Finding a supersingular isogeny path with only one isogeny computation 2023/04/25 - Eurocrypt Rump Session, Lyon

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest

Lattices

Been using dimension >1000 since forever
Selected by the NIST
And selected again
And again

Isogenies

Took 10 years to count to 4 Needs 3 talks to explain something is broken No longer in NIST

Goal

- Luca ${ }^{1}$ wants to compute a bicycle path between Zürich and Lyon
- He is only allowed to do one isogeny request!

[^0]Damien Robert

Existing algorithms

Existing algorithms

Meet in the middle

Existing algorithms

Special points

A solution

- $E, E^{\prime} / \mathbb{F}_{p^{2}}$ two supersingular curves ($p \approx 256$ bits)
- Goal: find a 2^{e}-isogeny $\phi: E_{1} \rightarrow E_{2}$
- $E_{\lambda}: y^{2}=x(x-1)(x-\lambda)$ (Legendre)
- $A=\prod_{\lambda \in \mathbb{F}_{p^{2}}\{0,1\}} E_{\lambda}$
- $K \subset A[2]$ generated by the 2 -torsion points $(0,0)$ on each E_{λ}
- $\Phi: A \rightarrow B=A / K$ encodes the full supersingular 2 -isogeny graph!

Complexity

- Computing a 2 -isogeny in dimension $\approx 2^{512}$ may seem expensive
- Good news! Restricting to $A=\prod E_{\lambda}$ with E_{λ} supersingular we are only in dimension $\approx 2^{256}$
- The point $(0,0)$ on E_{λ} and on $E_{1 / \lambda}$ encode the same isogeny
\Rightarrow Gains a factor two!

To infinity and beyond

- Abelian scheme of unbounded dimension:

$$
A=\coprod_{p} \prod_{\lambda \in \mathbb{F}_{p^{2}}-\{0,1\}} E_{\mathbb{F}_{p^{2}}, \lambda}
$$

- A single 2-isogeny encode all supersingular 2-isogeny graphs over all primes

Success?

Slogan: higher dimensional isogeny = the ability to put your bike in a train!

[^0]: ${ }^{1}$ any similarity to an actual person is purely coincidental...

