
The arithmetic of theta groups and biextensions of abelian varieties
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Abstract. We investigate the use of biextensions and the theta groups to understand
isogenies. Namely we show that every isogeny of odd degree between elliptic curves lift
canonically to theta groups and we give an algorithm to compute this lfit. We discuss some
consequences of this for the DLP.

1. Introduction

In this article, we study various consequences of the following result, with follows from
the algebraic theory of the theta group as constructed by Mumford [Mum66; Mum67a;
Mum67b].

Theorem 1.1. Let 𝑓 ∶ (𝐴, ℒ) → (𝐵, ℳ) be an 𝑁-isogeny between ppavs, with 𝑁 odd. Assume
that ℒ and ℳ are symmetric. Let 𝑚 be an odd integer prime to 𝑁. Then 𝑓 ∶ 𝐴[𝑚] → 𝐵[𝑚]
lifts canonically to a map of theta groups ̃𝑓 ∶ 𝐺(ℒ𝑚) → 𝐺(ℳ𝑚), sending symmetric elements
to symmetric elements.

Proof. Since 𝑓 is an 𝑁-isogeny, we have an isomorphism 𝑓 ∗ℳ ≃ ℒ𝑁. The descent of ℒ𝑁

to ℳ is encoded by a symmetric lift 𝐾 of 𝐾 = Ker 𝑓 in the theta group 𝐺(ℒ𝑁). Since ℳ is
symmetric, 𝐾 is composed of symmetric elements. Since 𝑁 is odd, if 𝑃 ∈ 𝐾 is of order 𝑁′ ∣ 𝑁,
there is a unique symmetric element 𝑔𝑃 ∈ 𝐺(ℒ𝑁) of the same order 𝑁′. Hence 𝐾 is uniquely
determined. We have a canonical isomorphism 𝐹 ∶ 𝑍(𝐾)/𝐾 ≃ 𝐺(ℳ), which commutes
with 𝛿−1 since 𝐾 is symmetric, so sends symmetric element to symmetric elements

There is also a map 𝜀𝑚 ∶ 𝐺(ℒ𝑁) → 𝐺(ℒ𝑚𝑁), which commutes with 𝛿−1, so 𝜀𝑚(𝐾) ⊂
𝐺(ℒ𝑚𝑁) is also a symmetric lift of 𝐾 in 𝐺(ℒ𝑚𝑁). It encodes the descent of ℒ𝑁𝑚 into ℳ𝑚.
We obtain a canonical isomorphism 𝐹𝑚 ∶ 𝑍(𝜀𝑚(𝐾))/𝜀𝑚(𝐾) ≃ 𝐺(ℳ𝑚), commuting with
𝛿−1.

Finally, there is also a map 𝜀𝑁 ∶ 𝐺(ℒ𝑚) → 𝐺(ℒ𝑚𝑁). It lends inside 𝑍(𝜀𝑚(𝐾)) because
the orthogonal 𝐾⟂ of 𝐾 with respect to the Weil pairing 𝑒𝑊,ℒ on 𝐴[𝑚𝑁] contains 𝐴[𝑚].

Our map is ̃𝑓 = 𝐹𝑚 ∘ 𝜀𝑁 ∶ 𝐺(ℒ𝑚) → 𝐺(ℳ𝑚). If 𝛼 ∈ 𝑘
∗
, ̃𝑓 (𝛼) = 𝛼𝑁, so its kernel is

{𝛼 ∈ 𝑘
∗

∣ 𝛼𝑁 = 1.}. �

We will give an explicit version of Theorem 1.1 for elliptic curves in Section 2 and we give
some applications in Appendix A.1.

2. The theta group of a divisor on an elliptic curve

Let 𝐸/𝑘 be an elliptic curve and 𝐷 a divisor. Its algebraic equivalence class is determined
by its degree deg𝐷 ∈ ℤ. We have a morphism Φ𝐷 ∶ 𝐸 → �̂�, 𝑃 ∈ 𝐸 ↦ 𝑡𝑃,∗𝐷 − 𝐷. This
map is an isogeny iff deg𝐷 ≠ 0, in which case 𝐾(𝐷) ≔ KerΦ𝐷 = 𝐸[deg𝐷] (provided
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the degree is prime to the characteristic). If deg𝐷 = 0, then KerΦ𝐷 = 𝐸. The divisor 𝐷 is
ample iff deg𝐷 > 0.

2.1. The theta group.

Definition 2.1. Assume that 𝐷 is ample. The theta group 𝐺(𝐷) is given by tuples (𝑃, 𝑓𝐷,𝑃)
with 𝑃 ∈ KerΦ𝐷 = 𝐸[deg𝐷], and 𝑓𝐷,𝑃 any function with divisor 𝑡𝑃,∗𝐷 − 𝐷. The com-
position law is given by (𝑃, 𝑓𝐷,𝑃).(𝑄, 𝑓𝐷,𝑄) = (𝑃 + 𝑄, 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑄(𝑥 − 𝑃)). In particular,
(𝑃, 𝑓𝐷,𝑃)−1 = (−𝑃, 𝑓 −1

𝐷,𝑃(𝑥 + 𝑃)).
The theta group acts on Γ(𝐷) via (𝑃, 𝑓𝐷,𝑃)⋅𝑠 = 𝑓𝐷,𝑃(𝑥)𝑠(𝑥−𝑃).The action is irreducible

(Mumford).

We remark that for any divisor 𝐷, we can build up a function of the type 𝑓𝐷,𝑃 by combining
functions 𝜇𝑃,𝑄 with divisor (𝑃)+(𝑄)−(𝑃+𝑄)−(0𝐸), as is done for pairing computations.

Let 𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃) and 𝑔𝑄 = (𝑄, 𝑓𝐷,𝑄) in𝐺(𝐷).Then 𝑔𝑃.𝑔𝑄 = (𝑃+𝑄, 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑄(𝑥−
𝑃))while 𝑔𝑄.𝑔𝑃 = (𝑃+𝑄, 𝑓𝐷,𝑄(𝑥)𝑓𝐷,𝑃(𝑥−𝑄)). So 𝑔𝑄.𝑔𝑃 = 𝛼𝑔𝑃.𝑔𝑄 with𝛼 = 𝑓𝐷,𝑄(𝑥)/𝑓𝐷,𝑄(𝑥−
𝑃) ⋅ 𝑓𝐷,𝑃(𝑥 − 𝑄)/𝑓𝐷,𝑃(𝑥) = 𝑒𝑊,𝐷(𝑃, 𝑄). The commutator pairing [𝑔𝑃, 𝑔𝑄] is the Weil pair-
ing 𝑒𝑊,𝐷(𝑃, 𝑄).

We also check that if 𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃), then 𝑔𝑚
𝑃 = (𝑚𝑃, 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑥 − 𝑃) … 𝑓𝐷,𝑃(𝑥 −

(𝑚 − 1)𝑃)). Thus 𝑔𝑃 is of order 𝑛 iff 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑥 − 𝑃) … 𝑓𝐷,𝑃(𝑥 − (𝑛 − 1)𝑃) = 1.

2.2. 2-cocycle. Pick any section 𝑠 ∶ 𝐾(𝐷) → 𝐺(𝐷). Say take for 𝑓𝐷,𝑃 be a function appro-
priately normalised at 0𝐸. Another solution is to take a symmetric lift (see Section 2.4). Then
we can work with 𝐺(𝐷) by representing an element 𝑔 ∈ 𝐺(𝐷) by a tuple (𝑃, 𝛾), where
𝛾 represents the function 𝛾𝑠(𝑃). The group law is then given by (𝑃, 𝛾𝑃).(𝑄, 𝛾𝑄) = (𝑃 +
𝑄, 𝛾𝑃𝛾𝑄𝑆(𝑃, 𝑄)) where 𝑆 is the 2-cocycle associated to 𝑠: 𝑠(𝑃)𝑠(𝑄) = 𝑆(𝑃, 𝑄)𝑠(𝑃 + 𝑄).
In practice, this all boils down to elementary computation with Miller functions of the form
𝜇𝑃,𝑄.

Notice that this 2-cocycle is normalized 𝑆(𝑇, 0) = 𝑆(0, 𝑇) = 1, and that since the
commutator pairing is the Weil pairing, we have

(1) 𝑆(𝑇1, 𝑇2) = 𝑒𝑊,ℓ(𝑇1, 𝑇2)𝑆(𝑇2, 𝑇1).
Hence the 2-cocycles describing the theta group may be seen as a generalisation of the Weil
pairing.

Example 2.2. Take 𝐷 = 𝑑(0𝐸), 𝑠(𝑃) = (𝑃, 𝑓𝑑,𝑃) where 𝑓𝑑,𝑃 is the usual Miller function
normalised at (0𝐸), we compute 𝑆(𝑃, 𝑄) = 𝑓𝑑,𝑄(−𝑃). So the corresponding 2-cocycle is
the usual non reduced Tate pairing (up to a sign)!

2.3. Isomorphisms of theta groups. The isomorphism class of the theta group depends
only on the line bundle ℒ(𝐷) associated to 𝐷. If 𝐷′ = 𝐷 + div(𝑔), an explicit isomorphism
is given by

(2) (𝑃, 𝑓𝐷,𝑃) ↦ (𝑃, 𝑓𝐷,𝑃(𝑥)𝑔(𝑥 − 𝑃)/𝑔(𝑥)).
This isomorphism commutes with the action on sections via Γ(𝐷) ≃ Γ(𝐷′), 𝑠 ↦ 𝑠/𝑔.

If 𝐷 = 𝑡𝑐,∗𝐷, we also have an isomorphism of 𝐺(𝐷) with 𝐺(𝐷′) via

(3) (𝑃, 𝑓𝐷,𝑃) ↦ (𝑃, 𝑡𝑐,∗𝑓𝐷,𝑃(𝑥) = 𝑓𝐷,𝑃(𝑥 − 𝑐)),
with is compatible with the action via Γ(𝐷) ≃ Γ(𝐷′), 𝑠(𝑥) ↦ 𝑡𝑐,∗(𝑠)(𝑥) = 𝑠(𝑥 − 𝑐).

Any divisor 𝐷 of degree 𝑑 is linearly equivalent to a divisor of the form 𝐷′ = (𝑃) + (𝑑 −
1)(0𝐸), and if 𝑃 = 𝑑𝑃0, then 𝑡𝑃0,∗𝐷′ is linearly equivalent to 𝑑(0𝐸). Hence by Equations (2)
and (3), 𝐺(𝐷) is isomorphic (over the field where 𝑃0 is defined) to 𝐺(𝑑(0𝐸)).
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If 𝑄 ∈ 𝐾(𝐷), 𝑡𝑄,∗𝐷 is linearly equivalent to 𝐷 by definition. Write 𝑡𝑄,∗𝐷 = 𝐷 +
div(𝑓𝐷,𝑄), 𝑔𝑄 = (𝑄, 𝑓𝐷,𝑄), combining Equations (2) and (3), we obtain an automorphism
of 𝐺(𝐷) given by
(4)
𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃) ↦ (𝑃, 𝑓𝐷,𝑃(𝑥−𝑄)𝑓𝐷,𝑄(𝑥)/𝑓𝐷,𝑄(𝑥−𝑃)) = 𝑔𝑄𝑔𝑃𝑔−1

𝑄 = (𝑃, 𝑒𝑊,𝐷(𝑃, 𝑄)𝑓𝐷,𝑃).

2.4. Symmetric divisors. If ℒ(𝐷) is symmetric, then [−1]∗𝐷 is linearly equivalent to 𝐷.
Write 𝐷 = −𝐷 + div(𝑔). We have an isomorphism 𝐺(𝐷) ≃ 𝐺(−𝐷),
(5) (𝑃, 𝑓𝐷,𝑃) ↦ (−𝑃, [−1]∗𝑓𝐷,𝑃(𝑥) = 𝑓𝐷,𝑃(−𝑥)).

Combining with the isomorphism form Equation (2), we obtain an involution

(6) 𝛿−1 ∶ 𝐺(𝐷) → 𝐺(𝐷), (𝑃, 𝑓𝐷,𝑃) ↦ (−𝑃, 𝑓𝐷,𝑃(−𝑥)𝑔(𝑥 − 𝑃)/𝑔(𝑥)).
Note that this does not depends on the choice of 𝑔.

If 𝐷 is symmetric, we can take 𝑔 = 1, so 𝛿−1(𝑃, 𝑓𝐷,𝑃) = (−𝑃, 𝑓𝐷,𝑃(−𝑥)). An el-
ement 𝑔𝑃 = (𝑃, 𝑓𝐷,𝑃) is said to be symmetric if 𝛿−1(𝑔𝑃) = 𝑔−1

𝑃 . This is the case iff
𝑓 −1
𝐷,𝑃(𝑥 + 𝑃) = 𝑓𝐷,𝑃(−𝑥)𝑔(𝑥 − 𝑃)/𝑔(𝑥), ie 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑃 − 𝑥) = 𝑔(−𝑥)/𝑔(−𝑃 − 𝑥).
If 𝑃 = 𝑃0, this equation becomes 𝑓𝐷,𝑃(𝑃0)2 = 𝑔(−𝑃0)/𝑔(−3𝑃0). If 𝑔 = 1, these simplify
to 𝑓𝐷,𝑃(𝑥)𝑓𝐷,𝑃(𝑃 − 𝑥) = 1 and 𝑓𝐷,𝑃(𝑃0)2 = 1.

Thus for any 𝑃 ∈ 𝐾(𝐷), there are two symmetric elements ±𝑔𝑃 ∈ 𝐺(𝐷) above 𝑃.
If 𝑔𝑃 and 𝑔𝑄 are symmetric above 𝑃 and 𝑄 respectively, and 𝑔𝑃 commutes with 𝑔𝑄 (ie
𝑒𝑊,𝐷(𝑃, 𝑄) = 1), then 𝑔𝑃𝑔𝑄 is symmetric. In particular, if 𝑔𝑃 is symmetric above 𝑃, 𝑔𝑛

𝑃 is
symmetric above 𝑛𝑃.

If𝑃 is of order𝑛, then since the two symmetric elements above 0𝐸 are (0𝐸, 1) and (0𝐸, −1),
we see that 𝑔𝑛

𝑃 = ±1. So if 𝑃 is of odd order 𝑛, one of the two symmetric lift is of order 𝑛 and
the other is of order 2𝑛. We will call the symmetric lift of order 𝑛 the canonical symmetric
lift 𝑔𝑃 of 𝑃. But if 𝑃 is of even order 𝑛 = 2𝑛0, then both symmetric lifts are of order either
2𝑛 or 𝑛. Let 𝑇 = 𝑛0𝑃, it is a point of 2-torsion. Then for both symmetric lifts ±𝑔𝑃, we have
𝑔𝑛

𝑃 = 𝑒𝐷,∗(𝑇). So the symmetric lifts are of order 𝑛 iff 𝑒𝐷,∗(𝑇) = 1.
If 𝐷 is symmetric, Mumford shows in [Mum66, Proposition 2 p.307] that 𝑒𝐷,∗(𝑇) =

(−1)mult𝐷(𝑇)−mult𝐷(0). A divisor is said to be totally symmetric if 𝑒𝐷,∗(𝑇) = 1 for all 𝑇 ∈
𝐸[2], this is the case iff 𝐷 is linearly equivalent to 2𝐷0 with 𝐷0 a symmetric divisor.

The symmetric divisors of degree 𝑑 are given by (𝑑 − 1)(0𝐸) + 𝑇 for each 𝑇 ∈ 𝐸[2].
If 𝑑 is even, only 𝑑(0𝐸) is totally symmetric among these four symmetric divisors in the
corresponding algebraic equivalence class.

If 𝑑 ≔ deg𝐷 is odd, we thus have a canonical (set) section 𝑠 ∶ 𝐾(𝐷) → 𝐺(𝐷), which
maps 𝑃 to the canonical symmetric element 𝑔𝑃 above it, hence a canonical 2-cocycle 𝑆 ∶
𝐾(𝐷) × 𝐾(𝐷) → 𝔾𝑚, 𝑆(𝑃, 𝑄) = 𝑠(𝑃).𝑠(𝑄).𝑠(𝑃 + 𝑄)−1. An elementary, if somewhat
tedious (see below), computation shows that 𝑆(𝑃, 𝑄) = 𝑒𝑊,𝐷(𝑃, 𝑄)1/2 ∈ 𝜇𝑑.

When 𝑑 is odd, we will define ℎ𝐷,𝑃 to be the canonical function such that 𝑔𝑃 = (𝑃, ℎ𝐷,𝑃)
is the unique symmetric element of order 𝑑.

2.5. Heisenberg group. Let 𝐷 be a divisor of degree 𝑑, and 𝐸[𝑑] = 𝐸1[𝑑] ⊕ 𝐸2[𝑑] a
symplectic decomposition for the Weil pairing. Let 𝐸𝑖[𝑑] be any lift of 𝐸𝑖[𝑑] into the theta
group 𝐺(𝐷), 𝑠 ∶ 𝐸𝑖[𝑑] → 𝐸𝑖[𝑑] the corresponding isomorphism..

Since 𝐸1[𝑑] and 𝐸2[𝑑] are orthogonal, we can extend 𝑠 into a set section for any 𝑃 =
𝑃1 + 𝑃2 ∈ 𝐸[𝑑] by 𝑠(𝑃) = 𝑠(𝑃1)𝑠(𝑃2) = 𝑠(𝑃2)𝑠(𝑃1).

The corresponding cocycle is then given by 𝑆(𝑃, 𝑄) = 𝑒𝑊,𝐷(𝑃1, 𝑄2)𝑒𝑊,𝐷(𝑃2, 𝑄1). We
represent an element of 𝐺(𝐷) by a tuple (𝛼, 𝑃) which encodes the element 𝛼𝑠(𝑃).
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The group law is then given for all 𝑛 ∈ ℤ by (𝛼, 𝑃)𝑛 = (𝛼𝑛𝑆(𝑃, 𝑃)𝑛(𝑛−1)/2, 𝑛𝑃), in
particular −(𝛼, 𝑃) = (𝑆(𝑃, 𝑃)/𝛼, −𝑃).

If the level subgroups 𝐸𝑖 are symmetric (if 𝑑 is even these exists only if 𝐷 is totally
symmetric), then they commute with 𝛿−1 hence we have 𝛿−1(𝛼, −𝑃) = (𝛼, −𝑃). It follows
that the symmetric elements above 𝑃 are given by (±𝑆(𝑃, 𝑃)1/2, 𝑃), and if 𝑑 is odd the
unique symmetric lift of order 𝑑 is given by (𝑆(𝑃, 𝑃)1/2, 𝑃).

So the cocycle𝑆0 associated to the symmetric section 𝑠0 is given by𝑆0(𝑃, 𝑄) = 𝑒𝑊,𝐷(𝑃, 𝑄)1/2.
Anticipating Section 2.8 and reusingMumford’s notations, themap 𝜀𝑁 ∶ 𝐺(𝐷) → 𝐺(𝑁𝐷)

is described by (𝛼, 𝑃) ↦ (𝛼𝑁, 𝑃) provided that the subgroups 𝐸𝑖[𝑁𝑑] are compatible with
𝐸𝑖[𝑑]. The isogeny descent map ̃𝑓 ∶ 𝐺(𝐷1) → 𝐺(𝐷2) is given by (𝛼, 𝑃) ↦ (𝛼, 𝑓 (𝑃))
provided that the level subgroups of 𝐷2 are compatible via ̃𝑓 with the ones on 𝐷1. So the
map 𝜂𝑛 = [̃𝑛] ∘ 𝜖𝑛 is given by (𝛼, 𝑃) ↦ (𝛼𝑛, 𝑛𝑃). And the map 𝛿𝑛 ∶ (𝛼, 𝑃) ↦ (𝛼𝑛2, 𝑛𝑃).

Finally, if 𝑃 ∈ 𝐾(𝐷) and 𝑃 = 2𝑃0, 𝑃0 determines a unique symmetric lift of 𝑃. (Assume
𝑒∗(𝑃) = 1). Indeed, we let 𝑔𝑃0

∈ 𝐺(2𝐷) one of the two symmetric lifts, we use 𝜀2 to get
an element in 𝐺(4𝐷) and we descend via [2] to get back an element of 𝐺(𝐷) which does
not depend on the sign. Since 𝑃0 ∈ 2𝐾(4𝐷), the descent does not depend on the choice of
𝐸[2].

2.6. The case of a divisor of degree 0. It is also instructive to look at the theta group 𝐺(𝐷)
of a divisor 𝐷 of degree 0.

Such a divisor is always linearly equivalent to 𝐷𝑄 = (𝑄) − (0) so we will restrict to
this case. We have 𝐾(𝐷𝑄) = 𝐸 and Φ𝐷𝑄

= 0. The Weil pairing 𝑒𝐷𝑄
is trivial so 𝐺(𝐷𝑄) is

commutative. An element 𝑔𝑃,𝑄 = (𝑃, 𝑓𝑃,𝐷𝑄
) ∈ 𝐺(𝐷𝑄)has divisor (𝑃+𝑄)+(0)−(𝑃)−(𝑄)

so corresponds to a multiple of the usual Miller function 𝜇𝑃,𝑄. In particular, we also have
𝑔𝑃,𝑄 ∈ 𝐺(𝐷𝑃).

There are thus two interpretations of the addition law 𝑔𝑃1,𝑄𝑔𝑃2,𝑄. The first one is given
by working in 𝐺(𝐷𝑄). But we can also interpret 𝑔𝑃1,𝑄 as being above 𝑄 in 𝐺(𝐷𝑃1

), 𝑔𝑃2,𝑄
as being above 𝑄 in 𝐺(𝐷𝑃2

), so the product of the two functions 𝑓1𝑓2 is above 𝑄 in 𝐺(𝐷𝑃1
+

𝐷𝑃2
). But 𝐷𝑃1

+ 𝐷𝑃2
is linearly equivalent to 𝐷𝑃1+𝑃2

, so using our isomorphisms of theta
group we get an element of 𝐺(𝐷𝑃1+𝑃2

) above 𝑄 which we reinterpret as an element of 𝐺(𝑄)
above 𝑃1 + 𝑃2. Both interpretation give the same addition law.

We check: 𝜇𝑃1,𝑄 ⋆ 𝜇𝑃2,𝑄 = 𝜇𝑃1,𝑃2
(−𝑄)𝜇𝑃1+𝑃2,𝑄.

We could thus define a partial group law 𝐺 above (𝐸 × 𝐸) which is defined above
(𝑃1, 𝑄), (𝑃2, 𝑄) and above (𝑃, 𝑄1), (𝑃, 𝑄2). This group law encodes the arithmetic op-
erations done when computing pairings.

For instance, if 𝑔𝑃 = (𝑃, 𝜇𝑃,𝑄), then 𝑔𝑛
𝑃 is given by est donné par 1/𝑓𝑛,𝑃(−𝑄)𝜇𝑛𝑃,𝑄. So

if 𝑃 is of order 𝑛, we get that the equivalence class of 𝑔𝑛
𝑃 ∈ 𝔾𝑚 is represented by the Tate

pairing 𝑒𝑇,𝑛(𝑄, 𝑃).
Note the linkwith the torsor interpretation of the Tate pairing (see [Rob23b]). Let 𝐾 = ⟨𝑃⟩.

The divisor 𝐷𝑄 descends on 𝐸2 = 𝐸/𝐾 iff we can find a lift of 𝐾 in 𝐺(𝐷𝑄), iff there exists
𝑔𝑃 such that 𝑔𝑛

𝑃 = 1, iff for an arbitrary 𝑔𝑃, 𝑔𝑛
𝑃 ∈ 𝔾𝑚 is a 𝑛-th power.

But descents 𝐷𝑄′ of 𝐷𝑄 via 𝑓 ∶ 𝐸 → 𝐸2 corresponds exactly to preimages of 𝑄 via
̃𝑓 ∶ 𝐸2 → 𝐸, so the above conditions mean that ̃𝑓 −1(𝑄) has a rational preimage.

2.7. Theta group and isogenies. Let 𝐾 be a finite subgroup, and 𝑓 ∶ 𝐸 → 𝐸2 = 𝐸/𝐾 the
corresponding isogeny. A natural question is whether 𝐷 is linearly equivalent to 𝐷′ ≔ 𝑓 ∗𝐷2,
for some divisor 𝐷2 on 𝐸2, in which case we say that 𝐷 descends to 𝐷2.
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If that is the case, since 𝑓 ∗𝐷2 is invariant by translation by 𝑇 ∈ 𝐾, then for all 𝑇 ∈ 𝐾,
𝑡𝑇,∗𝐷 should be linearly equivalent to 𝐷, so a first condition is that 𝐾 ⊂ 𝐾(𝐷).

Let 𝐷′ = 𝑓 ∗𝐷2 and 𝛼𝑓 any rational function with divisor 𝐷′ − 𝐷. Since 𝐷′ is invariant by
translation by 𝐾, we have that for all 𝑇 ∈ 𝐾, 𝛼𝑓(𝑥)/𝛼𝑓(𝑥 − 𝑇) = 𝑓𝐷,𝑇.

Conversely, for each 𝑇 ∈ 𝐾, pick a 𝑔𝑇 = (𝑇, 𝑓𝐷,𝑇) so that 𝑡𝑇,∗𝐷 = 𝐷 + div 𝑓𝐷,𝑇.
Then these 𝑔𝑇 glue together to form a function 𝛼𝑓 such that 𝛼𝑓(𝑥)/𝛼𝑓(𝑥 − 𝑇) = 𝑓𝐷,𝑇 if

and only if they form a group 𝐾 (the cocycle condition for 𝛼𝑓 to exists translate into the group
law of the theta group). We say that 𝐾 is a lift of 𝐾 to 𝐺(𝐷); such a lift exists (possibly over
an extension) iff 𝐾 is isotropic for the Weil pairing 𝑒𝑊,𝐷.

In this case, 𝐷′ = 𝐷 + div(𝛼𝑓) is a divisor invariant by translation by 𝑇 ∈ 𝐾, hence is of
the form 𝐷′ = 𝑓 ∗𝐷2.

Note that 𝛼𝑓 is not unique, if 𝑔 is any function on 𝐸2, then 𝛼′
𝑓 = 𝛼𝑓 ⋅ 𝑔 ∘ 𝑓 satisfy the cocycle

condition, and via 𝛼′
𝑓, 𝐷 descends to 𝐷2 + div(𝑔). In other words, 𝐾 determines 𝐷2 only up

to its linear equivalence class.
Note also that 𝐷 may have different (non linearly equivalent) descent to 𝐸2, indeed if 𝐾

is a lift, the other ones are given by the conjugation action Equation (4) of 𝑃 ∈ 𝐾(𝐷)/𝐾⟂,
which gives a descent of 𝐷 to 𝑡𝑃,∗𝐷2 (which is algebraically equivalent to 𝐷2 however).

If 𝑔 ∈ Γ(𝐷′), 𝑔 descends to 𝐸2, ie is of the form 𝑔2 ∘ 𝑓, iff 𝑔 is invariant by translation
by 𝑇 ∈ 𝐾. By Equation (2), we have an isomorphism 𝐺(𝐷) ≃ 𝐺(𝐷′), (𝑃, 𝑓𝐷,𝑃) ↦ 𝛼𝑓(𝑥 −
𝑃)/𝛼𝑓(𝑥)𝑓𝐷,𝑃. In particular, by definition of 𝛼𝑓, it sends 𝑔𝑇 ∈ 𝐾 to (𝑇, 1), and the action
of (𝑇, 1) on Γ(𝐷′) is the action by translation. Hence a section 𝑠 ∈ Γ(𝐷) corresponds to a
section 𝑠′ ∈ Γ(𝐷′) which descends to 𝐸2 iff 𝑠 is invariant by 𝐾.

Proposition 2.3. We have an isomorphism 𝑍(𝐾)/𝐾 ≃ 𝐺(𝐷2) which sends 𝑓𝐷,𝑃 for 𝑃 ∈ 𝐾⟂

into the element 𝑓𝐷2,𝑓 (𝑃) such that 𝑓𝐷2,𝑓 (𝑃) ∘ 𝑓 = 𝑓𝐷,𝑃𝛼𝑓(𝑥 − 𝑃)/𝛼𝑓(𝑥).
We thus obtain a partial morphism ̃𝑓 ∶ 𝐺(𝐷) → 𝐺(𝐷2).

Proof. The element 𝑔𝑃 ∈ 𝐺(𝐷) descends to 𝐺(𝐷2) iff it commutes with 𝐾, and by construc-
tion of 𝐷2, the descent of elements in 𝐾 is trivial. The resulting map is an isomorphism by
[Mum66]. The explicit formula follows by the isomorphisms above. �

Proposition 2.4 (Mumford). Thedivisor𝐷 descends to a symmetric divisor𝐷2 (more precisely
to a divisor linearly equivalent to a symmetric divisor) iff𝐾 is symmetric. In this case, the (partial)
morphism ̃𝑓 commutes with 𝛿−1.

We remark that if 𝐾 is rational and 𝑑 = #𝐾 is odd, there is a unique symmetric lift 𝐾 above
𝐾 by Section 2.4, hence 𝐾 is rational. However if 𝑑 is even, there may be an obstruction to the
existence of a symmetric 𝐾 (which can always be solved by changing the algebraic equivalence
class of 𝐷), and if 𝐾 is cyclic and the obstruction vanishes, there are two possibilities for
symmetric 𝐾; if the first one descends to 𝐷2, the second one descends to 𝑡𝑓 (𝑇),∗𝐷2, where
𝑇 ∈ 𝐸[2]/𝐾[2].

We now detail the most important case where 𝐷 = 𝑁(0𝐸). For this divisor, if 𝑃 ∈ 𝐸[𝑁],
we abbreviate 𝑓𝑁,𝑃 for 𝑓𝐷,𝑃. Let 𝐾 ⊂ 𝐸[𝑑] be a maximal isotropic cyclic subgroup, with
𝑁 = 𝑚𝑑. Assume that 𝑑 is odd. Take 𝐷2 = 𝑚(0𝐸2

) on 𝐸2, then 𝑓 ∗𝐷2 = ∑𝑇∈𝐾 𝑚(𝑇) is
linearly equivalent to 𝑁(0𝐸). (Note that if 𝑑 is even, 𝑓 ∗𝐷2 is linearly equivalent to 𝑁(0𝐸) iff
𝑚 is even.) Since 𝐷2 is symmetric, it corresponds, by the general theory above, to the unique
symmetric lift 𝐾 above 𝐾.

There exists a (unique up to a constant) function 𝛼𝑓 ,𝑚 with divisor ∑𝑇∈𝐾 𝑚(𝑇)−𝑁(0𝐸);
this is the function which gives the linear equivalence between 𝐷 = 𝑁(0𝐸) and 𝐷′ = 𝑓 ∗𝐷2.
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We check that if 𝑇 ∈ 𝐾, 𝛼𝑓 ,𝑚(𝑥)/𝛼𝑓 ,𝑚(𝑥 − 𝑇) has for divisor 𝑁(𝑇) − 𝑁(0𝐸), and in
fact by the theory above we know it has to satisfy 𝛼𝑓 ,𝑚(𝑥)/𝛼𝑓 ,𝑚(𝑥 − 𝑇) = 𝑓𝑁,𝑇 for all
(𝑇, 𝑓𝑁,𝑇) ∈ 𝐾.

Note that since div 𝛼𝑓 ,𝑚 is symmetric, we have [−1]∗𝛼𝑓 ,𝑚 = ±𝛼𝑓 ,𝑚. But the (𝑇, 𝑓𝑁,𝑇) ∈
𝐾 above is symmetric, this force 𝛼𝑓 ,𝑚(−𝑥) = 𝛼𝑓 ,𝑚(𝑥). And indeed, an explicit version of
𝛼𝑓 ,𝑚 is given by 𝛼𝑓 ,𝑚 = 𝛼𝑚

𝑓 = ∏𝑇∈𝐾′(𝑥 − 𝑥(𝑇))𝑚 for any 𝐾′ where 𝐾 = 𝐾′ ⋃ −𝐾′ ⋃{0𝐸}.
This explicit form is clearly invariant by [−1].

If (𝑃, 𝑓𝑁,𝑃) ∈ 𝐺(𝑁(0𝐸)), then 𝐹𝑁,𝑃 ≔
𝛼𝑓 ,𝑚(𝑥−𝑃)

𝛼𝑓 ,𝑚(𝑥) 𝑓𝑁,𝑃 has for divisor ∑𝑇∈Ker 𝑓(𝑚(𝑃 +
𝑇) − 𝑚(𝑇)). This divisor is invariant by translation by Ker 𝑓 hence descends to 𝐸2. However
𝐹𝑁,𝑃 needs not be invariant by translation.

Indeed, if ℰ = div 𝑓ℰ is a principal divisor invariant by translation by 𝐾, it does not
mean that 𝑓ℰ itself is invariant, we only have that 𝑓ℰ(𝑥 + 𝑇) = 𝛾𝑇𝑓ℰ for some constant 𝛾𝑇.
Unraveling the definitions, this 𝛾𝑇 is given by a Weil-Cartier pairing:

Lemma 2.5. Let ℰ = ∑𝑖 𝑎𝑖 ∑𝑇∈𝐾(𝑃𝑖 + 𝑇) = div 𝑓ℰ a principal divisor and 𝑃0 ≔ ∑ 𝑎𝑖𝑃𝑖.
Then 𝑓ℰ is invariant by translation iff 𝑃0 ∈ 𝐾.

Proof. If 𝑇 ∈ 𝐾, 𝑓ℰ(𝑥 + 𝑇)/𝑓ℰ(𝑥) = 𝑒𝑓(𝑇, 𝑓 (𝑃0)) = 𝑒deg 𝑓(𝑇, 𝑃0). So 𝑓ℰ is invariant by 𝐾 ⇔
𝑃0 ∈ 𝐸[ℓ] is orthogonal to 𝐾 ⇔ 𝑃0 ∈ 𝐾 ⇔ 𝑓 (𝑃0) = 0.

Another equivalent proof is to remark that 𝑓ℰ is invariant by translation iff ℰ descends to
a divisor on 𝐸2 which is linearly equivalent to (0), which is the case iff 𝑃0 ∈ 𝐾. �

Example 2.6. Take𝑄1, 𝑄2 ∈ 𝐸(𝑘),ℰ = ∑𝑇∈𝐾 ((𝑄1 + 𝑇) + (−𝑄1 + 𝑇) − (𝑄2 + 𝑇) − (−𝑄2 + 𝑇)),
𝑓ℰ = ∏𝑇∈𝐾

𝑥−𝑥(𝑄1+𝑇)
𝑥−𝑥(𝑄2+𝑇) (convention: 𝑥 − 0𝐸 ≔ 1). Then 𝑓ℰ is invariant by translation and

descends to 𝑋−𝑓 (𝑄1)
𝑋−𝑓 (𝑄2) on 𝐸/𝐾, 𝑋 a Weierstrass coordinate. When 𝑄2 = 0𝐸, we recover a

formula from [CH17; Ren18]; the denominator is then equal to 𝛼2
𝑓 .

Going back to our 𝐹𝑁,𝑃 above, by Lemma 2.5, it descends to a function on 𝐸2 iff 𝑚𝑃 ∈
Ker 𝑓, ie iff 𝑃 ∈ Ker 𝑓 ⟂, as expected. So 𝐹𝑁,𝑃 = ℎ ∘ 𝑓, and we define ̃𝑓 (𝑃, 𝑓𝑁,𝑃) = (𝑓 (𝑃), ℎ).
This map is defined for elements 𝑔 ∈ 𝐺(𝑁(0𝐸)) above 𝑃 ∈ Ker 𝑓 ⟂. Furthermore if 𝑇 ∈
Ker 𝑓, then our 𝐹𝑁,𝑇 above has trivial divisor, hence is constant. In fact, if (𝑇, 𝑓𝑁,𝑇) ∈ K̃er 𝑓,
then 𝐹𝑁,𝑇 = 1.

So we get a morphism 𝑍(K̃er 𝑓)/K̃er 𝑓 → 𝐺(𝐸2[𝑚]). We check via the formula that it
sends a symmetric element into a symmetric element, and that ̃𝑓 (0𝐸1

, 𝛾) = (0𝐸2
, 𝛾).

2.8. The canonical lift of an isogeny to the theta groups. If 𝐷 is an ample divisor on 𝐸,
there is also a map 𝜀𝑁 ∶ 𝐺(𝐷) → 𝐺(𝑁𝐷) defined by 𝜀𝑁(𝑃, 𝑓𝐷,𝑃) = (𝑃, 𝑓 𝑁

𝐷,𝑃). Likewise, it
commutes with 𝛿−1, so sends symmetric elements to symmetric elements.

Let 𝑓 ∶ 𝐸 → 𝐸2 be a cyclic 𝑁-isogeny, with 𝑁 odd. The unique symmetric lift 𝐾 of
𝐾 = Ker 𝑓 in 𝐺(𝑁(0𝐸)) induces a descent of 𝑁(0𝐸) into (0𝐸2

). For any 𝑚, we have that
𝜀𝑚(𝐾) is the unique symmetric lift of 𝐾 in 𝐺(𝑁𝑚(0𝐸)), which induces a descent of 𝑁𝑚(0𝐸)
to 𝑚(0𝐸2

). We have a map ̃𝑓 ∶ 𝑍(𝜀𝑚(𝐾)) → 𝐺(𝑚(0𝐸2
)). In 𝐸[𝑚𝑁], given a symplectic

decomposition 𝐸[𝑚𝑁] = 𝐾1 ⊕ 𝐾2 with 𝐾 = 𝐾1[𝑁], then 𝐾⟂ = 𝐾1 ⊕ 𝐾2[𝑚].
We also have amap 𝜀𝑁 ∶ 𝐺(𝑚(0𝐸)) → 𝐺(𝑚𝑁(0𝐸)).The image of 𝜀𝑁 lends into 𝑍(K̃er 𝑓),

so composing with ̃𝑓 we obtain our canonical morphism from Theorem 1.1

̃𝑓 ∶ 𝐺(𝐸1[𝑚]) → 𝐺(𝐸2[𝑚])
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which sends symmetric elements to symmetric elements. If 𝑚 is odd, it sends the canonical
symmetric lift above 𝑃 to the canonical symmetric lift above 𝑓 (𝑃).

Since 𝜀𝑁(0𝐸1
, 𝛾) = (0𝐸1

, 𝛾𝑁), we have that ̃𝑓 (0𝐸1
, 𝛾) = (0𝐸2

, 𝛾𝑁). So if 𝑚 is prime
to 𝑁, since Ker 𝑓 ∩ 𝐸1[𝑁] = 0, then ̃𝑓 is almost an isomorphism, the kernel is given by
{(0, 𝛾) ∣ 𝛾𝑁 = 1}.

The map ̃𝑓 is thus a lift of the map 𝑓 ∶ 𝐸1[𝑚] → 𝐸2[𝑚] to the theta groups; sometime I
may call it 𝑓 too by abuse of notations when the context is clear.

Example 2.7 (Mumford). 𝛿𝑛 ≔ [̃𝑛] ∶ 𝐺(𝐸[𝑚]) → 𝐺(𝐸[𝑚]) is given by 𝑔𝑃 ↦ 𝑔(𝑛2+𝑛)/2
𝑃 (𝛿−1𝑔𝑃)(𝑛2−𝑛)/2.

In this context, Theorem 1.1 becomes:

Theorem 2.8. Let 𝑓 ∶ 𝐸 = 𝐸1 → 𝐸2 be a cyclic 𝑁-isogeny with 𝑁 odd and kernel 𝐾. Let 𝑚
be an odd integer prime to 𝑁. Let 𝛼𝑓 be any function with divisor ∑𝑇∈𝐾(𝑇) − 𝑁(0𝐸). Let
𝑃 ∈ 𝐸[𝑚] and 𝑔𝑃 = (𝑃, ℎ𝑚,𝑃) the canonical symmetric lift of 𝑃 to 𝐺(𝑚(0𝐸)). Let 𝑄 = 𝑓 (𝑃)
and 𝑔𝑄 = (𝑄, ℎ𝑚,𝑄) the canonical symmetric lift of 𝑄 to 𝐺(𝑚(0𝐸2

). Then

(7) ℎ𝑚,𝑄(𝑓 (𝑥)) =
𝛼𝑚

𝑓 (𝑥 − 𝑃)
𝛼𝑚

𝑓 (𝑥) ℎ𝑁
𝑚,𝑃(𝑥)

Proof. TheTheorem follows fromunravelling the formula fromSection 2.7.We can also check

it directly by checking that both functions 𝑔1 = 𝑓 ∗ℎ𝑚,𝑄 and 𝑔2 =
𝛼𝑚

𝑓 (𝑥−𝑃)
𝛼𝑚

𝑓 (𝑥) ℎ𝑁
𝑚,𝑃(𝑥) have the

same divisor ∑𝑇∈𝐾 𝑚(𝑄 + 𝑇) − 𝑚(𝑇), satisfy the symmetry condition 𝑔𝑖(𝑃 − 𝑥)𝑔𝑖(𝑥) = 1
and the order condition 𝑔𝑖(𝑥)𝑔𝑖(𝑥 − 𝑃) ⋯ 𝑔𝑖(𝑥 − (𝑚 − 1)𝑃) = 1. The first condition shows
that 𝑔2 = 𝑐𝑔1, the second one that 𝑐 = ±1, and the third one that 𝑐𝑚 = 1 which forces
𝑐 = 1 since 𝑚 is odd. �

Note that ̃𝑓 ((0𝐸, 𝛼)) = (0𝐸2
, 𝛼𝑁), so since the Weil pairing is the commutator pairing,

we recover that 𝑒𝑊,𝑚(𝑓 (𝑃), 𝑓 (𝑄)) = 𝑒𝑊,𝑚(𝑃, 𝑄)𝑁.

3. Bi-extensions

(1) For abelian schemes, a birigidified line bundle has a natural structure of biextension (I
always consider biextensions by 𝔾𝑚), so we have isomorphisms

BiExt(𝐴, 𝐵; 𝔾𝑚) = Corresp(𝐴, 𝐵) = Hom(𝐴, �̂�) = Hom(�̂�, 𝐴)

[Gro72, p. 7.VII.2.9.6]
In particular the identity map 𝐴 → 𝐴 gives the Poincaré bundle seen either as a bundle

or a biextension of 𝐴 × 𝐴
(2) To a biextension, Grothendieck associate a ’Weil pairing’ in [Gro72, p. 7.VIII], and
Stange associate a ’Tate pairing’ in her thesis, [Sta08, Chapter 17].
(3) Grothendieck shows that his Weil pairing is the standard Weil pairing (up to a sign),
and Stange proves that the Tate pairing associated to the Poincaré bi-extension is the standard
Tate pairing (in the case of an elliptic curve, but the general case is the same).

I guess that the Tate pairing associated to the biextension of 𝐴×�̂� associated to an isogeny
𝑓 ∶ 𝐴 → 𝐵 is the usual Tate-Cartier pairing?
(4) For the Poincaré biextension, if I unravel the definitions, we can describe it in terms
of theta group as follow: if (𝑃, 𝑄) ∈ 𝐴 × 𝐴, then 𝑄 corresponds to a divisor 𝐷𝑄 in 𝐴,
algebraically equivalent to 0.
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The theta group 𝐺(𝐷𝑄) associated to 𝐷𝑄 then gives an extension 1 → 𝔾𝑚 → 𝐺(𝐷𝑄) →
𝐴 → 1, hence an element 𝑔𝑃,𝑄 ∈ 𝐺(𝐷𝑄) above 𝑃 corresponds to an element in the Poincaré
biextension above (𝑃, 𝑄). 𝑔𝑃,𝑄 corresponds to an isomorphism 𝑡∗

𝑃𝐷𝑄 ≃ 𝐷𝑄.
The biextension group laws can then be given by: - 𝑔𝑃,𝑄 ∗1 𝑔𝑃′,𝑄 = 𝑔𝑃,𝑄𝑔𝑃′,𝑄 (multipli-

cation in the theta group) - 𝑔𝑃,𝑄 ∗2 𝑔𝑃,𝑄′ = 𝑔𝑃,𝑄𝑔𝑃,𝑄′ (via the tensor product 𝐺(𝐷𝑄) ⊗
𝐺(𝐷𝑄′) → 𝐺(𝐷𝑄+𝑄′))

And I guess the biextension on 𝐴 × �̂� associated to 𝑓 ∶ 𝐴 → 𝐵 should be given by
associating an element 𝑔𝑃,𝑄 above 𝑃 in 𝐴, 𝑄 in �̂� which gives an isomorphism 𝑡∗

𝑃𝑓 ∗𝐷𝑄 ≃
𝐷𝑄.
(5) If I have an ample line bundle 𝐿, I can consider the polarisation 𝜑𝐿 ∶ 𝐴 → 𝐴 hence a
biextension of 𝐴 × 𝐴.

I think we can describe it this way: if (𝑃, 𝑄) in 𝐴×𝐴, then to 𝑄 we can associte 𝑡∗
𝑄𝐿⊗𝐿−1

which is a divisor algebraically equivalent to 0.Thenwe take an element 𝑔𝑃,𝑄𝑖𝑛𝐺(𝑡∗
𝑄𝐿⊗𝐿−1).

Rearranging things, this element 𝑔𝑃,𝑄 corresponds to an isomorphism 𝑡∗
𝑃+𝑄𝐿 ⊗ 𝐿 ≃ 𝑡∗

𝑃𝐿 ⊗
𝑡∗
𝑄𝐿, ie an explicit isomorphism from the theorem of the square!
(6) I like to think of an explicit isomorphism from the theorem of the square as the
following information: fix trivialisations of 𝐿 on some point 𝑥, as well as 𝑥 + 𝑃 and 𝑥 + 𝑄.
Then 𝑔𝑃,𝑄 determines (and is determined) by a trivialisation of 𝐿 on 𝑥 + 𝑃 + 𝑄.

This gives a way to represent 𝑔𝑃,𝑄; and compute in practice the group laws associated
to the biextension; hence compute pairings. For an elliptic curve, if we fix 𝐿 = (0𝐸), 𝑔𝑃,𝑄
corresponds to a function with divisor (𝑃 + 𝑄) + (0) − (𝑃) − (𝑄) hence we are essentially
reformulating Miller’s algorithm.
(7) The reason I am mentionning trivialisations is that we have a weak form of algebraic
Riemann relations:

Theorem 3.1. Assume that 𝐿 is symmetric. Let 𝑃, 𝑄, 𝑅, 𝑆 ∈ 𝐴 such that 𝑃 +𝑄+𝑅+𝑆 = 2𝑇
and let 𝑃′ = 𝑇 − 𝑃, 𝑄′ = 𝑇 − 𝑄, 𝑅′ = 𝑇 − 𝑅, 𝑆′ = 𝑇 − 𝑆. Then we have a canonical
isomorphism 𝑡∗

𝑃𝐿 ⊗ 𝑡∗
𝑄𝐿 ⊗ 𝑡∗

𝑅𝐿 ⊗ 𝑡∗
𝑆𝐿 ≃ 𝑡′

𝑃
∗𝐿 ⊗ 𝑡′

𝑄
∗𝐿 ⊗ 𝑡′

𝑅
∗𝐿 ⊗ 𝑡′

𝑆
∗𝐿

In particular if we have chosen a trivialisation for 7 out of the 8 points in Riemann relation,
it fixes the last one canonically.

Proof. We have 𝑅′ = 𝑇 − 𝑅, 𝑆′ = 𝑇 − 𝑆 so 𝑅′ + 𝑆′ = 𝑃 + 𝑄. Fix any isomorphism
𝛼 ∶ 𝑡𝑃 ∗ 𝐿 ⊗ 𝑡𝑄 ∗ 𝐿 = 𝑡′

𝑅 ∗ 𝐿 ⊗ 𝑡′
𝑆 ∗ 𝐿.

Fix an isomorphism 𝜓 ∶ 𝐿 → 𝐿−1. We remark that [−1]∗Ψ gives an isomorphism
𝐿−1 → 𝐿 and we could normalize Ψ (up to a sign) by requiring that the composition 𝐿 → 𝐿
is the identity (eg equal to 1 on 𝐿 ∣ 0), but we won’t require this.

Via 𝜓 we get an isomorphism 𝑡∗
−𝑃𝐿 ⊗ 𝑡∗

−𝑄𝐿 ≃ 𝑡∗
−𝑅′𝐿 ⊗ 𝑡∗

−𝑆′𝐿 which we translate by 𝑇 to
get an isomorphism 𝛽 ∶ 𝑡∗

𝑃′𝐿 ⊗ 𝑡∗
𝑄′𝐿 ≃ 𝑡∗

𝑅𝐿 ⊗ 𝑡∗
𝑆𝐿.

Hence 𝛼⊗𝛽−1 gives an isomorphism 𝑡∗
𝑃𝐿⊗𝑡∗

𝑄𝐿⊗𝑡∗
𝑅𝐿⊗𝑡∗

𝑆𝐿 ≃ 𝑡∗
𝑃′𝐿⊗𝑡∗

𝑄′𝐿⊗𝑡∗
𝑅′𝐿⊗𝑡∗

𝑆′𝐿.
But remark that if we fix another isomorphism 𝛼′ = 𝜆𝛼, then 𝛽′ = 𝜆𝛽, hence 𝛼 ⊗ 𝛽−1 =

𝛼′ ⊗′ 𝛽−1. The isomorphism we have computed is canonical!
(This could probably be proved by the theorem of the cube also.) �

We can see this argument as a special case of Riemann relations for theta functions
(analytic Riemann or the algebraic ones proved by Mumford), which describe the canonical
isomorphism defined above explicitly in terms of basis of sections given by theta functions.

Now we can specialize: the following points are in Riemann relations:
•
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• (𝑃 + 𝑄)(𝑃 − 𝑄)00; 𝑄 − 𝑄𝑃𝑃
• (𝑃 + 𝑄 + 𝑅)𝑃𝑄𝑅; 0(𝑄 + 𝑅)(𝑃 + 𝑄)(𝑃 + 𝑄)

In particular from a trivialisation of 𝐿 at 0 and 𝑃 we can recover a canonical polarisation
of 𝐿 at 𝑛.𝑃. And from a trivialisation of 𝐿 at 0, 𝑃, 𝑄 and 𝑃 + 𝑄 we can recover a canonical
polarisation at 𝑛.𝑃 + 𝑚.𝑄

And the second case gives a way to compute in the biextension: let 𝑔𝑃1,𝑄 be an isomor-
phism 𝑡∗

𝑃1+𝑄𝐿 ⊗ 𝑡∗
0𝐿 ≃ 𝑡∗

𝑃1
𝐿 ⊗ 𝑡∗

𝑄𝐿 and let 𝑔𝑃2,𝑄 be an isomorphism 𝑡∗
𝑃2+𝑄𝐿 ⊗ 𝑡∗

0𝐿 ≃
𝑡∗
𝑃1

𝐿 ⊗ 𝑡∗
𝑄𝐿

So fix any trivialisation of 𝐿 at 0, 𝑃1, 𝑃2, 𝑄, 𝑃1 + 𝑃2. Use 𝑔𝑃𝑖,𝑄 to get the corresponding
trivialisation at 𝑃𝑖 + 𝑄. The above case of Riemann relations fixes a canonical trivialisation
of 𝐿 at 𝑃1 + 𝑃2 + 𝑄, from which we deduce an explicit isomorphism 𝑡∗

𝑃1+𝑃2+𝑄𝐿 ⊗ 𝑡∗
0𝐿 ≃

𝑡∗
𝑃1+𝑃2

𝐿 ⊗ 𝑡∗
𝑄𝐿. Thus we obtain an element 𝑔𝑃1+𝑃2,𝑄, and we can check that it does not

depend on our starting choices of trivialisation.
(8) Unraveling the formula, this gives us the following interpretation of the Tate pairing
with respect to 𝐿:

• if 𝑃 is a point of 𝑛-torsion, we fix a trivialisation of 𝐿 at 0, 𝑃, 𝑄, 𝑃 + 𝑄 (or 𝑅, 𝑅 +
𝑃, 𝑅 + 𝑄, 𝑅 + 𝑃 + 𝑄)

• from these trivialisation, we determine a canonical trivialisation of 𝐿 at 𝑛𝑃 which
we compare with the one at 0, and of 𝐿 at 𝑛𝑃 + 𝑄 which we compare with the one
at 𝑄.

• The quotient gives us the Tate pairing 𝑒𝑇,𝐿(𝑃, 𝑄)

(9) If we apply this approach to 𝐿 of level 𝑛 with a symmetric theta structure, fixing a
trivialisation of 𝐿 at 𝑃 amount to choosing affine coordinates for 𝜃𝑖(𝑃) above the projective
coordinates.

We then use the theta Riemann relations to keep track of our trivialisations, ie to work
with ’affine theta coordinates’. So we compute 𝑛𝑃 + 𝑄 and 𝑛𝑃 in affine coordinates and we
compare with the affine coordinates of 𝑄 and 0; they differ by some projective factors whose
quotient is the Tate pairing.

We recover the algorithms we had with David Lubicz for computing the Tate pairing in
theta coordinates.
(10) I think we can also recover elliptic nets this way: this time we start with a principal
line bundle 𝐿 = (0𝐸)

Let’s start with rank 1 nets: we fix a trivialisation of 𝐿 at 0𝐸 and 𝑃. This determines by the
above a trivialisation of L at every n.P.

Now on 𝐿 we have the section ′𝑍′ (if we think of projective Weierstrass coordinates; or
the Weierstrass 𝜎 function if we think analytically, aka the theta function which has a zero
exactly at the points of the lattice), which is 0 on 0𝐸.

The trivialisations of 𝐿 at each 𝑛.𝑃 defines a value 𝑍(𝑛.𝑃) at every point, with 𝑍(𝑛.𝑃) = 0
iff 𝑛.𝑃 = 0𝐸.

A slight annoyance is that 𝑍(0) = 0 so we cannot use the value of 𝑍 at 0 to specify the
trivialisation of 𝐿 on 0, but we can specify the trivialisation of 𝐿 on 𝑃 by requiring 𝑍(𝑃) = 1;
and the value 𝑍(2𝑃) can be seen as implicitly fixing a trivialisation of 𝐿 on 0 (equivalently of
𝐿 on 2𝑃).

Likewise, we can define rank 2 (or more) nets; but to compute the Tate pairing we need to
shift the offset by one so that we get a non zero value.
(11) The above strategy works for any ppav: but this is a different approach than the
standard construction of elliptic nets. What I am saying is that for any model (𝐴, 𝐿) where
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we have an explicit version of the theorem of the square for a line bundle 𝐿0, so that we
can compute the canonical Riemann isomorphisms for 𝐿0; then if we fix a basis of sections
𝑔1, … , 𝑔𝑚 of 𝐿0 we can define generalised elliptic nets as the value of 𝑔𝑖 on trivialisations of
𝐿0 ∣ 𝑛𝑃 + 𝑚𝑄, which are entirely defined from a trivialisation of 𝐿0 on 0, 𝑃, 𝑄, 𝑃 + 𝑄.

Here I am allowed to represents point on 𝐴 by sections of 𝐿 to compute the isomorphism
given by the theorem of the square on 𝐿0; this is like using the 𝑥, 𝑦 Weierstrass coordinates
(ie sections of 𝐿3

0) to compute the Miller functions.
The theta function approach from 9) is the case 𝐿 = 𝐿0 of level 𝑛, using the theta Riemann

relations.
Standard elliptic nets works differently: the key is a recurrence relation that allows to

compute the value of the net on any point given some value on some points; this allows
to take 𝐿0 principal without needing any other intermediate line bundle L for the actual
computations.

This recurrence approach extends to higher dimension by using the theta Riemann
relations, this is done in the thesis of Christophe Tran [Tra14]. at least for Jacobians of
hyperelliptic curves.
(12) In summary, there is a canonical way (”algebraic Riemann relations”) from fixing
a trivialisation of a line bundle on 𝐿 on some points 𝑃𝑖 (and some sums) to compute a
canonical trivialisation of 𝐿 on any Σ𝑛𝑖�̃�𝑖 (where �̃� means that I am implicitely working on
the biextension, not on the abelian variety).

If we evaluate a basis of theta functions on these trivialiation we recover the theta pairing
algorithm; and if we use instead the section ′𝑍′ of the divisor (0𝐸) on an elliptic curve we
recover an elliptic net.

So I guess this is an alternate way of seeing the Tate pairing as being the Tate pairing
associated to some biextension: it simply means that we keep track of trivialisations.

I guess this gives an alternative way of computing elliptic nets: we work with ”affine
Weierstrass coordinates” (𝑋, 𝑌, 𝑍) and we compute differential additions from the algebraic
Riemann relations; the value of 𝑍 is the value of the net.

(Or more precisely we get the value of the original elliptic net to the cube because 𝑋, 𝑌, 𝑍
are sections of 𝐿3, 𝐿 = (0𝐸). Say 𝑍0 is the section of 𝐿, then 𝑋0, 𝑍2

0 are the sections of 𝐿2

and 𝑋 = 𝑋0𝑍0, 𝑌, 𝑍 = 𝑍3
0 are the sections of 𝐿3.)

4. Biextensions and theta groups

Let 𝑃 be a point of 𝑛-torsion, and fix a trivialisation of 𝐿 at 0 and 𝑃, then we get a
trivialisation of 𝐿𝑛 at 0 and 𝑃 But 𝑡∗

𝑃𝐿𝑛 ≃ 𝐿𝑛, and these trivialisation defines an explicit
isomorphism between the two, ie an element 𝑔𝑃 ∈ 𝐺(𝐿𝑛). (And changing our trivialisation
of 𝐿 by 𝜁 does not change 𝑔𝑃). In particular, since 𝑔𝑃 is global, we can use 𝑔𝑃 to associate a
trivialisation of 𝐿𝑛 at 𝑥 + 𝑃 from a trivialisation of 𝐿𝑛 at 𝑥.

Thus we can use the arithmetic of biextensions to work at level (say) 𝑚 on 𝐿 to recover the
action of the theta group at level 𝑛𝑚 on 𝐿𝑛. In particular, we can check that 𝑔𝑃 is symmetric
iff our trivialisations satisfy the same symmetry relation we use to normalizing our theta
functions.

We can thus reformulate [Rob21, §2.9] as follow: an explicit version of the theorem of
the square at level 𝑚 allows to work with the biextension laws (via the algebraic Riemann
relations) and via this to recover the action of the theta group at level 𝑛𝑚. This can be used
to compute the Weil and Tate pairings, isogenies (given generators of the kernel) and theta
(say given a basis of the 𝑛𝑚-torsion).
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At the time I wrote my hdr, I was not aware that the computations I was doing with
trivialisation and algebraic Riemann relations were related to biextensions. This concept was
brought to my attention by Prof. Stange who pointed out to me following [Rob23b] [Sta08,
Chapter 17] giving the interpreation of the Tate pairing from biextensions.

Question: can every Riemann relation be expressed in term of the biextensions laws?
Another relation between theta group and trivialisations is as follow: fix an isogeny:

𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾. A lift 𝐾 of 𝐾 to 𝐺(𝐿) gives a descent 𝑀 of 𝐿 and an isomorphism
𝑓 ∗𝑀 → 𝐿. We can fix this isomorphism by specifying a trivialisation of 𝑀 and 𝐿 at 0. From
this, we can use this isomorphism to relate a trivialisation of 𝐿 on 𝑥 to a trivialisation of 𝑀
on 𝑓 (𝑥) and conversely.

This gives an alternative proof that the biextension law is related to pairing: fixing triv-
ialisations of 𝐿 on 𝑃 of 𝑛-torsion induce a trivialisation of 𝐿𝑛2 on 𝑃′ (such that 𝑛𝑃′ = 𝑃).
But 𝑃′ is in the theta group of 𝐿𝑛2 and we can use the fact that the Weil pairing is the com-
mutator pairing on the theta group, and then use the compatibility of pairings with scalar
multiplication.

This also gives an alternative proof of Riemann relations: the isogeny 𝐹 ∶ (𝑃, 𝑄) ↦
(𝑃 + 𝑄, 𝑃 − 𝑄) is an isogeny (𝐴 × 𝐴, 𝐿2 ⋆ 𝐿2) → (𝐴 × 𝐴, 𝐿 ⋆ 𝐿). The kernel is 𝐴[2]
(embedded canonically), which lift canonically to the theta group: above every 𝑇 ∈ 𝐴[2]
there are two symmetric elements ±𝑔𝑇 which both give the same element 𝑔𝑇 ⊗ 𝑔𝑇 on
𝐺(𝐿2 ⋆ 𝐿2).

In particular, fixing a trivialisation of 𝐿2 ⋆𝐿2 on (𝑥′, 𝑦′, 𝑧′, 𝑡′) gives a trivialisation of 𝐿⋆𝐿
on (𝑥′+𝑦′, 𝑥′−𝑦′, 𝑧′+𝑡′, 𝑧′−𝑡′), but also (by permutation) on (𝑥′+𝑡′, 𝑥′−𝑡′, 𝑧′+𝑦′, 𝑧′−𝑦′),
which is another form of the Riemann relations.

5. Lifting the DLP

As a particular case of lifting isogenies, we can lift DLPs canonically to the theta group
via the symmetric section. If 𝑄, 𝑃 are points of ℓ-torsion, with 𝑄 = 𝑚𝑃, we have the lift

ℎℓ,𝑄(𝑚𝑥) = (
𝛼𝑚(𝑥 − 𝑃)

𝛼𝑚(𝑥) )
ℓ
ℎℓ,𝑃(𝑥)𝑚2.

Here 𝑔𝑃 = (𝑃, ℎℓ,𝑃) and 𝑔𝑄 = (𝑄, ℎℓ,𝑄) are the canonical symmetric lift.
We remark that in this case, 𝛼𝑚 can be given by the division polynomial 𝜓𝑚.
Looking at the group law, since 𝑔𝑄 = 𝑔𝑚

𝑃 (because the canonical symmetric lifts of ⟨𝑃⟩
form a group), we also have ℎℓ,𝑄(𝑥) = ℎℓ,𝑃(𝑥)ℎℓ,𝑃(𝑥 − 𝑃) ⋯ ℎℓ,𝑃(𝑥 − (𝑚 − 1)𝑃).

If we could find a 𝑥 in which we knew both 𝑚𝑥 and 𝛼𝑚(𝑥−𝑃)
𝛼𝑚(𝑥)

ℓ
, then since we know ℎℓ,𝑄

and ℎℓ,𝑃 we could recover 𝑚 via a DLP over 𝔽∗
𝑝 . The obvious choice of using 𝑃0 does not

work since in this case ℎℓ,𝑃(𝑃0) = 1 by definition of the symmetric lift.
If we could find another lift, say 𝑔′

𝑄 = 𝑔′
𝑃

𝑚, then if 𝛾𝑃 = 𝑔′
𝑃/𝑔𝑃 and 𝛾𝑄 = 𝑔′

𝑄/𝑔𝑄 we
would have 𝛾𝑄 = 𝛾𝑚

𝑃 and we would reduce to a DLP in 𝔽∗
𝑞.

More generally, wewould like to exploit the arithmetic of the theta groups and biextensions
to study the DLP. Say we are on an elliptic curve, 𝑃 is of order 𝐿 and 𝑄 = 𝑚.𝑃 and we want
to recover the DLP 𝑚. If 𝜇ℓ ⊂ 𝔽𝑞 we can use the Tate pairing.

As explained in [Rob23b], we can understand the pairings 𝑒𝑇,ℓ(𝑃, 𝑄) and 𝑒𝑇,ℓ(𝑃, 𝑃), and
passing to the isomorphism classes we get an equation: [𝑒𝑇, 𝑙(𝑃, 𝑄)] = [𝑒𝑇, 𝑙(𝑃, 𝑃)]𝑚.

If 𝑙 is prime to 𝑞 − 1, then the isomorphism class is trivial so we obtain the non useful
equation [1] = [1]𝑚. So passing to the isomorphism class lose too much information. But
we might still hope that an explicit isomorphism between the two torsors can give us some
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information about 𝑚. Notice that the equation on the canonical symmetric lifts above is
essentially precisely such an isomorphism between 𝑒𝑇,ℓ(𝑄, 𝑄) and 𝑒𝑇,ℓ(𝑃, 𝑃).

Fix a trivialisation of 𝐿 at 0. Now since ℓ is prime to 𝑞 − 1, there is a unique rational
trivialisation of 𝐿 at 𝑃 which induces the symmetric element ℎℓ,𝑃 on 𝐿ℓ: the others ones are
given by multiplying by 𝜁 which is not rational by assumption.

In terms of affine lift: 𝑃 is of order ℓ, and if �̃� is any lift, ℓ.�̃� = 𝜆𝑂, so �̃� is of order dividing
ℓ(𝑞 − 1). The ”canonical lift” �̃�0 is the unique one of order ℓ. (So a way to compute it is to
start with an arbitrary lift, recover 𝜆 as above, and correct by 𝜆1/ℓ2 which is well defined
because ℓ is prime to 𝑞 − 1). (This ”canonical lift” is the same as defined on level 1 via elliptic
nets by Stange in [Sta08, Chapter 19].)

Now start with a lift �̃� (say with 𝑍(�̃�) = 1 as with elliptic nets). Take a lift 𝑄 of 𝑄 (say
with the same normalisation); and assume that the lift is defined in such a way that 𝑄 is in
the group generated by �̃�: 𝑄 = 𝑚′�̃�, with 𝑚′ = 𝑚 + 𝑎ℓ for some unknown 𝑎. Multiplying by

ℓ, we get an equation above 0: 𝜆′
𝑄 = 𝜆′

𝑃
𝑚′2

(and this gives a way to check that 𝑄 is indeed a
multiple of �̃�). Solving a DLP over 𝔽∗

𝑞, we recover 𝑚′2 modulo 𝑞 − 1. An alternative way is
to compare �̃�, 𝑄 with their canonical lift: �̃� = 𝜆𝑃�̃�0, 𝑄 = 𝜆𝑄𝑄0. Since 𝑄0 = 𝑚�̃�0 = 𝑚′�̃�0,
we get 𝜆𝑄 = 𝜆𝑚′2

𝑃 (and in fact 𝜆′
𝑄 = 𝜆ℓ2

𝑄 and the same for 𝜆′
𝑃).

However this information is not enough to recover anything about 𝑚: because ℓ is prime
to 𝑞 − 1, knowing 𝑚 + 𝑎ℓ modulo 𝑞 − 1 does not gives information about 𝑚 modulo ℓ since
𝑎 is unknown. This would change if we could force 𝑎 = 0 (say).

One way to do that is via ’projective coordinate leak’ [NSS04]. Say we do a Montgomery
ladder on (𝑋𝑃, 𝑍𝑃), and we are given (𝑋𝑄, 𝑍𝑄) rather than (𝑋𝑄 ∶ 𝑍𝑄). Then since the
(affine) ladder is essentially computing on the biextension rather than on 𝐸, we recover 𝑚2

modulo 𝑞−1 (here we know that 𝑎 = 0!) This allows to recover 𝑚2 (hence 𝑚 unless 𝑞−1 has
a lot of factors) from only one DLP in 𝔽∗

𝑞: so unlike [NSS04] only one projective coordinate
leak is enough for an attack.

Of course, nobody sends (𝑋𝑄 ∶ 𝑍𝑄) since sending 𝑥𝑄 = 𝑋𝑄/𝑍𝑄 saves bandwidth and
everyone is aware about the above attack. But that idea could still be used in some sidechannel
attacks I guess.

It would be nice if we could extend this approach to more general cases; or maybe use the
biextension law in some index calculus attacks. Some failed experiments are in the appendix.
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determined by the projective point (𝑓𝑚,𝑃(𝑥))𝑃∈𝐸[𝑚].

Since we can assume that we know the action of 𝑓 on the ℓ0 torsion, we know that, setting

𝑚 = ℓ0, 𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥)) =
𝛼𝑚

𝑓 (𝑥−𝑃)
𝛼𝑚

𝑓 (𝑥) 𝑓 𝑁
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http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://eprint.iacr.org/2022/1038
http://hal.archives-ouvertes.fr/hal-03943959
http://www.normalesup.org/~robert/pro/publications/slides/2023-04-Eurocrypt.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2023-04-Eurocrypt.pdf
https://eurocrypt.iacr.org/2023/
http://www.normalesup.org/~robert/pro/publications/articles/geometric_tate_pairing.pdf
http://www.normalesup.org/~robert/pro/publications/articles/geometric_tate_pairing.pdf
http://eprint.iacr.org/2023/177
http://hal.archives-ouvertes.fr/hal-04295743v1
https://repository.library.brown.edu/studio/item/bdr:309/PDF/
https://repository.library.brown.edu/studio/item/bdr:309/PDF/
https://www.theses.fr/185903150


14 REFERENCES

we could then evaluate 𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥)) on any point, by the remark above this would completely
determine 𝑓 (𝑥).

But of course being able to evaluate 𝛼𝑓 is closely related to evaluating 𝑓 in the first place,
see also Example 2.6. We need to tweak Equation (7) to not depend on 𝛼𝑓.

The first idea is to take a product ∏ 𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥 − 𝑖𝑃)), but of course because of the order
condition both members of Equation (7) become equal to 1.

Instead, we use that for 𝑃 ∈ 𝐸[𝑚] and any 𝑄,

(8)
𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥 + 𝑃 + 𝑄))

𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥 + 𝑃)) = ⎛⎜
⎝

𝛼𝑓(𝑥 + 𝑃)𝛼𝑓(𝑥 + 𝑄)
𝛼𝑓(𝑥 + 𝑃 + 𝑄)𝛼𝑓(𝑥)

⎞⎟
⎠

𝑚 𝑓 𝑁
𝑚,𝑃(𝑥 + 𝑃 + 𝑄)

𝑓 𝑁
𝑚,𝑃(𝑥 + 𝑃)

Note that when seen as 𝜇𝑚-torsors, the element on the left is in the isomorphism class of
the Tate pairing 𝑒𝑇,𝑚(𝑓 (𝑃), 𝑓 (𝑄)) while the one on the right of 𝑒𝑇,𝑚(𝑃, 𝑄)𝑁 (see [Rob23b]).

Now if 𝑄 ∈ 𝐸[ℓ𝑖], let 𝑚2 = ℓ𝑖. We make a guess for 𝑄′ = 𝑓 (𝑄). If our guess is correct,
the following equation should hold:

(9)
𝑓𝑚2,𝑄′(𝑓 (𝑥 + 𝑃 + 𝑄))

𝑓𝑚2,𝑄′(𝑓 (𝑥 + 𝑄)) = ⎛⎜
⎝

𝛼𝑓(𝑥 + 𝑃)𝛼𝑓(𝑥 + 𝑄)
𝛼𝑓(𝑥 + 𝑃 + 𝑄)𝛼𝑓(𝑥)

⎞⎟
⎠

𝑚2 𝑓 𝑁
𝑚2,𝑄(𝑥 + 𝑃 + 𝑄)

𝑓 𝑁
𝑚2,𝑄(𝑥 + 𝑄)

Fixing 𝑥 a point which we know the image of (for instance another point of 𝑚-torsion),

we let 𝐶1 =
𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥+𝑃+𝑄))

𝑓𝑚,𝑓 (𝑃)(𝑓 (𝑥+𝑃))
𝑓 𝑁
𝑚,𝑃(𝑥+𝑃)

𝑓 𝑁
𝑚,𝑃(𝑥+𝑃+𝑄)

, 𝐶2 =
𝑓𝑚2,𝑄′(𝑓 (𝑥+𝑃+𝑄))

𝑓𝑚2,𝑄′(𝑓 (𝑥+𝑃))

𝑓 𝑁
𝑚2,𝑃(𝑥+𝑄)

𝑓 𝑁
𝑚2,𝑃(𝑥+𝑃+𝑄)

, and 𝐶0 =
𝛼𝑓(𝑥+𝑃)𝛼𝑓(𝑥+𝑄)
𝛼𝑓(𝑥+𝑃+𝑄)𝛼𝑓(𝑥) .

We can evaluate 𝐶1 and 𝐶2, not 𝐶0 but we know (if our guess of 𝑄′ is correct) that
𝐶1 = 𝐶𝑚

0 and 𝐶2 = 𝐶𝑚2
0 . So we check if such a constant 𝐶0 exists. If not, we know our

choice of 𝑄′ is wrong, and we try with a new one.
Heuristic: only 𝑄′ = 𝑓 (𝑄) satisfy this condition.
Under this heuristic, we can uniquely recover 𝑓 (𝑄). We can thus hope to reconstruct 𝑓 in

polynomial time, given (𝐸1, 𝐸2, 𝑁).
Some justification for this heuristic: if 𝑓 ∶ 𝐸1 → 𝐸2 is a cyclic 𝑁-isogeny, 𝑓 may not be

uniquely determined from (𝐸1, 𝐸2, 𝑁). However, if 𝑓2 ∶ 𝐸1 → 𝐸2 is another cyclic 𝑁-isogeny,
then ̃𝑓2 ∘ 𝑓 ∶ 𝐸1 → 𝐸1 is an endomorphism of degree 𝑁2 different from [𝑁] (even up to
automorphism).

So this imposes 𝐸1 to have complex multiplication, and with a non integer endomorphism
of norm 𝑁2. If the image of 𝑓 on the 𝑚-torsion is further prescribed, and 𝑓2 has the same
image, then ̃𝑓2 ∘ 𝑓 and [𝑁] have the same image on 𝐸1[𝑁], so ̃𝑓2 ∘ 𝑓 − [𝑁] = 𝑚𝛼 for some
endomorphism 𝛼. This imposes further constraints on 𝐸1.

So, except for very few exceptions, 𝑓 is completely determined by (𝐸1, 𝐸2, 𝑁) and its
image on 𝐸1[𝑚]. That’s why we can hope to try to reconstruct 𝑓 from this data.

Actual experiments: The heuristic is wrong. Essentially because of Weil’s reciprocity
theorem, this equality is always satisfied, so the condition is not “generic”.

A.2. Playing with cocycles.
(13) We now focus on trying to reconstruct the isogeny from CSIDH. As above we want
to recover how 𝑓 acts on the ℓ-torsion: 𝐸1[ℓ] → 𝐸2[ℓ].
(14) Take ℓ which splits as ℓ = ℓ1ℓ2 in ℤ[𝛼]. This happens with probability 1/2.

Then 𝐸1[ℓ] = 𝐸1[ℓ1] ⊕ 𝐸1[ℓ2] (and we know which is which), and since 𝑓 commutes
with 𝛼, 𝑓 (𝐸1[ℓ𝑖]) = 𝐸2[ℓ𝑖]).
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Take (𝑃1, 𝑃2) a symplectic basis of 𝐸1[ℓ] with 𝑃𝑖 ∈ 𝐸1[ℓ𝑖] with respect to 𝜁 (for the Weil
pairing), (𝑄1, 𝑄2) a similar symplectic basis of 𝐸2[ℓ] but with respect to 𝜁𝑁. We know that
𝑓 is diagonal with respect to these basis: 𝑓 = diag(𝑢, 𝑣).

Furthermore since 𝑒𝑊,ℓ(𝑓 (𝑃1), 𝑓 (𝑃2)) = 𝑒𝑊,ℓ(𝑃1, 𝑃2)𝑁 = 𝑒𝑊,ℓ(𝑢𝑄1, 𝑣𝑄2), we know
that 𝑢𝑣 = 1 mod ℓ.

Thus it suffices to determine 𝑢 for sufficiently many small ℓ.
(15) Since ̃𝑓 sends symmetric elements, and that ̃𝑓 (𝛾𝑔𝑃) = 𝛾𝑁 ̃𝑓 (𝑔𝑃), ̃𝑓 is completely
determined by the restriction of 𝑓 to the ℓ-torsion.

So the fact that ̃𝑓 exists adds more constraints on the possible values of 𝑓 on the ℓ-torsion.
For instance the pairing condition above is one of the constraint induced by the existence of

̃𝑓.
(16) So fixing a basis (𝑃1, 𝑃2) and (𝑄1, 𝑄2) as above, we want to find the 𝑢, 𝑣 with
𝑣 = 𝑢−1 mod ℓ such that 𝑓 (𝑃1) = 𝑢𝑄1 and 𝑓 (𝑃2) = 𝑣𝑄2.

We have a canonical set section 𝑠1 ∶ 𝐸1[ℓ] → 𝐺(𝐸1[ℓ]) which sends 𝑃 to the unique sym-
metric lift 𝑔𝑃 of order ℓ.This defines a canonical 2-cocycle𝑆1(𝑇1, 𝑇2) = 𝑠1(𝑇1)𝑠1(𝑇2)𝑠1(𝑇1+
𝑇2)−1. Likewise we define 𝑠2, 𝑆2. Notice that these 2-cocycles are normalised: 𝑆(𝑇, 0) =
𝑆(0, 𝑇) = 1, and that since the commutator pairing is the Weil pairing, we have

(10) 𝑆(𝑇1, 𝑇2) = 𝑒𝑊,ℓ(𝑇1, 𝑇2)𝑆(𝑇2, 𝑇1).

Furthermore, if 𝑔1, 𝑔2 are two symmetric and commuting elements, then 𝑔1𝑔2 is also
symmetric, so 𝑠(𝑔𝑎) = 𝑠(𝑔)𝑎 and 𝑆(𝑎𝑇, 𝑏𝑇) = 1, or equivalently 𝑆(𝑇1, 𝑇2) = 1 if
𝑒𝑊,ℓ(𝑇1, 𝑇2) = 1.

Note that 𝐺(𝐸[ℓ]) is a central extension of 𝐸[ℓ] by 𝔾𝑚 so it corresponds to an element
in 𝐻2(𝐸[ℓ], 𝔾𝑚), the 2-cocycle 𝑆 above is a canonical representative of this element.

The cocycle condition is

(11) 𝑆(𝑇1, 𝑇2)𝑆(𝑇1 + 𝑇2, 𝑇3) = 𝑆(𝑇1, 𝑇2 + 𝑇3)𝑆(𝑇2, 𝑇3).

(17) Now since ̃𝑓 sends symmetric elements to symmetric elements, we get that 𝑠2 = ̃𝑓 ∘ 𝑠1,
hence

(12) 𝑆2(𝑓 (𝑇1), 𝑓 (𝑇2)) = ̃𝑓 ∘ 𝑆1(𝑇1, 𝑇2) = 𝑆1(𝑇1, 𝑇2)𝑁.

In particular, 𝑢, 𝑣 have to satisfy 𝑆2(𝑎𝑢𝑄1 +𝑏𝑣𝑄2, 𝑐𝑢𝑄1 +𝑑𝑣𝑄2) = 𝑆1(𝑎𝑃1 +𝑏𝑃2, 𝑐𝑃1 +
𝑑𝑃2)𝑁 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ ℤ/ℓℤ.

By Equation (10) above, Equation (12) implies that 𝑒𝑊,ℓ(𝑓 (𝑇1), 𝑓 (𝑇2)) = 𝑒𝑊,ℓ(𝑇1, 𝑇2)𝑁.
A key difference is that unlike 𝑒𝑊,ℓ, 𝑆1 and 𝑆2 are not bilinear. So Equation (12) induces
some non trivial relations compared to just the ones coming from the Weil pairing.
(18) If 𝛼 is an 𝐴-endomorphism on 𝐸, and 𝐴∧ℓ = 1 for simplicity, it induces a morphism

̃𝛼 of the theta group 𝐺(𝐸[ℓ]). So the cocycle 𝑆 has to satisfy the compatibility conditions

(13) 𝑆(𝛼(𝑇1), 𝛼(𝑇2)) = ̃𝛼 ∘ 𝑆(𝑇1, 𝑇2) = 𝑆(𝑇1, 𝑇2)𝐴.

When𝛼 is the Frobenius𝜋𝑝,𝐴 = 𝑝, and it is easy to check that𝜋𝑝(𝑃, 𝑓𝑚,𝑃) = (𝜋(𝑃), 𝑓 𝑝
𝑚,𝑃)

if 𝑓𝑚,𝑃 is rational. More generally for a general 𝑃, write 𝜋𝑝 ∘ 𝑓𝑚,𝑃 = 𝑔𝑚,𝑃 ∘ 𝜋𝑝, then
𝜋𝑝(𝑃, 𝑓𝑚,𝑃) = (𝜋(𝑃), 𝑔𝑚,𝑃).

Taking 𝛼 = [𝑛], we get that 𝑆(𝑛𝑇1, 𝑛𝑇2) = 𝑆(𝑇1, 𝑇2)𝑛2. Taking 𝛼 = [ℓ], we get that
𝑆(𝑇1, 𝑇2)ℓ2 = 1, and taking 𝛼 = [1 + ℓ], we see that 𝑆(𝑇1, 𝑇2)1+ℓ2+2ℓ = 𝑆(𝑇1, 𝑇2), so
since ℓ is odd, 𝑆(𝑇1, 𝑇2)ℓ = 1.
(19) By taking 𝛼 = [−1], we also get 𝑆(−𝑇1, −𝑇2) = 𝑆(𝑇1, 𝑇2). So if 𝑓 satisfy Equa-
tion (12), then so does −𝑓, or more generally 𝛾𝑓 for any 𝛾 ∈ ℤ such that 𝛾2 = 1 mod ℓ.
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(20) Let us assume that ℓ is an odd prime (or a prime power), so that ±1 are the only two
square roots of 1. If 𝑢 is a solution for Equation (12), then so is −𝑢.

Heuristic: we expect that there are many ℓ for which there are only two possibilities ±𝑢
for 𝑢 which satisfy the compatible cocycle conditions from Equation (12) above.
(21) So if we take 𝑣 primes ℓ𝑖 satisfying the heuristic, we have 2𝑣 possibilities for the action,
so we cannot take 𝑣 too large. On the other hand we need ∏𝑣

𝑖=1 ℓ𝑖 > 𝑁 so if 𝑣 is small, the
primes ℓ𝑖 will be large. And our complexity is polynomial in ℓ𝑖.

We can hope for a subexponential attack by taking 𝑣 = 𝑂(√log𝑁), the primes ℓ𝑖 of size
𝐿(1/2) for an attack in 𝐿(1/2). If we manage to find a prime power ℓ = ℓ𝑒

0 with ℓ0 small and
𝐸𝑖[ℓ] living in a not too large extension it would be ideal.

It remains to justify our heuristic.
(22) Since we know that ̃𝑓 exists, we can always change 𝑄1, 𝑄2 so that 𝑢 = 𝑣 = 1.
In particular, we then have 𝑆2(𝑄1, 𝑄2) = 𝑆1(𝑃1, 𝑃2)𝑁. Note that since 𝑆1(𝑃1, 𝑃2) =
𝑆1(𝑃2, 𝑃1)𝑒ℓ(𝑃1, 𝑃2), at least one of 𝑆1(𝑃1, 𝑃2), 𝑆1(𝑃2, 𝑃1) is of order ℓ.

The question is then whether there can exist another 𝑢 (hence 𝑣), with 𝑢 ≠ ±1, such
that the compatibility conditions of Equation (12) are satisfied. A first condition is then that
𝑆2(𝑢𝑄1, 𝑣𝑄2) = 𝑆2(𝑄1, 𝑄2), or more generally that 𝑆2(𝑎𝑢𝑄1, 𝑏𝑣𝑄2) = 𝑆2(𝑎𝑄1, 𝑏𝑄2)
for all 𝑎, 𝑏. In particular, we want 𝑆2(𝑄1, 𝑢−2𝑐𝑄2)𝑢2 = 𝑆2(𝑄1, 𝑐𝑄2) for all 𝑐.

The points 𝑃1, 𝑄1, 𝑃2, 𝑄2 are eigenvectors for the orientation 𝛼, say of eigenvalue 𝜆1 ≠ 𝜆2.
We have 𝑆2(𝜆1𝑄1, 𝜆2𝑄2) = 𝑆2(𝑄1, 𝑄2)𝐴.

Using 𝛼 = 𝜋𝑝, 𝐴 = 𝑝, we have 𝑆2(𝑄1, 𝜆𝑄2)𝜆2
1 = 𝑆2(𝑄1, 𝑄2)𝑝 with 𝜆 = 𝜆2/𝜆1, and we

also have 𝜆1𝜆2 = 𝑝 mod ℓ. If 𝜆 is primitive modulo ℓ (argue that this happens often), we
have that there exists 𝑎 such that 𝜆𝑎 = 𝑢−2. Hence 𝑆2(𝑄1, 𝑢−2𝑄2)𝜆𝑎

1) = 𝑆2(𝑄1, 𝑄2)𝑝𝑎
, ie

𝑆2(𝑄1, 𝑢−2𝑄2)(𝜆1/𝑝)𝑎 = 𝑆2(𝑄1, 𝑄2). But 𝑢2 = (𝜆1/𝜆2)𝑎 ≠ (1/𝜆2)𝑎 unless 𝜆𝑎
1 = 1.

(23) Actual experiments: This fails, because a computation shows that the canonical
cocycle 𝑆 induced by the symmetric lift is given by the square root of the Weil pairing.

A.3. Lifting the DLP. What we can do is plug 𝑥 = −𝑃; we know 𝑚𝑥 = −𝑄 and obtain:

ℎℓ,𝑄(−𝑄) = (
𝛼𝑚(−2𝑃)
𝛼𝑚(−𝑃) )

ℓ
ℎℓ,𝑃(−𝑃)𝑚2.

Since 𝛼𝑚 = 𝜓𝑚 and 𝜓𝑎𝑏(𝑥) = 𝜓𝑎(𝑏𝑥)𝜓𝑏(𝑥)𝑎2 (if appropriately normalised at infinity), and
𝑚.𝑃 = (𝑥 − 𝜓𝑚−1𝜓𝑚+1/𝜓2

𝑚, 𝜓2𝑚/2𝜓4
𝑚) we decuce that

ℎ𝑙,𝑄(−𝑄) = (−2𝑦𝑄𝜓𝑚3(−𝑃)/𝜓2(−𝑃)𝑛2)
𝑙
ℎ𝑙,𝑃(−𝑃)𝑚2 = (−2𝑦𝑄)𝑙𝜓𝑚(−𝑃)3𝑙(ℎ𝑙,𝑃(−𝑃)/𝜓2(−𝑃)𝑙)𝑛2.

The unknown are 𝑚 and 𝜓𝑚(−𝑃)3𝑙. We obtain an equation in 𝜇3: 𝑈 = 𝑉𝑛2 , which provided
that 𝑉 ≠ 1 gives us 𝑛2 mod 3, hence if 𝑛 = 0, 𝑛 = ±1 mod 3.

Actual experiments: But this fails because 𝑉 = 1.
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