
Notes on Improving the arithmetic of Kummer lines

DAMIEN ROBERT

Abstract. We explain some improvements to the arithmetic of Kummer lines.

1. Introduction

This is a summery of results that will be presented in a trilogy of articles on the arithmetic
of Kummer lines.

• In [BRS23], we focus on the general theory of models of Kummer lines, the con-
version between them, and the arithmetic properties of their 2-torsion point (with
the relationship between the ramification, the 2-Tate pairing, the 2-theta group and
their Galois representation). We also develop an hybrid arithmetic, combining the
best of the (twisted) theta and Montgomery world.

• In [Rob22], we give a general framework to find equations for 2-isogenies, doubling
and differential additions on a Kummer model (the formula crucially depend on
the arithmetic property of the 2-torsion alluded too above). We explain how to find
differential applications formula which factor through a 2-isogeny. As an application
we develop a novel time/memory trade off for the Montgomery ladder.

• In [Rob23] we develop the arithmetic of the biextension associated to the divisor
2(0𝐸) on some Kummer models. We derive from this efficient pairing formula.

Part 1. Summary

In isogeny based cryptography, it is standard to work with the Montgomery model of
a Kummer line. In the case where we have an extra point of 2-torsion 𝑇2 along with the
standard point of 2-torsion 𝑇1 = (0 ∶ 1) (as happens for supersingular curves), we can use
𝑇2 to speed up the arithmetic.

2. Hybrid arithmetic

(This is joint work with Nicolas Sarkis):

2.1. Hybrid arithmetic for scalarmultiplication. In theMontgomery ladder for computing
𝑚.𝑃, we use one doubling and one mixed differential addition by step. In the Montgomery
model, doubling is 2𝑀 + 2𝑆 + 1𝑚0 while a mdiffAdd (where we assume our base point
𝑃 = (𝑋𝑃 ∶ 1) is normalised) is 3𝑀 + 2𝑆, so a ladder step is 5𝑀 + 4𝑆 + 1𝑚0. Here 𝑚0
denotes a multiplication by a curve constant (typically the coefficient 𝐴 of the Montgomery
curve, or rather (𝐴 + 2)/4).

When 𝑇2 is rational, we can also use a twisted theta model, where doubling is 4𝑆 + 2𝑚0,
andmdiffAdd is 3𝑀+2𝑆+1𝑚0, so a ladder step is 3𝑀+6𝑆+3𝑚0. (There is a 1𝑀−1𝑆−1𝑚0
tradeoff where a ladder step is 4𝑀 + 5𝑆 + 2𝑚0.)
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The two models differ by the translation by 𝑇2, we can exploit that to combine the best
of both worlds: using an hybrid arithmetic where doubling is 4𝑆 + 2𝑚0 and mdiffAdd is
3𝑀 + 2𝑆.

2.2. Hybrid arithmetic for 2𝑛-isogenies. In theMontgomery model, a 2-isogeny codomain
costs 2𝑆, an image costs 4𝑀, and doubling cost 2𝑆+2𝑀+2𝑚0 (because our curve coefficients
are given by a projective point (𝐴 ∶ 𝐶) and we can no longer assume that 𝐶 = 1). In practice,
it is customary to use 4-isogenies instead where the codomain cost 4𝑆 and images 2𝑆 + 6𝑀.

In the twisted theta model, a 2-isogeny codomain costs 2𝑆, an image costs 2𝑆 + 2𝑀, and
doubling cost 4𝑆 + 4𝑚0.

Again, it is possible to use an hybrid arithmetic, with an image costing 2𝑆 + 2𝑀 and
doubling costing 2𝑆 + 2𝑀 + 2𝑚0.

This also allows to use 2-isogenies rather than 4-isogenies for the optimal strategy com-
putation, leading to more room to find optimal parameters.

3. A time/memory trade off for scalar multiplication on Kummer lines

Although theMontgomery ladder is very efficient, for fast scalar multiplication the twisted
Edward model is often faster because it allows for a time/memory trade off by using the
window-NAF method to reduce the amount of additions.

However, when the scalar is a secret, these time/memory trade off are often susceptible
to side channel attacks, so although signing on Curve25519 is implemented in Edwards
coordinate, the DH key exchange uses the Montgomery ladder.

It might seem that a time/memory trade off is not possible on a Kummer line because
standard additions are not available. In the second part of this talk, when 𝑇2 is rational, we
present a novel approach that:

(1) does a precomputation of points 𝑃𝑖 = (𝑋𝑖 ∶ 𝑍𝑖) costing 2𝑆 + 1𝑚0 by bit, and
requiring to store two field coefficients by bit.

(2) using this precomputation, the ladder then costs 2𝑆 + 1𝑚0 for doubling, and 4𝑀
for a differential addition by bit.

The total cost, including the precomputation, is thus of 4𝑆 + 4𝑀 + 2𝑚0, and further
scalar multiples with the same base point then cost 2𝑆 + 4𝑀 + 1𝑚0. Here it does not matter
whether 𝑃 = (𝑋𝑃 ∶ 𝑍𝑃) is normalised or not.

We stress that the scalar multiplication still uses a ladder approach, with one doubling and
one differential addition by bit, thus retaining the same side channel resistance as the standard
Montgomery ladder. (We recall that the Montgomery ladder without precomputation costs
5𝑀 + 4𝑆 + 1𝑚0 when the base point 𝑃 is normalised, and 6𝑀 + 4𝑆 + 1𝑚0 if 𝑃 is not
normalised.)

If we know that 𝑃 will be used several time (like for the first step of a DH key exchange),
we can increase the precomputation to normalise the points 𝑃𝑖 = (𝑋𝑖/𝑍𝑖 ∶ 1). This costs
one field division by bit, and reduces the storage to one field coefficient by bit.

Themultiples𝑚.𝑃 then cost 2𝑆+3𝑀+1𝑚0 by bit, significantly improving on the standard
ladder.

Unfortunately, for Curve25519 the point 𝑇2 is not rational. But its 2-isogeneous curve is a
Montgomery curve with full rational 2-torsion, so by computing an isogeny at the beginning
and the end we can still use our novel time/memory trade off on Curve25519 (however,
unlike Curve25519, the curve constant on the isogeneous curve is not small, so we don’t gain
as much as if we had selected from the beginning a suitable curve with a small 𝑚0).
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4. Pairings on Kummer lines

For pairing based cryptography on elliptic curves, it is convenient to use the Tate pair-
ing with 𝑃 ∈ 𝔾1 ⊂ 𝐸(𝔽𝑞), 𝑄 ∈ 𝔾2 ⊂ 𝐸(𝔽𝑞𝑘), and 𝑘 even to allow for denominator
elimination.

Counting only operations involving the big field𝔽𝑞𝑘 , Miller’s algorithm cost 1𝑀+1𝑆+1𝑚
by doubling, and 1𝑀+1𝑚 by addition.Here 1𝑚denotes amultiplication between a coefficient
in 𝔽𝑞 and a coefficient in 𝔽𝑞𝑘 .

When denominator elimination is not possible (because 𝑘 is odd or 𝑄 is not in 𝔾2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition.

For isogeny based cryptography however, we cannot assume that one of our point is in a
small field. The generic cost of the Tate pairing then becomes 5𝑆 + 15𝑀 for doublings, and
4𝑆 + 20𝑀 for additions; much more expansive than a simple scalar multiplication.

In the third part of this talk, we work out the arithmetic of the biextension associated to
the divisor 2(0𝐸) on the Montgomery model of a Kummer line with full rational 2-torsion.
We derive from this an efficient ladder like algorithm for pairings computation.

When 𝑃 is in the small field 𝐸(𝔽𝑞) and 𝑄 is in the big field 𝐸(𝔽𝑞𝑘), our Tate pairing
algorithm costs (counting only operations in the big field) 2𝑆 + 1𝑀 + 2𝑚 by bits. This is
competitive with the standard Miller’s algorithm, except when denominator elimination is
available.

For a generic pairing computation where both points are in the same field, our ladder
algorithm costs 7𝑆 + 9𝑀 by bit, which is closer to the cost of a scalar multiplication via the
Montgomery ladder.

We also explain how to compute a standard exponentiation (rather than a ladder) in the
biextension, this allows to use window-NAF methods. Our algorithm costs 5𝑆 + 6𝑀 for a
doubling, and 6𝑆 + 24𝑀 for an addition1 This suggests that the second algorithm will be
faster than the first one when using a window 𝑤 ≥ 5 (or when computing pairings between
points of 2𝑛-torsion).

Part 2. Formulae

5. Models

We focus on the arithmetic of theKummer line𝐸 of aMontgomerymodel with full rational
2-torsion. We represent the point of 2-torsion which is not 𝑇1 = (0 ∶ 1) by 𝑇2 = (𝐴2 ∶ 𝐵2);
and the other one is 𝑇′

2 = (𝐵2 ∶ 𝐴2).
Translating by 𝑇2 be get the 𝜃𝑡𝑤′ (aka 𝜃′2) model. This allows to combine the arithmetic

of the Montgomery model and (twisted) theta model.
Also the quotient 𝐸′ = 𝐸/𝑇1 is also a Montgomery model with full rational 2-torsion, so

we can exploit the symmetry between 𝐸 and 𝐸′ in our arithmetic by factorising through the
isogeny 𝑓 ∶ 𝐸 → 𝐸′. Here when we mention a Montgomery model, we assume we have full
rational 2-torsion, except if we explicitly say so.

If 𝐸 has a theta model (𝑎 ∶ 𝑏), then the two torsion is 𝑇1 = (−𝑎 ∶ 𝑏), 𝑇2 = (𝑏 ∶ 𝑎), 𝑇′
2 =

(−𝑏 ∶ 𝑎), and 𝑅1 = (1 ∶ 0), 𝑅′
1 = (0 ∶ 1) are 4-torsion points above 𝑇1 = (−𝑎 ∶ 𝑏), and

𝑅2 = (1 ∶ 1), 𝑅′
2 = (1 ∶ −1) above 𝑇2 = (𝑏 ∶ 𝑎). Here (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶ 𝑎2 − 𝑏2).

In the 𝜃𝑡𝑤′ model, the neutral point becomes 0 = (𝐴2 ∶ 𝐵2), the 2-torsion 𝑇1 = (𝐵2 ∶
𝐴2), 𝑇2 = (1 ∶ 0), 𝑇′

2 = (0 ∶ 1), and the 4-torsion is 𝑅1 = (1 ∶ 1), 𝑅′
1 = (−1 ∶ 1), and

𝑅2 = (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏), 𝑅′
2 = (𝑏′, 𝑎′).

1Standard additions are not available on a Kummer line, but we can compute them over the biextension!
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In particular, the 4-torsion point 𝑅2 = (𝑎′ ∶ 𝑏′) above 𝑇2 = (1 ∶ 0) allows to recover
(𝑎 ∶ 𝑏). This model has the same ramification as the Montgomery model, except the neutral
point is (𝐴2 ∶ 𝐵2) which would be a point of 2-torsion 𝑇2 on the Montgomery model, hence
why they differ by translation by 𝑇2: (𝑥 ∶ 𝑧) ↦ (𝐴2𝑥 − 𝐵2𝑧 ∶ 𝐵2𝑥 − 𝐴2𝑧).

In the Montgomery model, the neutral point is 0 = (1 ∶ 0), the 2-torsion is 𝑇1 = (0 ∶ 1),
𝑇2 = (𝐴2 ∶ 𝐵2), 𝑇′

2 = (𝐵2 ∶ 𝐴2), and the four torsion is 𝑅1 = (−1 ∶ 1), 𝑅1 = (1 ∶ 1),
𝑅2 = (𝑏′ ∶ 𝑎′), 𝑅′

2 = (𝑏′ ∶ 𝑎′).
In the 𝜃𝑡𝑤′ model, the isogeny 𝑓 with kernel by 𝑇1 is given by (𝑥 ∶ 𝑧) ↦ ((𝑥 + 𝑧)2/𝑎2 ∶

(𝑥 − 𝑧)2/𝑏2). The neutral point of 𝐸′ is then (𝑎2 ∶ 𝑏2), 𝑇2, 𝑇′
2 are mapped to (𝑏2 ∶ 𝑎2),

𝑅1 is mapped to (1 ∶ 0), 𝑅′
1 to (0 ∶ 1), 𝑅2, 𝑅′

2 to (1 ∶ 1). The dual isogeny ̃𝑓 is given by
(𝑥 ∶ 𝑧) ↦ ((𝑥 + 𝑧)2/𝐴2 ∶ (𝑥 − 𝑧)2/𝐵2).

6. Arithmetic

In the Montgomery model, doubling is 2𝑀 + 2𝑆 + 1𝑚0 while a diffAdd is 4𝑀 + 2𝑆𝑆, a
mdiffAdd 3𝑀 + 2𝑆, so a ladder step is 5𝑀 + 4𝑆 + 1𝑚0.

In the (twisted) theta model, doubling is 4𝑆 + 2𝑚0, diffAdd is 4𝑀 + 2𝑆 + 1𝑚0 and
mdiffAdd is 3𝑀 + 2𝑆 + 1𝑚0, so a ladder step is 3𝑀 + 6𝑆 + 3𝑚0. There is a 1𝑀 − 1𝑆 − 1𝑚0
tradeoff where a ladder step is 4𝑀 + 5𝑆 + 2𝑚0

These assume that our starting point 𝑃 is normalised, else add 1𝑀 by bit.
The doubling 𝑃 ↦ 2.𝑃 in twisted theta can be interpreted as 𝑃 ↦ 2.𝑃 + 𝑇2 in the

Montgomery model. Keeping track of the translation by 𝑇2 we then have a hybrid ladder
which cost 3𝑀 + 6𝑆 + 2𝑚0.

Likewise, if we do a differential addition with points in twisted theta / Montgomery with
the formula from the other model, then using 𝑃, 𝑄, 𝑃 − 𝑄 + 𝑇2 will give 𝑃 + 𝑄 + 𝑇2, and
using 𝑃, 𝑄 + 𝑇2, 𝑃 − 𝑄 will give 𝑃 + 𝑄.

7. Isogenies

In the Montgomery model, for a 2-isogeny computation the codomain cost 2𝑆, and image
cost 4𝑀, while doubling cost 4𝑀 +2𝑆. (We cannot assume our constants are normalised like
we are on the same curve because we keep switching curve). A 4-isogeny can be computed
in 4𝑆 for the codomain, and 6𝑀 + 2𝑆 for images.

In the (twisted) theta model, the codomain cost 2𝑆 and image cost 2𝑀 + 2𝑆. But a
doubling is 4𝑀 + 4𝑆.

The twisted theta image can be interpreted as 𝑃 ↦ 𝑓 (𝑃) + 𝑇′
2 in the Montgomery model,

which can thus be computed in 2𝑀 + 2𝑆. Since 𝑇′
2 is in the kernel of the next isogeny, this

does not affect the next image (until the very last step).
Concretely, in the 𝜃𝑡𝑤′ model the isogeny with kernel 𝑇2 is given by 𝑔 ∶ (𝑥 ∶ 𝑧) ↦ (((𝑥 +

𝑧)/𝑎+(𝑥 −𝑧)/𝑏)2 ∶ ((𝑥 +𝑧)/𝑎−(𝑥 −𝑧)/𝑏)2). We recall that (𝑎 ∶ 𝑏) can be recovered from
𝑅2. The neutral point is then 𝑔(0) = 𝑔(𝑇2) = (𝑎′2 ∶ 𝑏′2), 𝑔(𝑇1) = 𝑔(𝑇′

2) = (𝑏′2 ∶ 𝑎′2),
𝑔(𝑅1) = 𝑔(𝑅′

1) = (1 ∶ 1), 𝑔(𝑅2) = (1 ∶ 0), 𝑔(𝑅′
2) = (0 ∶ 1).

8. Time-Memory trade off for the arithmetic

In the theta model, the arithmetic ladder stems from the duplication formula: 𝜃𝐸(𝑃 +
𝑄) ⋆ 𝜃𝐸(𝑃 − 𝑄) = 𝐻(𝜃′

𝐸′(𝑓 (𝑃)) ⋆ 𝜃′
𝐸′(𝑓 (𝑄))).

The ladder use two steps for the differential addition (doubling is a special case where
𝑃 − 𝑄 = 0): compute 𝑓 (𝑃) via 𝜃𝐸(𝑃) ⋆ 𝜃𝐸(𝑃) = 𝐻(𝜃′

𝐸′(𝑓 (𝑃)) ⋆ 𝜃′
𝐸′(𝑓 (0))). This costs

2𝑆 + 1𝑚0. Do the same for 𝑓 (𝑄). Then use 𝜃𝐸(𝑃 + 𝑄) ⋆ 𝜃𝐸(𝑃 − 𝑄) = 𝐻(𝜃′
𝐸′(𝑓 (𝑃)) ⋆
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𝜃′
𝐸′(𝑓 (𝑄))) to compute (𝑃 + 𝑄) ⋆ (𝑃 − 𝑄) in 2𝑀, and then 𝑃 + 𝑄 in again 2𝑀 (or 1𝑀 if

𝑃 − 𝑄 is normalised).
A large part of the ladder is hence spent in isogeny images. Let 𝑓1 = 𝑓, 𝑓2 = ̃𝑓 ∘𝑓1, 𝑓3 = 𝑓 ∘𝑓2,

𝑓4 = ̃𝑓 ∘ 𝑓3 and so on. Assume we had 𝑓𝑖+1(𝑛𝑃), 𝑓𝑖+1((𝑛 + 1))𝑃. Then from the duplication
formula, we could directly find 𝑓𝑖(2𝑛𝑃), 𝑓𝑖(2(𝑛 + 1)𝑃), 𝑓𝑖((2𝑛 + 1)𝑃).

The doublings only require the points 𝑓𝑖(0𝐸) which are given by the two curves 𝐸 and 𝐸′.
However the differential addition needs 𝑓𝑖(𝑃). So what we can do is compute 𝑓𝑖(𝑃), 𝑓𝑖(0𝐸)
then apply our duplication formula. This inverse the order: rather than doing two isogeny
images and two duplication at each step, we compute all the images first and then do all the
duplications. We gain because the images 𝑓𝑖(0𝐸) are free. We could expect to gain 2𝑆 + 1𝑚0,
but because our points 𝑓𝑖(𝑃) are no longer normalised, we only gain 2𝑆+1𝑚0 −𝑀 compared
to the normal ladder with a normalised 𝑃.

In summary: we do a precomputation phase with all the 𝑓𝑖(𝑃). This cost 2𝑆 + 1𝑚0 by bit,
along with 2 field coefficients.Then we do our duplication formula: this cost 2𝑆+1𝑚0 for our
doublings, and 4𝑀 for our differential additions (again, because the 𝑓𝑖(𝑃) are not normalised).
The final cost including the precomputation is 4𝑀 + 4𝑆 + 2𝑚0. Further multiplication with
the same base point 𝑃 will cost 4𝑀 + 2𝑆 + 1𝑚0. We note that this cost is the same whether
𝑃 is normalised or not (because even if 𝑃 is normalised, the 𝑓𝑖(𝑃) won’t be).

When we know in advance 𝑃 will be used (for public key encryption, or the first phase of
DH key exchange), it is worth it to normalise the 𝑓𝑖(𝑃) at the cost of 1𝐼 by bit (the storage is
then 1 coeff by bit). Then scalar multiplication will cost 3𝑀 + 2𝑆 + 1𝑚0.

The big advantage compared to other time/memory trade off with elliptic curves (naf,
window, …) is that the scalar multiplication is still a ladder with a double and diff add by bit,
hence much less susceptible to side channel attack.

The same principle apply to the twisted theta model 𝜃𝑡𝑤′, but we need some careful
translation by 𝑓𝑖(𝑇2): for the differential addition we assume that we have 𝑓𝑖+1(𝑛𝑃), 𝑓𝑖+1((𝑛+
1)𝑃+𝑇2) (say) and we compute 𝑓𝑖((2𝑛+1)𝑃+𝑇2). (Doublings are no problem).We obtain
the same cost as in the 𝜃model, except the initial translation by the two torsion point; likewise
in the Montgomery cap Legendre model.

The formula are as follow (pending typos): given (𝑥𝑃𝑖 ∶ 𝑧𝑃𝑖), the isogenous point 𝑃𝑖+1 is
given by:𝑋 = (𝑥𝑃𝑖2+𝑧𝑃𝑖2)∗𝑏2

𝑖 ∶ (𝑥𝑃𝑖2−𝑧𝑃𝑖2)∗𝑎2
𝑖 ). From𝑃𝑖+1 we can compute 2𝑃𝑖 via the

dual isogeny: (𝑋 + 𝑍)2 ∗ 𝑏𝑖+1, (𝑋 − 𝑍)2 ∗ 𝑎𝑖+1). The more interesting part is the differential
addition, given 𝑃𝑖+1 = (𝑥𝑔𝑃 ∶ 𝑧𝑔𝑃), 𝑄𝑖+1 + 𝑇2𝑖+1 = (𝑥𝑔𝑄′ ∶ 𝑧𝑔𝑄′), (𝑃 − 𝑄)𝑖 = (𝑥𝑃𝑄 ∶
𝑧𝑃𝑄) we recover (𝑃 + 𝑄)𝑖 via: 𝑠 = (𝑥𝑔𝑃 + 𝑧𝑔𝑃)(𝑥𝑔𝑄′ + 𝑧𝑔𝑄′); 𝑡 = (𝑥𝑔𝑃 − 𝑧𝑔𝑃)(𝑥𝑔𝑄′ −
𝑧𝑔𝑄′); 𝑢 = 𝑠 + 𝑡; 𝑣 = 𝑠 − 𝑡; 𝑋 = 𝑢/(𝑥𝑃𝑄 + 𝑧𝑃𝑄); 𝑍 = 𝑣/(𝑥𝑃𝑄 − 𝑧𝑃𝑄); (𝑃 + 𝑄)𝑖 =
(𝑋 + 𝑍 ∶ 𝑋 − 𝑍).

For Curve25519, since the two torsion is not rational, we need to move via a 2-isogeny to
the curve above it which is bothMontgomery and has full rational two torsion. Unfortunately
the constant is large, so the cost of 4𝑀 + 4𝑆 + 2𝑚0 when including the precomputation
is essentially the same as with a standard Montgomery ladder: 5𝑀 + 4𝑆 + 1𝑚0 (assum-
ing 𝑃 is normalised; we gain 1𝑀 on a non normalised point). Still, with the normalised
precomputation, the cost of 3𝑀 + 2𝑆 + 1𝑚0 is still very interesting, even with a large 𝑚0.

The reason we work to work on the Montgomery cap Legendre model, is that if we want
the relations 𝑥(𝑃 + 𝑄)𝑧(𝑃 + 𝑄), 𝑥(𝑃 − 𝑄)𝑧(𝑃 − 𝑄) to factor through the isogeny 𝑓 with
kernel a 2-torsion point 𝑇, we need 𝑇 to be of Montgomery type (equivalently the Tate
pairing 𝑒(𝑇, 𝑇) = 1, or the symmetric element in the theta group above 𝑇 is rational). So
the curve needs to be Montgomery, but the isogeneous curve should be too (because we go
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back and forth between the two curves), which is equivalent to the starting curve being in
Legendre form.

9. Pairings

On a Kummer line, it is useful to interpret pairings as coming from the biextension law
[Gro72; Sta08] associated to the divisor 2(0𝐸). It is shown in [Gro72] how the biextension
gives rise to the Weil pairing, and [Sta08] extends this to the Tate pairing.

I can reinterpret the biextension law as follow: the key point is that with a symmetric line
bundle, there is a canonical isomorphism 𝑡∗

𝑃𝐿⊗𝑡∗
𝑄𝐿⊗𝑡∗

𝑅𝐿⊗𝑡∗
𝑆𝐿 ≃ 𝑡∗

𝑈𝐿⊗𝑡∗
𝑉𝐿⊗𝑡∗

𝑊𝐿⊗𝑡∗
𝑋𝐿

whenever 𝑃 + 𝑄 + 𝑅 + 𝑆 = 2𝑍, 𝑈 = 𝑍 − 𝑃, 𝑉 = 𝑍 − 𝑄, 𝑊 = 𝑍 − 𝑅, 𝑋 = 𝑍 − 𝑆.
Specialising, we get partial group law on trivialisation of line bundle: ̃0, �̃�, 𝑄, ̃𝑃 − 𝑄 ↦

̃𝑃 + 𝑄, ̃0, �̃�, 𝑄, �̃�, ̃𝑃 + 𝑄, 𝑃 + 𝑅, 𝑄 + 𝑅 ↦ ̃𝑃 + 𝑄 + 𝑅.
(Note: in [Sta08] the biextension appears in the guise of elliptic nets. From our point of

view, we can reinterpret elliptic nets as trivialisation of the line bundle 𝐷 = (0𝐸) at points 𝑃,
notably by specifying the value of 𝑍(𝑃) where 𝑍 is the section of (0𝐸). A slight difficulty is
that𝑍 has a zero on 0𝐸, so we need some offset to compute the pairings.The remarkable thing
about elliptic nets is that even through we are on level 1 we can still compute the arithmetic
of biextension through the linear recurrence of elliptic nets, see [Sta08] for details.

In [LR10; LR15], the biextension is hidden through the guise of the analytic Riemann
relations giving the transcendental group law.)

We represent an element 𝑔𝑃,𝑄 of the biextension by the trivialisations ̃𝑥, 𝑥 + 𝑃, ̃𝑥 + 𝑄, ̃𝑥 + 𝑃 + 𝑄.
Changing the trivialisations by 𝜆𝑥, 𝜆𝑃, 𝜆𝑄, 𝜆𝑃+𝑄 give the same element iff 𝜆𝑥𝜆𝑃+𝑄 = 𝜆𝑃𝜆𝑄.
The Tate pairing is then given by 𝑔ℓ

𝑃,𝑄, which can be computed from ℓ�̃�, ̃ℓ𝑃 + 𝑄, which in
turn can be computed from a three way Montgomery ladder: 1 doubling and 2 differential
addition by step.

In the theta or twisted theta model, using [LR10; LR15] this amount to 7𝑆 + 7𝑀 + 2𝑚0
by bit, assuming our base points are normalised (else add 2𝑀 by bit). These extend to the
Montgomery model with rational two torsion (simply translate at the beginning and end to
go to the 𝜃𝑡𝑤′ model). For a generic model unfortunately the standard formula for doubling
and diff add are not the ones giving the biextension group law, we are off by some constant.

By comparison, generic pairing computations in the Jacobian model cost 15𝑀 + 5𝑆 for
doubling, and 20𝑀 + 4𝑆 by addition.

We can also do a standard exponentiation on 𝑔𝑃,𝑄 on our biextension, this allows from
the standard NAF and windowingmethod.We can do additions on the biextensionmodel (at
least with our representation), even through we are on the Kummer line on the underlying
curve!

I worked out the formula in the theta model, using [LR15; LR16]: doubling cost 1 double
and 1 diff add on the underlying curve, for a cost of 4𝑀 + 5𝑆 + 2𝑚0. Addition is more
complicated: on the underlying curve this amount to one (projective) compatible addition
which cost 27𝑀 (I am not distinguishing 𝑀, 𝑆 and 𝑚0 here), followed by an affine three way
addition which cost 17𝑀, for a grand total of 44𝑀. But since our base points are always the
same (the ones we computed for our window), we can do some precomputations for these
steps, and the compatible addition then cost 17𝑀, and the three way addition 13𝑀, for a
total of 30𝑀.

Since doubling is 11𝑀, this might be competitive with the ladder method (which costs
16𝑀 by bit) when using a NAF-window with 𝑤 ≥ 5.

By contrast, the generic cost of the Tate pairing using Miller’s standard algorithm is
5𝑆 + 15𝑀 for doublings, and 4𝑆 + 20𝑀 for additions.
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9.1. The Tate pairing for pairing based cryptogrpahy. For pairing based cryptography on
elliptic curves, it is convenient to use the Tate pairing with 𝑃 ∈1⊂ 𝐸(𝔽𝑞), 𝑄 ∈2⊂ 𝐸(𝔽𝑞𝑘),
and 𝑘 even to allow for denominator elimination.

Counting only operations involving the big field𝔽𝑞𝑘 , Miller’s algorithm cost 1𝑀+1𝑆+1𝑚
by doubling, and 1𝑀+1𝑚 by addition.Here 1𝑚denotes amultiplication between a coefficient
in 𝔽𝑞 and a coefficient in 𝔽𝑞𝑘 .

When denominator elimination is not possible (because 𝑘 is odd or 𝑄 is not in 2), the
cost becomes 2𝑀 + 2𝑆 + 1𝑚 by doubling, and 2𝑀 + 1𝑚 by addition.

Using our arithmetic of biextension on Kummer lines, only counting the operations on
the big field, we have 2𝑆 + 1𝑀 + 2𝑚 by bit. So better than Miller’s algorithm, except when
denominator elimination is available.
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