\mathbb{Z} \)-structure on \(\overline{k}^{*, \pm} \) can be computed as follow:
 \[
 (x^\ell_1 + \ell_2 + \frac{1}{x^\ell_1 + \ell_2}) + (x^\ell_1 - \ell_2 + \frac{1}{x^\ell_1 - \ell_2}) = (x^{\ell_1} + \frac{1}{x^{\ell_1}})(x^{\ell_2} + \frac{1}{x^{\ell_2}})
 \]
Ate pairing

Definition

Ate pairing

- Let $G_1 = E[\ell] \cap \text{Ker}(\pi_q - 1)$ and $G_2 = E[\ell] \cap \text{Ker}(\pi_q - [q])$.
- Let $\lambda \equiv q \mod \ell$, the (reduced) ate pairing is defined by
 $$a_\lambda : G_2 \times G_1 \to \mu_\ell, (P, Q) \mapsto f_{\lambda, P}(Q)^{(q^d-1)/\ell}.$$
- It is non degenerate if $\ell^2 \nmid (\lambda^k - 1)$.

😊 We expect the Miller loop to be half the length as for the Tate pairing;
😊 We need to work over \mathbb{F}_{q^d} rather than \mathbb{F}_q for computing Miller’s functions;
😊 Can use twists to alleviate the problem (this was not always possible with non elliptic Jacobians).
Ate pairing with theta functions

- Let $P \in G_2$ and $Q \in G_1$.
- In projective coordinates, we have $\pi^d_q(P + Q) = \lambda^d P + Q = P + Q$;
- Unfortunately, in affine coordinates, $\pi^d_q(z_{P+Q}) \neq \lambda^d z_p + z_q$.
- But if $\pi^d_q(z_{P+Q}) = C \ast (\lambda z_p + z_Q)$, then C is exactly the (non reduced) ate pairing!

Algorithm (Computing the ate pairing)

Input $P \in G_2$, $Q \in G_1$;

1. Compute $z_Q + \lambda z_p$, λz_p using differential additions;
2. Find the projective factors C_1 and C_0 such that $z_Q + \lambda z_p = C_1 \ast \pi(z_{P+Q})$ and $\lambda z_p = C_0 \ast \pi(z_p)$ respectively;

Return $(C_1/C_0)^{q^d-1}/t$.
Optimal ate pairing

- Let $\lambda = m\ell = \sum c_i q^i$ be a multiple of ℓ with small coefficients c_i. ($\ell \nmid m$)
- The pairing

$$a_\lambda : G_2 \times G_1 \longrightarrow \mu_\ell$$

$$(P, Q) \longrightarrow \left(\prod_i f_{c_i, P}(Q)^{q^i} \prod_i f_{\sum_{j>i} c_j q^j, c_i q^i, P}(Q) \right)^{(q^d - 1)/\ell}$$

is non degenerate when $mdq^{d-1} \not\equiv (q^d - 1)/r \sum_i ic_i q^{i-1} \mod \ell$.
- Since $\varphi_d(q) = 0 \mod \ell$ we look at powers $q, q^2, \ldots, q^{\varphi(d)-1}$.
- We can expect to find λ such that $c_i \approx \ell^{1/\varphi(d)}$.
Optimal ate pairing with theta functions

Algorithm (Computing the optimal ate pairing)

Input \(\pi_q(P) = [q]P, \pi_q(Q) = Q, \lambda = m\ell = \sum c_iq^i; \)

1. **Compute the** \(z_Q + c_i z_P \) **and** \(c_i z_P; \)
2. **Apply Frobeniuses** to obtain the \(z_Q + c_i q^i z_P, c_i q^i z_P; \)
3. **Compute** \(c_i q^i z_P \oplus \sum_j c_j q^j z_P \) (up to a constant) and then do a three way addition to compute \(z_Q + c_i q^i z_P + \sum_j c_j q^j z_P \) (up to the same constant);
4. **Recurse until we get** \(\lambda z_P = C_0 \ast z_P \) **and** \(z_Q + \lambda z_P = C_1 \ast z_Q; \)

Return \(\left(\frac{C_1}{C_0} \right)^{q^{d-1}}. \)
The case \(n = 2 \)

- Computing \(c_i q^i z_p \pm \sum_j c_j q^j z_p \) requires a square root (very costly);
- And we need to recognize \(c_i q^i z_p + \sum_j c_j q^j z_p \) from \(c_i q^i z_p - \sum_j c_j q^j z_p \).
- We will use compatible additions: if we know \(x, y, z \) and \(x + z, y + z \), we can compute \(x + y \) without a square root;
- We apply the compatible additions with \(x = c_i q^i z_p, y = \sum_j c_j q^j z_p \) and \(z = z_Q \).
Compatible additions

- Recall that we know x, y, z and $x + z, y + z$;
- From it we can compute $(x + z) \pm (y + z) = \{x + y + 2z, x - y\}$ and of course $\{x + y, x - y\}$;
- Then $x + y$ is the element in $\{x + y, x - y\}$ not appearing in the preceding set;
- Since $x - y$ is a common point, we can recover it without computing a square root.
The compatible addition algorithm in dimension 1

Algorithm

Input \(x, y, Y = x + z, X = y + z \):

1. Computing \(x \pm y \):

\[
\begin{align*}
\alpha &= (x_0^2 + x_1^2)(y_0^2 + y_1^2)/A \\
\beta &= (x_0^2 - x_1^2)(y_0^2 - y_1^2)/B \\
\kappa_{00} &= (\alpha + \beta), \kappa_{11} = (\alpha - \beta) \\
\kappa_{10} &:= x_0x_1y_0y_1/ab
\end{align*}
\]

2. Computing \((x + z) \pm (y + z)\):

\[
\begin{align*}
\alpha' &= (Y_0^2 + Y_1^2)(X_0^2 + X_1^2)/A \\
\beta' &= (Y_0^2 - Y_1^2)(X_0^2 - X_1^2)/B \\
\kappa'_{00} &= \alpha' + \beta', \kappa'_{11} = \alpha' - \beta' \\
\kappa'_{10} &= Y_1Y_2X_1X_2/ab
\end{align*}
\]

Return \(x + y = [\kappa_{00}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}), \kappa_{10}(\kappa_{10}\kappa'_{00} - \kappa'_{10}\kappa_{00}) + \kappa_{00}(\kappa_{11}\kappa'_{00} - \kappa'_{11}\kappa_{00})] \)
Performance
One step of the pairing computation

Algorithm (A step of the Miller loop with differential additions)

Input \(nP = (x_n, z_n); \quad (n + 1)P = (x_{n+1}, z_{n+1}); \quad (n + 1)P + Q = (x'_{n+1}, z'_{n+1}).\)

Output \(2nP = (x_{2n}, z_{2n}); \quad (2n + 1)P = (x_{2n+1}, z_{2n+1}); \quad (2n + 1)P + Q = (x'_{2n+1}, z'_{2n+1}).\)

1. \(\alpha = (x_n^2 + z_n^2); \quad \beta = \frac{A}{B} (x_n^2 - z_n^2).\)
2. \(X_n = \alpha^2; \quad X_{n+1} = \alpha (x_{n+1}^2 + z_{n+1}^2); \quad X'_{n+1} = \alpha (x'_{n+1}^2 + z'_{n+1}^2);\)
3. \(Z_n = \beta (x_n^2 - z_n^2); \quad Z_{n+1} = \beta (x_{n+1}^2 - z_{n+1}^2); \quad Z'_{n+1} = \beta (x'_{n+1}^2 + z'_{n+1}^2);\)
4. \(x_{2n} = X_n + Z_n; \quad x_{2n+1} = (X_{n+1} + Z_{n+1})/x_P; \quad x'_{2n+1} = (X'_{n+1} + Z'_{n+1})/x_Q;\)
5. \(z_{2n} = \frac{a}{b} (X_n - Z_n); \quad z_{2n+1} = (X_{n+1} - Z_{n+1})/z_P; \quad z'_{2n+1} = (X'_{n+1} - Z'_{n+1})/z_Q;\)

Return \((x_{2n}, z_{2n}); \quad (x_{2n+1}, z_{2n+1}); \quad (x'_{2n+1}, z'_{2n+1}).\)
Weil and Tate pairing over \mathbb{F}_{q^d}

\[
\begin{align*}
 g = 1 & : 4M + 2m + 8S + 3m_0 \\
 g = 2 & : 8M + 6m + 16S + 9m_0
\end{align*}
\]

Tate pairing with theta coordinates, $P, Q \in A[\ell](\mathbb{F}_{q^d})$ (one step)

Operations in \mathbb{F}_q: M: multiplication, S: square, m multiplication by a coordinate of P or Q, m_0 multiplication by a theta constant;

Mixed operations in \mathbb{F}_q and \mathbb{F}_{q^d}: M, m and m_0;

Operations in \mathbb{F}_{q^d}: M, m and S.

Remark

- **Doubling step for a Miller loop with Edwards coordinates**: $9M + 7S + 2m_0$;
- **Just doubling a point in Mumford projective coordinates using the fastest algorithm [Lan05]**: $33M + 7S + 1m_0$;
- **Asymptotically the final exponentiation is more expensive than Miller’s loop, so the Weil’s pairing is faster than the Tate’s pairing!**
Tate pairing

\[
g = 1 \quad 1m + 2S + 2M + 2M + 1m + 6S + 3m_0 \\
g = 2 \quad 3m + 4S + 4M + 4M + 3m + 12S + 9m_0
\]

Tate pairing with theta coordinates, \(P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d}) \) (one step)

<table>
<thead>
<tr>
<th></th>
<th>Miller</th>
<th>Theta coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Doubling</td>
<td>Addition</td>
</tr>
<tr>
<td>(g = 1)</td>
<td>(d) even</td>
<td>1M + 1S + 1M</td>
</tr>
<tr>
<td></td>
<td>(d) odd</td>
<td>2M + 2S + 1M</td>
</tr>
<tr>
<td>(g = 2)</td>
<td>(Q) degenerate +</td>
<td>1M + 1S + 3M</td>
</tr>
<tr>
<td></td>
<td>(d) even</td>
<td>2M + 2S + 18M</td>
</tr>
<tr>
<td></td>
<td>General case</td>
<td></td>
</tr>
</tbody>
</table>

\(P \in A[\ell](\mathbb{F}_q), Q \in A[\ell](\mathbb{F}_{q^d}) \) (counting only operations in \(\mathbb{F}_{q^d} \)).
Ate and optimal ate pairings

\[
\begin{align*}
g = 1 & : 4M + 1m + 8S + 1m + 3m_0 \\
g = 2 & : 8M + 3m + 16S + 3m + 9m_0
\end{align*}
\]

Ate pairing with theta coordinates, \(P \in G_2, Q \in G_1 \) (one step)

Remark

Using affine Mumford coordinates in dimension 2, the hyperelliptic ate pairing costs \([\text{Gra}+07]\):

Doubling \(1I + 29M + 9S + 7M \)

Addition \(1I + 29M + 5S + 7M \)

(where \(I \) denotes the cost of an affine inversion in \(\mathbb{F}_{q^d} \)).
Perspectives

- Look at supersingular abelian varieties in characteristic 2 (Just for fun, cryptographic applications are killed by the $L(1/4, \cdot)$ index calculus in $\mathbb{F}_{2^n}^*$ from A. Joux);
- Optimized implementations (FPGA, ...);
- Look at special points (degenerate divisors, ...).

