On the CRT method to compute class polynomials in genus 2 Réunion CHIC

Kristin LAUTER¹, Damien ROBERT¹

¹Microsoft Research ²INRIA Bordeaux Sud-Ouest

06/12/2010 (Paris)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Class polynomials

- Let *K* be a primitive CM field of degree 4: *K* is a totally imaginary quadratic extension of a totally real field *K*₀. (*K* is then cyclic Galois, or dihedral.)
- The class polynomials H₁, H₂, H₃ parametrize the Igusa invariants of Jacobians J whose endomorphism rings is isomorphic to O_K, the maximal ring of K.
 These Jacobians are defined over (a subfield of) the Hilbert class field HK_r of the reflex class field K_r of K.
- If \mathfrak{P} is a prime of good reduction in HK_r , the typenorm of \mathfrak{P} give the Frobenius polynomial of $J_{\mathfrak{P}}$.
- ⇒ select $p \in \mathbb{Z}$ of cryptographic size such that $#J_{\mathbb{F}_p}$ is prime.
- \Rightarrow Reduce $H_1, \widehat{H}_2, \widehat{H}_3$ modulo p to find $J_{\mathbb{F}_p}$.

Class polynomials

Constructing class polynomials

- Analytic method: compute the Igusa invariants in $\mathbb C$ with sufficient precision to recover the class polynomials.
- *p*-adic lifting: lift the Igusa invariants in \mathbb{Q}_p with sufficient precision to recover the class polynomials (require specific splitting behavior of *p* in *K*).
- CRT: compute the class polynomials modulo small primes, and use the CRT to reconstruct the class polynomials.

Remark

In genus 1, all these methods are quasi-linear in the size of the output \Rightarrow computation bounded by memory. But we can construct directly the class polynomials modulo p with the explicit CRT.

Review of the CRT algorithm

- 1. Select a prime *p*.
- 2. For each Jacobian *J* in the p^3 isomorphic classes:
 - 2.1 Check if *J* is in the right isogeny class by computing the characteristic polynomial of the Frobenius (do some trial tests to check for *#J* before).
 - 2.2 Check if $\operatorname{End}(J) = O_K$.
- 3. From the invariants of the maximal curves, reconstruct $H_i \mod p$.

Remark

Algorithm developed in genus 2 by EISENTRÄGER, FREEMAN and LAUTER, with ameliorations from BRÖKER, GRUENEWALD and LAUTER by using the (3,3)-Galois action.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Selecting the prime p

- Usual method: find a prime *p* that splits completely into principal ideals in *K*_r, and splits completely in *K*.
- But we only need the typenorm of the ideals in K_r above p to be principal ideals.
- \Rightarrow We can work with more prime!
- \Rightarrow And the typenorm are generated by the frobenius!

Class polynomials

Checking if a curve is maximal

- Let *J* be the Jacobian of a curve in the right isogeny class. Then $\mathbb{Z}[\pi, \overline{\pi}] \subset \text{End}(J) \subset O_K$.
- Let $\gamma \in O_K \setminus \mathbb{Z}[\pi, \overline{\pi}]$. We want to check if $\gamma \in \text{End}(J)$.
- Suppose that $(O_K : \mathbb{Z}[\pi, \overline{\pi}])$ is prime to p. We then have $\gamma \in \operatorname{End}(J) \Leftrightarrow p\gamma \in \operatorname{End}(J)$.
- Let *n* be the smallest integer thus that $n\gamma \in \mathbb{Z}[\pi, \overline{\pi}]$. Since $(\mathbb{Z}[\pi, \overline{\pi}] : \mathbb{Z}[\pi]) = p$, we can write $np\gamma = P(\pi)$.
- Then $\gamma \in \operatorname{End}(J) \Leftrightarrow P(\pi) = 0$ on J[n].
- In practice: compute $J[\ell^d]$ for $\ell^d \mid (O_K : \mathbb{Z}[\pi, \overline{\pi}])$ and check the action of the generators of O_K on it.

Remark

If 1, α , β , γ are generators of O_K as a \mathbb{Z} -module, it can happen that $\gamma = P(\alpha, \beta)$, so that we don't need to check that $\gamma \in \text{End}(J)$.

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

Tield of definition of the ℓ^d *-torsion*

Proposition

- The geometric points of $J[\ell^d]$ are defined over $\mathbb{F}_{p^{\alpha_d}} \Leftrightarrow \pi^{\alpha_d} 1 \in \ell^d \operatorname{End}(J)$.
- $\alpha_d \mid \alpha_1 \ell^{d-1}$. If End $(J) = O_K$ this is an equality: $\alpha_d = \alpha_1 \ell^{d-1}$.

Corollary

Let α be thus that $\pi^{\alpha} - 1 \in \ell O_K$. We first check that $(\pi^{\alpha} - 1)/\ell$ is an element of $\operatorname{End}(J) \iff J[\ell]$ defined over $\mathbb{F}_{p^{\alpha}}$). Then $J[\ell^d]$ is defined over $\mathbb{F}_{p^{\alpha}\ell^{d-1}}$.

Remark

It may happen that we get a factor two on the degrees by working over the twist: that is by working with $-\pi$.

Computing the ℓ^d *-torsion*

- We compute $#J(\mathbb{F}_{p^{\alpha_d}}) = \ell^{\beta} c.$
- If P_0 is a random point of $J(\mathbb{F}_{p^{\alpha}})$, then $P = cP_0$ is a random point of ℓ^{∞} -torsion, and P multiplied by a suitable power of ℓ is a random point of ℓ^d -torsion.
- Usual method: take a lot of random points of ℓ^d -torsion, and hope they generate it over $\mathbb{F}_{p^{\alpha_d}}$.
- Problems: the random points of *ℓ*^{*d*}-torsion are not uniform ⇒ require a lot of random points, and the result is probabilistic.
- Our solution: Compute the whole ℓ[∞]-torsion. "Correct" points to find uniform points of ℓ^d-torsion. Use pairings to save memory.
- \Rightarrow We can check if a curve is maximal faster.
- \Rightarrow We can abort early.

Obtaining all the maximal curves

- If *J* is a maximal curve, and ℓ does not divide $(O_K : \mathbb{Z}[\pi, \overline{\pi}])$, then any (ℓ, ℓ) -isogenous curve is maximal.
- The maximal Jacobians form a principal homogeneous space under the Shimura class group $\mathfrak{C}(O_K) = \{(I, \rho) \mid I\overline{I} = (\rho) \text{ and } \rho \in K_0^+\}.$
- (ℓ, ℓ)-isogenies between maximal Jacobians correspond to element of the form (I, ℓ) ∈ 𝔅(O_K). We can use the structure of 𝔅(O_K) to determine the number of new curves we will obtain with (ℓ, ℓ)-isogenies.
 ⇒ Don't compute unneeded isogenies.
- It can be faster to compute (ℓ, ℓ)-isogenies with ℓ | (O_K : ℤ[π, π̄]) to find new maximal Jacobians when ℓ and val_ℓ((O_K : ℤ[π, π̄])) is small.

"Going up"

- There is p^3 classes of isomorphic curves, but only a very small number $(#\mathfrak{C}(O_K))$ with $\operatorname{End}(J) = O_K$.
- But there is at most $16p^{3/2}$ isogeny class.
- \Rightarrow On average, there is $\approx p^{3/2}$ curves in a given isogeny class.
- ⇒ If we have a curve in the right isogeny class, try to find isogenies giving a maximal curve!

An algorithm for "going up"

- 1. Let $\gamma \in O_K \setminus \text{End}(J)$. We can assume that $\ell^{\infty} \gamma \in \mathbb{Z}[\pi, \overline{\pi}]$.
- 2. Let *d* be the minimum such that $\gamma(J[\ell^d]) \neq \{0\}$, and let $K = \gamma(J[\ell^d])$. By definition, $K \subset J[\ell]$.
- We compute all (ℓ, ℓ)-isogeneous Jacobians J' where the kernel intersect K. Keep J' if #γ(J'[ℓ^d]) < #K (and be careful to prevent cycles).
- First go up for $\gamma = (\pi^{\alpha} 1)/\ell$: this minimize the extensions we have to work with.
- It is not always possible to go up. We would need more general isogenies than (l, l)-isogenies. Most frequent case: we can't go up because there is no (l, l)-isogenies at all! (And we can detect this).

Sieving the primes

- We throw a prime *p* for the CRT if detecting if a curve is maximal is too costly, or there is not enough curves where we can "go up".
- How to estimate this number?
 - Compute the lattice of orders between Z[π, π] and O_K. For all such order O such that (O_K : O) is not divisible by any ℓ where there is no (ℓ, ℓ)-isogeny, compute 𝔅(O).

This is too costly! (Even computing $Pic(\mathbb{Z}[\pi, \overline{\pi}])$ is too costly!)

2. Compute

$$#\mathfrak{C}(\mathbb{Z}[\pi,\overline{\pi}]) = \frac{c(O_K: Z[\pi,\overline{\pi}]) \# \operatorname{Cl}(O_K) \operatorname{Reg}(O_K)(\widehat{O}_K^*: \widehat{\mathbb{Z}}[\pi,\overline{\pi}]^*)}{2 \# \operatorname{Cl}(\mathbb{Z}[\pi+\overline{\pi}]) \operatorname{Reg}(\mathbb{Z}[\pi+\overline{\pi}])}$$

and estimate the number of curves as

$$\sum_{d \mid \#\mathfrak{C}(\mathbb{Z}[\pi,\overline{\pi}])} d$$

(for *d* not divisible by a ℓ where we can't go up).

• We use a dynamic approach: if a prime discarded is now better than the current prime, go back to this prime.

Exploring the curves

- 1. Go sequentially through the p^3 Igusa invariants j_1, j_2, j_3 . But constructing the curve from the invariants is costly.
- 2. Construct random curves in Weierstrass form

$$y^{2} = a_{6}x^{6} + a_{5}x^{5} + a_{4}x^{4} + a_{3}x^{3} + a_{2}x^{2} + a_{1}x + a_{0}.$$

3. If the two torsion is rational (check where $\frac{\pi-1}{2}$ live), construct curves in Rosenhain form

$$y^2 = x(x-1)(x-\lambda)(x-\mu)(x-\nu).$$

4. If the Hilbert moduli space is rational, construct the *j*-invariants from the Gundlach invariants (only p^2 invariants, parametrizing the space of curves with real multiplication by K_0).

▲ロト ▲ 同 ト ▲ 三 ト ▲ 三 ト つ Q (~

p	l^d	α_d	# Curves	Estimate	Time (old)	Time (new)	
7	2 ²	4	7	8	8 0.5 + 0.3 0 +		
17	2	1	39	32	4 + 0.2	0 + 0.1	
23	2 ² ,7	4,3	49	51	9 + 2.3	0 + 0.2	
71	2^{2}	4	7	8	255 + 0.7	5.3 + 0.2	
97	2	1	39	32	680 + 0.3	2 + 0.1	
103	2 ² , 17	4,16	119	127	829 + 17.6	0.5 + 1	
113	2 ⁵ ,7	16,6	1281	877	1334 + 28.8	0.2 + 1.3	
151	2 ² , 7, 17	4, 3, 16	-	- 0		0	
					3162 <i>s</i>	13 <i>s</i>	

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{2+\sqrt{2}}), \mathfrak{C}(O_K) = \{0\}.$

 $H_1 = X - 1836660096$, $H_2 = X - 28343520$, $H_3 = X - 9762768$

p	l^d	α_d	# Curves	Estimate	Time (old)	Time (new)
29	3,23	2,264	-	-	-	-
53	3,43	2,924	-	-	-	-
61	3	2	9	6	167 + 0.2	0.2 + 0.5
79	3^{3}	18	81	54	376 + 8.1	0.3 + 0.9
107	3 ² , 43	6,308	-	-	-	-
113	3,53	1, 52	159	155	1118 + 137.2	0.8 + 25
131	3 ² , 53	6,52	477	477	1872 + 127.4	2.2 + 44.4
139	3 ⁵	81	?	486	-	1 + 36.7
157	3^{4}	27	243	164	3147 + 16.5	-
					6969 <i>s</i>	114s

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{13 + 2\sqrt{29}}), \mathfrak{C}(O_K) = \{0\}.$

 $H_1 = X - 268435456, \quad H_2 = X + 5242880, \quad H_3 = X + 2015232.$

Checking if a curve is maximal

- Let $H: y^2 = 80x^6 + 51x^5 + 49x^4 + 3x^3 + 34x^2 + 40x + 12$ over \mathbb{F}_{139} and J the Jacobian of H. We have $\operatorname{End}(J) \otimes \mathbb{Q} = \mathbb{Q}(i\sqrt{13 + 2\sqrt{29}})$ and we want to check if $\operatorname{End}(J) = O_K$.
- For that we need to compute $J[3^5]$, that lives over an extension of degree 81 (for the twist it lives over an extension of degree 162).
- With the old randomized algorithm, this computation takes 470 seconds (with 12 Frobenius trials over $\mathbb{F}_{139^{162}}$).
- With the new algorithm computing the ℓ[∞]-torsion, it only takes
 17.3 seconds (needing only 4 random points over F_{139⁸¹}, approx 4 seconds needed to get a new random point of ℓ[∞]-torsion).

Class polynomials

Speeding up the CRT

- 6	v				0
- 14	л		 υ	c	
			х.		

P	l^d	α _d	# Curves	Estimate Time (old)		Time (new)
7	-	-	1	1	0.3	0 + 0.1
23	13	84	15	2 (16)	9 + 70.7	0.4 + 24.6
53	7	3	7	7	105 + 0.5	7.7 + 0.5
59	2,5	1,12	322	48 (286)	164 + 6.4	1.4 + 0.6
83	3,5	4,24	77	108	431 + 9.8	2.4 + 1.1
103	67	1122	-	-	-	-
107	7,13	3,21	105	8 (107)	963 + 69.3	-
139	$5^2, 7$	60,2	259	9 (260)	2189 + 62.1	-
181	3	1	161	135	5040 + 3.6	4.5 + 0.2
197	5,109	24,5940	-	-	-	-
199	5 ²	60	37	2 (39)	10440 + 35.1	-
223	2,23	1,11	1058	39 (914)	10440 + 35.1	-
227	109	1485	-	-	-	-
233	5, 7, 13	8, 3, 28	735	55 (770)	11580 + 141.6	88.3 + 29.4
239	7,109	6,297	-	-	-	-
257	3, 7, 13	4,6,84	1155	109 (1521)	17160 + 382.8	-
313	3,13	1,14	?	146 (2035)	-	165 + 14.7
373	5,7	6,24	?	312	-	183.4 + 3.8
541	2, 7, 13	1, 3, 14	?	294 (4106)	-	91 + 5.5
571	3, 5, 7	2, 6, 6	?	1111 (6663)	-	96.6 + 3.1
					56585 <i>s</i>	114 <i>s</i>

Computing the class polynomial for $K = \mathbb{Q}(i\sqrt{29 + 2\sqrt{29}}), \mathfrak{C}(O_K) = \{0\}.$ (The new algorithm also skipped the primes 277, 281, 349, 397, 401, 431, 487, 509, 523.)

 $H_1 = 244140625X - 2614061544410821165056$

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Checking if a curve is maximal (2)

- Let $H: y^2 = 10x^6 + 57x^5 + 18x^4 + 11x^3 + 38x^2 + 12x + 31$ over \mathbb{F}_{59} and *J* the Jacobian of *H*. We have $\text{End}(J) \otimes \mathbb{Q} = \mathbb{Q}(i\sqrt{29 + 2\sqrt{29}})$ and we want to check if $\text{End}(J) = O_K$.
- O_K is generated as a \mathbb{Z} -module by 1, α , β , γ . α is of index 2 in $O_K/\mathbb{Z}[\pi, \overline{\pi}]$, β of index 4 and γ of index 40.
- So the old algorithm will check $J[2^3]$ and J[5].
- But $O_K = \mathbb{Z}_2[\pi, \overline{\pi}, \alpha]$, so we only need to check J[2] and J[5].

Class polynomials

CRT for non principal fields

- $K = \mathbb{Q}(X)/(X^4 + 238X^2 + 833)$. $\mathfrak{C}(K) \simeq \mathbb{Z}/2\mathbb{Z}$ is generated by (7,7)-isogenies.
- Primes used: 19, 59, 67, 83, 149, 191, 223, 229, 239, 257, 349, 463, 557, 613, 661, 733, 859, 1039, 1373, 1613, 1657, 1667, 1733, 1753, 1801, 1871, 1879, 2399, 3449, 3469, 3761, 3931, 4259, 4691, 5347, 5381, 6427, 6571, 6781.
- For $p \approx 6000$, we keep p if we expect more than $\frac{p^{3/2}}{32} \approx 15 \times 10^6$ curves. At this size, it takes around 6 seconds to test 10000 curves, so around 2.5 hours are needed for p.
- Total time: 44062 second (not the latest version of the code).
- Class polynomials:

$$\begin{split} H_1(X) &= 168451200633545364243594910146286907316572281862280871005795423612829696X^2 \\ &+ 158582528695513934970693031198523489269724119094630145672062735632518026507497890643968X \\ &- 2014843977961649893357675219372115899170378669590465187558574259942250352955092541374464. \end{split}$$

- $K = \mathbb{Q}(X)/(X^4 + 185X^2 + 8325)$. $\mathfrak{C}(K) \simeq \mathbb{Z}/10\mathbb{Z}$ is generated by (3, 3)-isogenies (generating a subgroup $\simeq \mathbb{Z}/5\mathbb{Z}$) and (5, 5)-isogenies (generating a subgroup $\simeq \mathbb{Z}/2\mathbb{Z}$).
- Primes used for now: 263, 271, 317, 337, 397, 641, 941, 1103, 11699, 1259, 2293, 2341, 2393, 2803, 3203, 3319, 3919, 6151, 6367, 7669, 7759, 9949.
- Time currently spent: ≈ 150000 seconds.
 We have ≈ 216 bits of precision, but the denominator are of size ≈ 588 bits.
- Current class polynomials:

 $H_1 = -21480611542361762508723557468335461542930690217345422101435707227 X^{10}$ $+ 131226723395697728046645744735668338577537209903840153167551282021X^9$ $+ 119945977255497733218873710360493249341055938181798936596623683383 X^8$ $-153714213780179060368348234170174803289200899482268520878793209046X^7$ $+ 62638744793599939793495892285517701303753967578884386663315225591X^6$ $-93677816446063314842418364580720430581350319726187642792340508326X^{5}$ $-71691842165741338225610186297897317814938228092904998616608265551 X^4$ $+ 136981527112264611043485159784332306015708502624769592116848181204 X^{3}$ $-39477010352126860185603010004604642269566979659155934331715153441X^{2}$ -151371452252448694646593117087635298316650526995194471928188077417X-36993265717589384804067106436837614321682950101513031994455394382

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

The dihedral case

- There are two CM types.
- A prime *p* which is nice for one CM type may be bad for the other. But we can't distinguish the CM types over \mathbb{Q} .
- However we can over K_0 , if $p = q_1q_2$ in K_0 , then one CM type correspond to the reduction modulo a prime in the class field above q_1 , and the other to a prime above q_2 . By doing the CRT on q_i , we keep track of this CM type.
- The class polynomials over *K*₀ splits into polynomials given by the action of the type norm. It is easy to compute the orbits modulo *p*, but how de we paste them together?
- One solution would be to use the "trace trick" from Enge and Sutherland (or directly compute the trace via analytic methods).
- Last idea: compute some class polynomials H'₂, H'₃ (needing less precision) to help compute the interpolation polynomials H
 ₂, H
 ₃.