
A note on optimising 2𝑛-isogenies in higher dimension

DAMIEN ROBERT

Abstract. We give various optimisations for the computations of 2𝑛-isogenies in higher
dimension. In particular, we explain how to compute 2𝑛-isogenies by pushing forward
𝑔 points (a basis of the kernel) rather than 2𝑔 points at each step. We detail the case of
𝑔 = 1 and 𝑔 = 2.

Contents

1. Context 3
2. Introduction 4
3. The two torsion on a level 2 theta structure 6
4. The Hadamard transform 6
5. The duplication formula 7
6. Differential additions 7
7. Normalising points 8
8. The choice of the theta constant for a 2-isogeny 8
9. The choice of theta constants for a 2𝑛-isogeny 10
10. Normalising the points for a 2𝑛-isogeny 11
11. Computing the isogenous theta null point 12
12. The image of a point 14
13. The full algorithm 14
14. Complexity 15
14.1. The old algorithm 15
14.2. The new algorithm 16
14.3. The new algorithm: normalising 8-torsion points at each steps 17
14.4. The new algorithm, normalizing points at the beginning 18
15. 2𝑛-isogenies in dimension 1 19
15.1. 2-isogenies in the theta model 19
15.2. Theta versus Montgomery 20
16. 2𝑛-isogenies in dimension 2 21
16.1. Isogeny formula 21
16.2. Splitting isogenies 23
16.3. Gluing isogenies 23
16.4. Annulation of the theta null points 24
16.5. Further optimisations in dimension 2 24
16.6. What if we don’t have 8-torsion points? 25
17. Even better formula: getting rid of the normalisation process 26
17.1. Removing inversions 27
References 28

Date: November 13 2023.
1

2 DAMIEN ROBERT

Appendix A. Conversion formula between the theta model and the Montgomery
model in dimension 1 30

A.1. Theta and Montgomery 30
A.2. The alternative Montgomery model 31
Appendix B. The algebraic theta transformation formula 32
B.1. Directly computing theta constants 32
B.2. The choice of signs 33
Appendix C. Other applications of the duplication formula 35

A note on optimising 2𝑛-isogenies in higher dimension 3

1. Context

With the explosion of higher dimensional isogeny cryptography, a group of isogenies
enthusiasts have gathered around a Zulip chat (this includes Pierrick Dartois, Sabrina Kun-
zweiler, Luciano Maino, Giacomo Pope, …).

The goal was to first start with dimension 2 2𝑛-isogenies, with a focus on improving
Festa and the SIDH attacks, and to pave the way for the dimension 4 implementation of the
verification in SQISignHD.

The git repository https://github.com/GiacomoPope/Theta-Isogenies contains code
for 2𝑛-isogenies in dimension 2 via Richelot isogenies (+ splitting and gluing) in Mumford
coordinates, via Kummer coordinates (with formula due to Sabrina Kunzweiler), and via
theta coordinates (in level 2, hence also on the Kummer).

The goal was to optimize these three different models and compare them to each other.
These notes were written in June 2023 to describe both 2𝑛-isogenies algorithms in theta
coordinates and various optimisations (in any dimension) I had found compared to the
algorithm described in [DLRW23, Appendix C.2].

Strangely, theta functions have somewhat a reputation of being hard to work with and
slow (maybe because they can work in any dimension and any degree). Contrary to these
expectations, isogeny formula are actually pretty fast in theta coordinates, and most notably
for 2𝑛-isogenies in level 2: level 2 theta functions are precisely tailored so that the action by
translation of the 2-torsion (more precisely the theta group) gives extremely fast isogeny
images (see also the simplicity of the duplication formula Section 5). Notably a 2-isogeny
image in dimension 1 is even faster in theta coordinates than in Montgomery coordinates
(see Section 15).

Of course, operation count never beat actual profiling, which was the goal of our Sage
implementation (further comparison between the different dimension 2 models are out
of scope of these notes, but theta functions are indeed very fast! The current implementa-
tion gives a factor 9× for the computation of a 2602-isogeny chain, and images 17× faster,
compared to Richelot isogenies.)

Although image computation is naturally very fast in theta coordinates, the codomain
computation was originally a lot more involved. The original algorithm of [DLRW23, Ap-
pendix C.2]; involved a normalisation process involving 2𝑔 points of 8-torsion.

The original goal of these notes involved a faster normalisation process involving only
1 + 𝑔 points of 8-torsion, with some further optimisations like inlining what was needed for
the tripling formula used in the normalisation process. This is the version which was first
implemented in the git repository, by the people mentioned above.

Since then, I have found (in July 25) newer formula that completely bypass the normalisa-
tion process, see Section 17. These formula are both much simpler to implement1 and a lot
faster, they essentially boil down to 𝑔 images computations.

These makes most of these notes obsolete, notably Sections 7, 10, 11, 14 and 16. These
notes are still in their state of June 2023, except for this section and the newer Section 17,
written in August 2023.

The obsolete normalisation process described in these notes for 2-isogenies might still
have an interest to better explain the similar normalisation process using for higher degree
ℓ-isogenies. Indeed, for ℓ > 2 (and with theta functions of level 2) a normalisation process is
needed both for codomain computations but also for images computations.

1I recommend looking at the git history to compare the old formula with the newer ones

https://github.com/GiacomoPope/Theta-Isogenies

4 DAMIEN ROBERT

One might wonder why this normalisation process is no longer needed for ℓ = 2 but
still needed for ℓ > 2. The answer is that with theta coordinates in level 2, the points of 2
torsion are already normalised with respect to each others, hence the normalisation process
was redundant. To have a similar process for ℓ = 3 (say), we would need to work with theta
functions of level 3 or 6. The normalisation process of the points of 3-torsion is essentially a
way to work in level 2 almost as if we were in level 6.

Apart from the results of Section 17, we give several formula in the dimension 1 case that
might be of interest in Section 15.

A word of warning: these are notes, not a research paper, and there are probably still a
lot of remaining typos in the formula. When in doubt look at the code itself, it should be
correct!

Update November 2023: we now have a paper [DMPR23a] detailing the formulas for a
dimension two 2𝑛-isogeny in the thetamodel.The code is also available [DMPR23b]. Pierrick
Dartois is working on a follow up paper for the adapation to dimension 4. We strongly
recommend reading this article rather than these notes, which as mentioned organically
grew as we went along and implemented the algorithm, so are not very readable!

2. Introduction

Computing isogenies in higher dimension has received considerable interest recently:
breaking SIDH, SQISignHD, Festa [CD23; MMPPW23; Rob23a; DLRW23; BMP23]. Al-
though algorithms in any dimensions are described in [LR12; CR15; LR15b; LR22a] in a
theta model of even level 𝑛, for simplicity only the case of an ℓ-isogeny with ℓ prime to 𝑛
is considered in these articles. For cryptographic applications, the most interesting case is
when ℓ = 2𝑢 and 𝑛 = 2, which does not satisfy these conditions. The general case of ℓ non
prime to 𝑛 case is briefly treated in [Rob10, Proposition 6.3.5; Rob21, Remarks 2.10.3, 2.10.7
and 2.10.14]. A particular difficulty when ℓ is even is that we need a symplectic basis of the
ℓ𝑛-torsion which is compatible with the symmetric level 𝑛 theta structure, a condition for
compatibility, due to David Lubicz, is described in [Rob21, Remark 2.10.7]. In an upcoming
article with David Lubicz, we will treat this general case in more detail, along with algorithms
to raise and descend the level (which are strongly linked to isogeny algorithms).

The purpose of these notes by contrary is to look only at speeding up the formula for the
computation of the specific case of 2𝑛-isogenies in level 2. As usual, this rely on splitting the
isogeny 𝜙 ∶ 𝐴 → 𝐵 into a product of 𝑛 2-isogenies 𝜙𝑖, and push forward points by the 𝜙𝑖, so
we reduce to 2-isogenies. Building on [Rob10, § 6, § 7; Rob21, § 2, § 4], an algorithm to do
so was presented in [DLRW23, Appendix C.2]; we will reuse the general notations of this
article. For our cryptographic application, our isogeny 𝜙 ∶ 𝐴 → 𝐵 has for domain 𝐴 = ∏ 𝐸𝑖
a product of elliptic curves. This also simplifies various steps of the algorithm, notably the
initialisation of the algorithm. Also, the compatibility conditions alluded to above is easy to
verify in dimension 1 (see Lemma 8.3), and can be propagated through the product theta
structure. This allows to essentially bypass it entirely in what follows.

Given 𝐾 = ⟨𝑇1, … , 𝑇𝑔⟩ an isotropic kernel of 𝐴, the standard method to split the isogeny
into 2-isogenies is to first compute a basis of 𝐾[2] via doubling formula, compute the isogeny
𝜙1 ∶ 𝐴 → 𝐴1 = 𝐴/𝐾[2], push the points 𝑇𝑖 via 𝜙1, compute a basis of 𝑓 (𝐾)[2] via a
combination of doubling and pushing points via 𝜙1 (the optimal strategy depends on the
relative cost of doubling and pushing points, given these costs an algorithm is described in
[DJP14, § 4.2.2]).

We assume that we are given a theta null point of level 2 on 𝐴 and that 𝐾 is compatible
with this theta null point (see Section 9). Given the theta null point of the isogeneous abelian

A note on optimising 2𝑛-isogenies in higher dimension 5

variety 𝐴1 = 𝐴/𝐾[2], the theta model has particularly nice formula to compute the image
by a point (see Section 5); this cost 2𝑔𝑆 + (2𝑔 − 1)𝑀 assuming the theta constants of 𝐴1
are normalised so that 𝜃𝐴1

0 (0) = 1 and the inverse 1/𝜃𝐴1
𝑖 (0) have been computed. Also it is

possible to recover the squares 𝜃𝐴1
𝑖 (0)2 in only 2𝑔𝑆. Given the simplicity of these formula,

doubling and differential addition on 𝐴 are computed by going through the 2-isogeny to 𝐴1
(see Section 6). In particular, doubling essentially cost 2 isogeny evaluations. Furthermore, for

the arithmetic on 𝐴, the squares 𝜃𝐴1
𝑖

2
(0) are enough. However, for computing a 2𝑛-isogeny

as a chain of 2-isogenies, we actually need the correct square roots 𝜃𝐴1
𝑖 (0).

A big part of this article is to optimize the formula to obtain these correct square roots.
Let us explain the main idea, using 𝑔 = 2 as an exemple. We have the theta null point
(𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑), and we can easily compute the squares of the dual coordinates of the isogenous
theta null point (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) via (𝐴2 ∶ 𝐵2 ∶ 𝐶2 ∶ 𝐷2) = 𝐻 ∘ 𝑆(𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑) =
𝐻(𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2) where 𝐻 is the Hadamard transform and 𝑆 is the squaring operation, ie
𝐴2 = 𝑎2+𝑏2+𝑐2+𝑑2, 𝐵2 = 𝑎2−𝑏2+𝑐2−𝑑2, 𝐶2 = 𝑎2+𝑏2−𝑐2−𝑑2, 𝐷2 = 𝑎2−𝑏2−𝑐2+𝑑2.
If we have suitable points of 4-torsion 𝑇1, 𝑇2, then (𝐴𝐵 ∶ 𝐶𝐷 ∶ 𝐴𝐵 ∶ 𝐶𝐷) = 𝐻 ∘ 𝑆(𝑇1),
(𝐴𝐶 ∶ 𝐵𝐷 ∶ 𝐴𝐶 ∶ 𝐵𝐷) = 𝐻 ∘ 𝑆(𝑇2), (𝐴𝐷 ∶ 𝐵𝐶 ∶ 𝐵𝐶 ∶ 𝐴𝐷) = 𝐻 ∘ 𝑆(𝑇1 + 𝑇2). This is not
enough to recover (𝐴, 𝐵, 𝐶, 𝐷) because we are dealing with projective coordinates. What we
really need is to recover (𝐴𝐵, 𝐶𝐷, 𝐴𝐵, 𝐶𝐷) exactly. This can be done via a normalisation
procedure. In other words, computing the isogenous theta constant can be done from the
coordinates on some points of 4-torsion and a suitable normalisation procedure. This is not
specific to the case ℓ = 2, as mentioned above the general case of ℓ prime to 𝑛 is [LR12;
CR15; LR15b; LR22a] and the relatively straightforward adaptation (assuming that we are
given compatible points of 4-torsion) to all cases is in [Rob10, Proposition 6.3.5; Rob21,
Remarks 2.10.3, 2.10.7 and 2.10.14], and a more detailed algorithm for ℓ = 𝑛 = 2 given in
[DLRW23, Appendix C.2].

The normalisation procedure exploit the (algebraic) Riemann relations, as constructed by
Mumford in [Mum66] (see also [Rob10, Théorème 4.4.6]). These Riemann relations follow
from the duplication formula, whose algebraic version was proved by Mumford in [Mum66]
(see also [Rob10, Théorème 4.4.3]). The duplication formula is particularly well suited for
the algorithmic of 2-isogenies, and in these notes we will exploit it as much as possible in
order to speed up the generic algorithm working for any ℓ.

We describe two optimisations compared to [DLRW23, Appendix C.2].

(1) To compute the correct square roots, the equations in [DLRW23, § C.2] (derived
from the duplication formula, see [Rob10, § 4.3]) require 2𝑔 4-torsion points in
𝐾[4] (suitably normalised from our 8-torsion points), including the theta null point.
This means that when we decompose 𝜙, we need to push along 2𝑔-points at each
step (or more precisely compute the isogenous theta null point and then push 2𝑔 − 1
points). In this note we give a new algorithm that only require the 𝑔 generators of
𝐾[4] along with the theta null point. So once we have computed the isogenous theta
null point, we only require to push 𝑔 points for the next step. The total gain is almost
(2𝑔 − 1)/𝑔: while there is no difference for 𝑔 = 1, for 𝑔 = 2 we go from needing to
keep track of 3 (non null) points to only 2, and for 𝑔 = 4 from 15 points to only 4.

(2) Still to compute the correct square roots, a normalisation procedure is applied
in [DLRW23, § C.2] (described in more details in [Rob10, § 6.3, § 7.4]) to some
points of 8-torsion in 𝐾[8]. This normalisation procedure amount to choosing some
“correct” choice of affine lift; and it is repeated for each 2-isogeny 𝜙𝑖: for 𝜙2 we
will normalise points of 8-torsion in 𝜙1(𝐾)[8] and so on. Instead, we propose to

6 DAMIEN ROBERT

normalize once and for all the 𝑔 generators 𝑇𝑖 of 𝐾. Essentially this amount, once
an affine lift of the theta null point of 𝐴 is chosen, to choose consistent lifts of the 𝑇𝑖
with respect to this lift. This means that from now on, all our algorithm have to work
on affine lifts. Luckily all our algorithms are derived from the Riemann relations and
duplication formula which naturally preserve this compatibility, so the compatibility
is already “baked-in”. Note that if compatible lifts 0̃𝐴, 𝑇𝑖 are chosen, then the lifts
𝜆 ⋆ 0̃𝐴, ⋆𝑇𝑖 are still compatible as long as 𝜆 does not depend on 𝑖. This allows for
some optimisation: for instance it is harmless to choose a different normalisation
of the theta null point of 𝐴1, as long as this different normalisation is taken into
account when pushing points.

The main advantage of normalising generators of 𝐾 at the start is that when 𝐴 is a
product of elliptic curves, the normalisation procedure can be done in dimension 1.

Points on an abelian variety in the theta model are represented by projective points, but
as explained above, at various points in the isogeny computations we need to work with
affine lifts. All our algorithms will be on affine lifts by default; the projective version follows
trivially.

3. The two torsion on a level 2 theta structure

Let (𝐴, ℒ, Θ𝐴) be a principally polarised abelian variety with a symmetric theta structure
of level 2. Let 0𝐴 = (𝑎𝑖)𝑖∈𝑍(2) be the theta null point.

The translation map by points of two torsion is defined as follows: the two torsion is
isomorphic to 𝑍(2)× �̂�(2), with 𝑍(2) = ℤ𝑔/2ℤ𝑔, and �̂�(2) its dual. If 𝑃 = (𝑥𝑖) is an affine
lift of a point on 𝐴, and 𝑇 the two torsion point corresponding to (𝑗, 𝜒), 𝑃 + 𝑇 = (𝜒(𝑖)𝑥𝑖+𝑗).

Applying this to the theta null point, we recover the theta coordinates of the points of
2-torsion. Fixing the canonical basis (𝑒1, … , 𝑒𝑔) of 𝑍(2), and letting 𝑓𝑖 be the dual character
of 𝑒𝑖, via our identification above the basis (𝑒𝑖, 𝑓𝑖) is the canonical symplectic basis of the
2-torsion induced by theta theta structure.

Example 3.1. When 𝑔 = 1, the theta null point is given by (𝑎, 𝑏) = (𝑎0, 𝑎1). We have
𝑒1 = (𝑏, 𝑎), 𝑓1 = (−𝑎, 𝑏). Dimension 1 is special in that we also have an explicit description
of points of 4-torsion: 𝑒′

1 = (1 ∶ 1) is the canonical point of 4-torsion above 𝑒1 (the other
one is 𝑒′

1 + 𝑓1 = (−1 ∶ 1)), and 𝑓 ′
1 = (1 ∶ 0) the canonical point of 4-torsion above 𝑓1 (the

other one is 𝑓 ′
1 + 𝑒1 = (0 ∶ 1)).

Example 3.2. When 𝑔 = 2, the theta null point is given by (𝑎00, 𝑎01, 𝑎10, 𝑎11). We have 𝑒1 =
(𝑎01, 𝑎00, 𝑎11, 𝑎10), 𝑒2 = (𝑎10, 𝑎00, 𝑎11, 𝑎01) and 𝑒1+𝑒2 = (𝑎11, 𝑎10, 𝑎01, 𝑎00). We have 𝑓1 =
(𝑎00, −𝑎01, 𝑎10, −𝑎11), 𝑓2 = (𝑎00, 𝑎01, −𝑎10, −𝑎11) and 𝑓1 + 𝑓2 = (𝑎00, −𝑎01, −𝑎10, 𝑎11).

4. The Hadamard transform

Let 𝐻 be the Hadamard matrix, given by 𝐻𝑖,𝜒 = 𝜒(𝑖). The action of 𝐻 corresponds to the

action of the modular matrix 𝒮 = (0 1
−1 0); in particular this transpose the 𝑒𝑖 with the 𝑓𝑖.

Starting with the theta coordinate 𝜃𝑖, the coordinates 𝜃′
𝜒 resulting from the action of 𝐻

are called the dual theta coordinates.

Example 4.1. When 𝑔 = 1, 𝐻(𝑥, 𝑧) = (𝑥 + 𝑧, 𝑥 − 𝑧).

One needs to be careful that 𝐻 ∘𝐻 = 2𝑔 Id. This is not a problem in projective coordinate,
but in affine coordinate we need to use 𝐻−1 = 𝐻/2𝑔.

A note on optimising 2𝑛-isogenies in higher dimension 7

5. The duplication formula

Let 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩ and 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾 the quotient. There are several ways to
descend ℒ2 to a principal polarisation ℳ on 𝐵, but they all give the same totally symmetric
line bundle ℳ2 which is also the descent of ℒ4 by the unique symmetric lift of 𝐾 in the theta
group 𝐺(ℒ4) which extends to a totally isotropic subgroup. Fix a compatible symmetric
theta structure of level 2 on 𝐵.

Define the operation ⋆ by (𝑥𝑖)⋆(𝑦𝑖) = (𝑥𝑖𝑦𝑖). As a special case of the duplication formula,
we have:

𝜃𝐴(𝑃 + 𝑄) ⋆ 𝜃𝐴(𝑃 − 𝑄) = 𝐻(𝜃′,𝐵(𝑓 (𝑃)) ⋆ 𝜃′,𝐵(𝑓 (𝑄)))(1)

𝐻(𝜃𝐴(̃𝑓 (𝑅)) ⋆ 𝜃𝐴(̃𝑓 (𝑆))) = 𝜃′,𝐵(𝑅 + 𝑆) ⋆ 𝜃′,𝐵(𝑅 − 𝑆)(2)

This is the key for all our formula. First, using 𝑄 = 0, we can compute the image of a
point by 𝑓 via the operations

(3) 𝑃 = (𝜃𝑖(𝑃)) 𝑆−→ (𝜃2
𝑖 (𝑃)) 𝐻−−→ (𝜃

′,𝐵
𝜒 (𝑓 (𝑃))𝜃

′,𝐵
𝜒 (0))

𝐶1−−→ 𝜃
′
𝐵
𝜒(𝑓 (𝑃)) 𝐻−−→ 𝜃𝐵

𝑖 (𝑓 (𝑃))

(Note: here and in what follows, we are probably off by some factor 2𝑔 here; as long as this
factor is uniform across all points this is ok. Also here 𝑆 is the squaring map, not the modular
matrix 𝒮 from before).

Here the constants 𝐶1 are given by (1/𝜃
′,𝐵
𝜒 (0)), the inverse of the dual theta coordinates

of the theta null point on 𝐵. It is easy to compute their squares: 𝜃
′,𝐵
𝜒 (0)2 = 𝐻(𝜃𝐴

𝑖 (0)2).
The remainder of this paper is devoted to compute the correct square roots of these squares.

Note that compared to [DLRW23, Appendix C.2] we consider the isogeny with kernel ⟨𝑓𝑖⟩
instead of the one with kernel ⟨𝑒𝑖⟩. (We made a different choice in [DLRW23, Appendix C.2]
because we used the analytic formalism, where the above choice was slightly more natural.
In the algebraic formalism, it is slightly more natural to use our choice here. This does not
matter much, because via 𝐻 we can go from the coordinates to the dual coordinates. That’s
why our formula differ from [DLRW23, Appendix C.2] by the conjugation by 𝐻.)

6. Differential additions

We can also compute differential additions on 𝐴 this way. First we compute 𝑓 (𝑃) and
𝑓 (𝑄) using the differential addition formula as above, ie using them on the couple (𝑃, 0) and
(𝑄, 0). Then we use them again (in the other direction) to recover 𝜃𝐴

𝑖 (𝑃 + 𝑄)𝜃𝐴
𝑖 (𝑃 − 𝑄)

from (𝑓 (𝑃), 𝑓 (𝑄)).
We actually don’t need the 𝜃

′,𝐵
𝜒 (0), only their square, the trick is to start with 𝑃 and only

do the map 𝐻 ∘𝑆 to get (𝜃
′,𝐵
𝜒 (𝑓 (𝑃))𝜃

′,𝐵
𝜒 (0)), same with 𝑄. Then we apply the ⋆ operation on

these coordinates to get (𝜃
′,𝐵
𝜒 (𝑓 (𝑃))(𝜃

′,𝐵
𝜒 (𝑓 (𝑄))𝜃

′,𝐵
𝜒 (0)2), and now we can use 𝐶2

1 to clear
the extra factor (𝜃

′,𝐵
𝜒 (0)2). Using 𝑄 = 𝑃 we get the doubling map.

From the doubling and differential addition map, we can use the Montgomery ladder to
compute the scalar multiplication on affine coordinates.

Example 6.1. When 𝑔 = 1, 𝑃 = (𝑥 ∶ 𝑧), we compute 𝑓 (𝑃) = (𝑟 ∶ 𝑠) by doing (𝑥 ∶ 𝑧) 𝑆−→
(𝑥2 ∶ 𝑧2) 𝐻−−→ (𝑥2 + 𝑧2 ∶ 𝑥2 − 𝑧2) 𝐶−−→ ((𝑥2 + 𝑧2)/𝐴 ∶ (𝑥2 − 𝑧2)/𝐵). We can compute
𝑓 (𝑄) = (𝑢 ∶ 𝑣) in a similar way. Then 𝐻((𝑃 + 𝑄) ⋆ (𝑃 − 𝑄)) = 𝐻(𝑓 (𝑃)) ⋆ 𝐻(𝑓 (𝑄)),
so we compute ((𝑟 + 𝑠)(𝑢 + 𝑣) ∶ (𝑟 − 𝑠)(𝑢 − 𝑣)) (at this step we only need (𝐴2 ∶ 𝐵2)
which can be computed via (𝐴2 ∶ 𝐵2) = (𝑎2 + 𝑏2 ∶ 𝑎2 − 𝑏2)) and apply 𝐻 to it to recover
(𝑥(𝑃 + 𝑄)𝑥(𝑃 − 𝑄) ∶ 𝑧(𝑃 + 𝑄)𝑧(𝑃 − 𝑄)).

8 DAMIEN ROBERT

We also recover exactly Gaudry’s addition formula for 𝑔 = 2.

The doubling and differential addition algorithm assume that we are in the generic case
and that none of the coordinates are zero. The general case is treated in [LR16], another
solution is to apply any linear change of variable coming from the symplectic modular action
(e.g., the action of 𝐻), we refer to Appendix B for the algebraic description of this action.

7. Normalising points

In [DLRW23, Appendix C] we explain how to use points of 4-torsion to compute the
correct choice of 𝜃

′,𝐵
𝜒 (0). A key step is a normalisation procedure, and we actually need the

points of 8-torsion to correctly normalize our points of 4-torsion (see also [Rob10; Rob21;
LR22a]).

Lemma 7.1. Let �̃� be an affine point. Then 𝑚(𝜆 ⋆ �̃�) = 𝜆𝑚2 ⋆ (𝑚�̃�).

Let 𝑇 be a 2-torsion point in our kernel 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩. Let 𝑇" be a point of 4𝑚-torsion
above 𝑇, ie 𝑇 = 𝑚𝑇". Write 2𝑚 = 2𝑚1 + 2. We have (𝑚1 + 2)𝑇" = −(𝑚1𝑇") + 𝑇.

Definition 7.2. Fix an affine lift 𝑇" of 𝑇". We say that 𝑇" is normalised if (𝑚1 + 2)𝑇" =
−(𝑚1𝑇") + 𝑇, where the action of translation by 𝑇 is the affine one described in Section 3.

Lemma 7.3. Fix an arbitrary affine lift 𝑇". By computing (𝑚1 + 2)𝑇" and (𝑚1)𝑇", we can
find an equation 𝜆4𝑚 = 𝐶 such that for any solution 𝜆, 𝜆 ⋆ 𝑇" is normalised.

Proof. Follows from Lemma 7.1. �

Example 7.4. Assume 𝑇" is a point of 2𝑛-torsion above 𝑇. Applying the normalisation
procedure of Lemma 7.3 to an arbitrary lift 𝑇", we get that 𝜆 ⋆ 𝑇" is normalised for 𝜆
satisfying some equation 𝜆2𝑛 = 𝐶. Then 2𝑛−2(𝜆 ⋆ 𝑇") = 𝜆22𝑛−4 ⋆ (2𝑛−2𝑇") by Lemma 7.1.

It follows that if 𝑛 ≥ 4, the point 𝑇" uniquely determines an affine lift 𝑇′ of the point of
4-torsion 𝑇′ = 2𝑛−2𝑇" above 𝑇. If 𝑛 = 3, 𝑇′ is uniquely determined up to a sign. Since the
isogeny formula starts by the square operator 𝑆, this sign won’t matter, so 𝑛 = 3 is enough to
normalize our points of 4-torsion.

Example 7.5. Let us start with 𝑇′ = (1 ∶ 0), the canonical point of 4-torsion above
𝑇 = (𝑎 ∶ −𝑏) in dimension 1. We take the lift 𝑇′ = (1, 0). We compute 2𝑇′ = (𝑎

𝐴2𝐵2 , −𝑏
𝐴2𝐵2).

The correct normalisation is thus 𝜆 ⋆ 𝑇′ = (𝜆, 0) with 𝜆4 = 𝐴2𝐵2.

8. The choice of the theta constant for a 2-isogeny

When we apply Equation (3) to compute the image of a point by our isogeny, we have
fixed the kernel of our 2-isogeny 𝑓 to be 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩.

If we start with another kernel, we need to apply an automorphism of the theta structure
so that 𝐾 corresponds to the ⟨𝑓1, … , 𝑓𝑔⟩ of the new theta null point; for instance if 𝐾 =
⟨𝑒1, … , 𝑒𝑔⟩ the automorphism is the one given by the Hadamard transform.

A general procedure is as follow. First recall that the theta null point is induced by a sym-
plectic basis of the 4-torsion. Fix such a basis (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) inducing our theta null

point. Let (𝑇1, … , 𝑇𝑔) be a basis of 𝐾, choose any isotropic basis (𝑇′
1, … , 𝑇′

𝑔) of 4-torsion
point above the 𝑇𝑖, and complete the 𝑇′

𝑖 via a symplectic basis (𝑆′
1, … , 𝑆′

𝑔, 𝑇′
1, … , 𝑇′

𝑔). Com-
pute the symplectic base change ofmatrix from (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) to (𝑆′

1, … , 𝑆′
𝑔, 𝑇′

1, … , 𝑇′
𝑔),

one can use the Weil pairing (an algorithm in theta coordinate is given in [LR10; LR15a;
Rob21]) to compute this matrix 𝑀. Then apply the theta transformation formula for 𝑀.

A note on optimising 2𝑛-isogenies in higher dimension 9

It remains to explain how to fix (𝑒′
1, … , 𝑓 ′

𝑔). As explained in the introduction, the general
case will be treated in an upcoming article with David Lubicz. For our applications, we will
use that 𝐴 is a product of elliptic curve, so we only need to deal with 𝑔 = 1 and use the fact
that the product theta structure behaves as expected with respect to the symplectic basis:

Lemma 8.1. If 0𝐴 is induced by a basis (𝑒′
1, … , 𝑒′

𝑔1
, 𝑓 ′

1, … , 𝑓 ′
𝑔1

) on 𝐴 and 0𝐵 is induced by a
basis (𝑚′

1, … , 𝑚′
𝑔2

, 𝑛′
1, … , 𝑛′

𝑔2
) on 𝐵, then the theta null point (𝜃𝐴

𝑖 (0)𝜃𝐵
𝑗 (0)) of the product

theta structure is induced by the symplectic basis ((𝑒′
𝑖, 0), … (0, 𝑚′

𝑗), … (𝑓 ′
𝑖 , 0), … (0, 𝑛′

𝑗)) on
𝐴 × 𝐵.

We are thus reduced to give a compatible symplectic basis of the four torsion in dimen-
sion 1. This case is easy because on the theta model of level 2 we always have the full 4-torsion
(on the Kummer) when 𝑔 = 1 (this is specific to the dimension 1 case).

Lemma 8.2. On a theta model in dimension 1, a symplectic basis of 𝐸[4] is given by 𝑇′
1 =

(1 ∶ 1), 𝑇′
2 = (1 ∶ 0).

Proof. Let (𝑎 ∶ 𝑏) be the theta null point. Above 𝑇1 = (𝑏 ∶ 𝑎) we have two points of 4-torsion
(on the Kummer): (1 ∶ 1) and (−1 ∶ 1). Only one of the two is compatible with the theta
structure. To determine which we use an idea due to David Lubicz: from a compatible four
torsion point 𝑇′ = (𝑢 ∶ 𝑣) we can compute a level 4 isogenous theta null point (𝑎, 𝜆𝑢, 𝑏, 𝜆𝑣),
for λ an appropriate normalisation factor (see [Rob10; Rob21]). This level 4 theta null point
has to be symmetric, which implies 𝜆𝑢 = 𝜆𝑣. So we have 𝑇′

1 = (1 ∶ 1).
Above 𝑇2 = (−𝑎 ∶ 𝑏) we have two points of 4-torsion: (1 ∶ 0) and (0 ∶ 1). The Hadamard

transform of the first one is (1 ∶ 1) while for the second one we get (1 ∶ −1), so the correct
compatible point is 𝑇′

2 = (1 ∶ 0). �

We can use the lemma above to convert a basis of 4-torsion (𝑇′
1, 𝑇′

2) in a Montgomery
model to a theta null point induced by this basis.

Lemma 8.3. Let 𝐸 be a Montgomery curve. Let 𝑇′
1 = (1 ∶ 1) be the canonical point of

4-torsion on the Kummer line in the Montgomery model. Let 𝑇′
2 = (𝑟 ∶ 𝑠) be another point

of 4-torsion (with 2𝑇′
2 ≠ 2𝑇′

1). Then the theta null point associated to the basis (𝑇′
1, 𝑇′

2) is
(𝑎 ∶ 𝑏) = 𝐻(𝑇′

2) = (𝑟 + 𝑠, 𝑟 − 𝑠).
Proof. This follows by looking at the ramification of the Kummer map 𝐸 → 𝐸/ ± 1 on our
different models, see [BRS23]. �

We can use the above lemma on an arbitrary curve 𝐸 with two explicit points 𝑇′
1, 𝑇′

2 of
4-torsion (with 2𝑇′

1 ≠ 2𝑇′
2) by first converting 𝐸 toMontgomery formwith 𝑇′

1 sent to (1 ∶ 1)
and 𝑇1 to (0 ∶ 1). This map is given by the homography 𝑥 ↦ (𝑥 − 𝑥0)/𝛽 with 𝑥0 = 𝑥(2𝑇′

1)
and 𝛽 = 𝑥(𝑇′

1) − 𝑥0. See Appendix A for more details on converting to theta coordinates.

Example 8.4 (Dimension 2). If we have two elliptic curves 𝐸1, 𝐸2 given by the theta constants
(𝑎1 ∶ 𝑏1), (𝑎2 ∶ 𝑏2), then the theta constant on 𝐸1 × 𝐸2 is (𝑎1𝑎2 ∶ 𝑎1𝑏2 ∶ 𝑎2𝑏1 ∶ 𝑏1𝑏2). And
if 𝑃1 = (𝑥1 ∶ 𝑧1) ∈ 𝐸1, 𝑃2 = (𝑥2 ∶ 𝑧2) ∈ 𝐸2, (𝑃1, 𝑃2) = (𝑥1𝑥2 ∶ 𝑥1𝑧2 ∶ 𝑥2𝑧1 ∶ 𝑧1𝑧2) ∈
𝐸1 × 𝐸2.

Remark 8.5. We briefly explain how the general case would work.
Let 𝑇′

𝑖 be a point of 4-torsion above 𝑇𝑖 ∈ 𝐾2. Then we have 𝑇′
𝑖 + 𝑇𝑖 = −𝑇′

𝑖 , hence in
level 2, since we are on the Kummer, (𝜃𝑗(𝑇′

𝑖 + 𝑇𝑖)) = (𝜃𝑗(𝑇′
𝑖)) in projective coordinates.

From the action of 𝑇𝑖 described in Section 3, we get that either 𝜃𝑗(𝑇′
𝑖) = 0 for all 𝑗 such that

𝜒𝑖(𝑗) = 1 or 𝜃𝑗(𝑇′
𝑖) = 0 for all 𝑗 such that 𝜒𝑖(𝑗) = 0. The compatibility conditions holds if

we are in the first case for all 𝑖 (this follows by a counting argument).

10 DAMIEN ROBERT

For instance, when 𝑔 = 2, we should have 𝑇′
1 = (𝑥 ∶ 0 ∶ 𝑧 ∶ 0) and 𝑇′

2 = (𝑢 ∶ 𝑣 ∶ 0 ∶ 0).
If 𝑇′

1 = (0 ∶ 𝑥 ∶ 0 ∶ 𝑧) or 𝑇′
2 = (0 ∶ 0 ∶ 𝑢 ∶ 𝑣) then these points are not compatible. This

criteria can be used to check if our symplectic base change was correct.
Another difficulty in the general case, is that the 4-torsion is not immediately accessible

(unlike the case for a product of elliptic curve). Sowewould first need to compute a symplectic
basis (𝑒′

𝑖, 𝑓 ′
𝑖) of the 4-torsion above the one (𝑒𝑖, 𝑓𝑖) of the 2 torsion compatible with our

current theta null point to apply the above strategy. In dimension 2 a method is described in
Section 16.6, but this involves square roots.

We suggest the following alternative strategy: work only with the 2-torsion, and compute
the symplectic base change matrix 𝑀 ∈ Sp2𝑔(ℤ/2ℤ). It is easy to express our 2-torsion
points 𝑇𝑖 in terms of the 𝑒𝑖, 𝑓𝑖: essentially the Weil pairing is trivial to compute in level 2
(namely check the translation which match the coordinates up to a sign, and then look at
the signs). Lift 𝑀 to an arbitrary matrix 𝑀 ∈ Sp2𝑔(ℤ/4ℤ). While the points 𝑀.𝑇𝑖 will be
correct by construction, the points 𝑀.𝑇′

𝑖 probably won’t be correct: the zeros will not be in
the right position. But we can correct this via the action of Γ(2, 4)/ Sp2𝑔(ℤ/2ℤ), essentially
this acts like the translation of the 2-torsion so the correction is easy.

9. The choice of theta constants for a 2𝑛-isogeny

Let 𝐾 be an isotropic 2𝑛-kernel of rank 𝑔 on 𝐴. We want to first compute the quotient
𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾[2], and then compute 𝑓 (𝐾) in 𝐵, and recurse our formula.

First, our kernel 𝐾[2] has to be compatible with our chosen theta null point on 𝐴, as
explained in Section 8. Then as explained in Section 5, it is easy to recover the squares of the
dual theta coordinates of 𝐵.

While we can prove that any choice of square roots of these coordinates correspond to an
honest (dual) theta null point on 𝐵 when 𝑔 ≤ 2, this is no longer the case in higher dimension,
once we have fixed some square roots the other ones have to satisfy some compatibility
condition.

Most importantly, our choice of theta constant on 𝐵 determines the next 2-isogeny. But
we want to compute the isogeny with kernel 𝐾, so our next isogeny has to be 𝑓 (𝐾[4])! So we
do not want arbitrary (compatible) square roots anyway, but the ones which correspond to
𝑓 (𝐾[4]).

There is one remaining subtlety. Our theta constant on 𝐴 determines a bit more than the
symplectic basis of 2-torsion (hence the kernel of the first 2-isogeny). It is enough to fix a
symplectic basis of the 4-torsion (and several such basis will determine the same theta null
point). This means that we also require some compatibility between our kernel 𝐾 and our
theta null point on 𝐴: let (𝑓 ′

1, … , 𝑓 ′
𝑔) be a basis of 𝐾[4] with 𝑓𝑖 = 2𝑓 ′

𝑖 . Our first compatibility
condition was that 𝑓𝑖 is the canonical point of 2-torsion induced by our theta structure as
described in Section 3, ie 𝐾[2] and our theta null point are compatible. We require further-
more that our theta null point is induced by some symplectic basis (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔), in

which case we say that 𝐾[4] and our theta null point are compatible.
But now for our choice of sign for the theta null point of 𝐵, we want this theta null point to

be compatible with 𝑓 (𝐾)[4]. Since 𝑓 (𝐾)[4] = 𝑓 (𝐾[8]), we will also need to use the points
of 8-torsion in the kernel to fix our sign choice.

Given 𝐾[8], it is possible to use these points of 8-torsion to normalize the points of
4-torsion up to factors 𝜆2 = 𝐶 as explained in Section 7. Since the choice of signs for the
dual theta null point of 𝐵 depends only on the square of the theta coordinates of these points

A note on optimising 2𝑛-isogenies in higher dimension 11

of 4-torsion (see [DLRW23, Equation (6) and (8)] or the duplication formula in [Rob10,
Théorème 4.4.3]) this is enough to completely determine the theta null point of 𝐵.

A problem remains at the last 2 steps of the isogeny chain, when we only have access to
4-torsion points (resp. 2-torsion points) in 𝐾. It is possible to show that when the 2-torsion
on 𝐵 is not fixed by 𝐾[4], there are 𝑔(𝑔 + 1)/2 possible choice of signs for the dual theta
null point of 𝐵. This follows by looking at the possible automorphisms of the theta structure
as in [Rob10, § 6.3]. If we have 𝐾[4] but not 𝐾[8], we only have 𝑔 possible choice of signs:
the isotropic part 𝑓 (𝐾[4]) of the 2-torsion on 𝐵 is fixed but we can change the symmetric
lifts above them. These sign can be determined as follow: take 𝑇′

1, … , 𝑇′
𝑔 a basis of 𝐾[4]

and normalize these points, we obtain equations 𝜆4
𝑖 = 𝐶𝑖. The points 𝑇′

𝑖 + 𝑇′
𝑗 can then be

normalised up to some equation 𝜆2
𝑖𝑗 = 𝐶𝑖𝑗, and from these all other points can be computed

from extended Riemann relations, notably the three way additions. Since the theta null
point on 𝐵 only depend on the squares of the theta coordinates of the normalised points of
4-torsion, we obtain our 𝑔-choice of sign corresponding to the choices of 𝜆2

𝑖 = ±√𝐶𝑖.
There are many reason to want more control on these last two steps. Typically for crypto-

graphic applications, the codomain 𝐵 of 𝜙 is also a product of elliptic curves, and we want
to map back to these curves. This is easy to do if the theta null point 𝜃𝑖(0𝐵) comes from a
product theta structure, but there is no reason for this to be the case. One would then need to
take an automorphism of the theta structure which brings it to a product theta structure. Also
it is often the case that the isogeny 𝜙 ∶ 𝐴 → 𝐵 is split as an isogeny 𝜙1 ∶ 𝐴 → 𝐶 and a dual
isogeny 𝜙2 ∶ 𝐵 → 𝐶. One then need to glue together the theta null point computed on 𝐶 from
𝜙1 and 𝜙2, they have no reason to be induced by the same theta structure, hence be the same.
Again they will differ by some automorphism of the theta structure. As carefully explained in
[DLRW23, § C.1], by keeping track of a bit more torsion it is possible to compute in advance
the correct automorphism of the theta structure that we need in these computation. This
means that our algorithm will start with 𝐾′ an isotropic kernel of rank 𝑔 of 𝐴[2𝑛+2], and we
compute the quotient 𝐵 = 𝐴/𝐾 where 𝐾 = 𝐾′[2𝑛] and the theta null point on 𝐵 is the one
induced by the theta null point on 𝐴 along with our choice of 𝐾′ (half the information given
by the theta null point on 𝐴 is killed by our isogeny 𝜙, and 𝐾′ allows precisely to uniquely
recover this missing information).

10. Normalising the points for a 2𝑛-isogeny

From now on we suppose that we have 𝐾′ a maximal isotropic subgroup of rank 𝑔 of
𝐴[2𝑛+2], 𝑇′

1, … , 𝑇′
𝑔 generators of 𝐾′, and we want to compute the isogeny 𝐾 = 𝐾′[2𝑛] with

generators 𝑇𝑖 = 4𝑇′
𝑖 . As explained in the introduction, we will normalise once and for all

the 𝑇′
𝑖 . The computations in Section 7 show that it is enough to completely normalise the

points of 4-torsion in each 𝐾𝑖 (up to a sign at the very last step when computing 𝜙𝑛, but as
always this sign does not matter because we only need the squares of these coordinates). So
each 𝑇𝑖 will give an equation 𝜆2𝑛+2

𝑖 = 𝐶𝑖, and we keep track of these normalisation factors
at each step of our algorithm. Once again, from Section 7 we know that we will only need
the values of the 𝐶𝑖 and we never need to know the 𝜆𝑖.

This global normalisation of 𝐾′ is particularly useful when 𝐴 is a product of 𝑔 elliptic
curves. Indeed, the normalisation procedure essentially boils down to a scalar multipli-
cation (computed via a Montgomery ladder), and it is slightly faster to compute 𝑔 such
multiplications in dimension 1 than one in dimension 𝑔 via the product theta structure.
Furthermore, most cryptographic applications come from Kani’s lemma, so that 𝐴 is of the

12 DAMIEN ROBERT

form 𝐸𝑔/2
1 × 𝐸𝑔/2

2 . So we really only need to normalise 4 points in dimension 1 (a basis of
𝐸𝑖[2𝑛+2]) rather than 𝑔2, and then keep track of our normalisations across each copy of 𝐸𝑖.

11. Computing the isogenous theta null point

Let 𝐾 be our kernel, assume that it is compatible with the theta null point on 𝐴, and
that we have computed normalisation 𝑃𝑖 of a basis (𝑃1, … , 𝑃𝑔) of 𝐴[4] (either from 𝐾[8]
or via a global normalisation). Let 𝐵 = 𝐴/𝐾[2]. We can use these normalised points to
compute the correct choice of square roots for 𝜃′𝐵

𝜒(0). Let us first recall the formula from
[DLRW23, § C.2] (which as already mentioned result from the duplication formula [Rob10,
Théorème 4.4.3]), remembering that we need to conjugate them by 𝐻 in our situation because
here we consider the “dual” kernel on 𝐴.

In the original algorithm, we actually need 𝑃𝑡 for any 𝑡 ∈ 𝑍(2), where 𝑃𝑡 = ∑𝑔
𝑖=1 𝑡𝑖𝑃𝑖.

First use 𝐻 to convert 𝜃𝑖(𝑃𝑡) to 𝜃′
𝜒(𝑃𝑡), we then have:

𝜃′𝐵
𝜒𝑡

= ∑
𝜒

𝜃′
𝜒(𝑃𝑡)2

where 𝜒𝑡 is the character dual to 𝑡.

Example 11.1. When 𝑔 = 1, we have 𝑇0 = (𝑎, 𝑏) a lift of the theta null point (𝑎 ∶ 𝑏).
We have 𝜃′𝐵(0) = (𝐴, 𝐵), with 𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2 by Section 5. We have
𝑇1 = (1 ∶ 0) (this is the only compatible point of 4-torsion above (−𝑎 ∶ 𝑏), the other one
is (0 ∶ 1) and is not compatible as we will see shortly), and 𝑇1 = (𝜆, 0) with 𝜆4 = 𝐴2𝐵2.
So 𝜃′(𝑇0) = (𝑎 + 𝑏, 𝑎 − 𝑏), 𝜃′(𝑇1) = (𝜆, 𝜆), and our formula above shows that 𝜃′𝐵

0 (0) =
(𝑎 + 𝑏)2 + (𝑎 − 𝑏)2 = 2𝑎2 + 2𝑏2 = 2𝐴2, and 𝜃′𝐵

1 (0) = 𝜆2 + 𝜆2 = 2𝜆2 = 2𝐴𝐵. The point
(2𝐴2 ∶ 2𝐴𝐵) = (𝐴 ∶ 𝐵), and we choose for affine lift on the dual theta null point of 𝐵 the
point (1, 𝐵/𝐴).

Given a point 𝑃 = (𝑥 ∶ 𝑧), as explained in Section 5 its image by the isogeny in theta
coordinates on 𝐵 is given by (𝑥 ∶ 𝑧) 𝑆−→ (𝑥2 ∶ 𝑧2) 𝐻−−→ (𝑥′ = 𝑥2 + 𝑧2 ∶ 𝑧′ = 𝑥2 − 𝑧2) 𝐶−−→
(𝑥" = 𝑥′/𝐴, 𝑧" = 𝑧′/𝐵) 𝐻−−→ (𝑥" + 𝑧", 𝑥" − 𝑧").

When working with projective coordinate, we only need the projective point 𝐶 = (1/𝐴 ∶
1/𝐵). However when working with affine coordinates, since we want to send (𝑎, 𝑏) to our
choice of (1, 𝐵/𝐴), we need to take 𝐶 = (1/𝐴2, 1/𝐴𝐵). Let (𝑎2 ∶ 𝑏2) be the theta null point
on 𝐵.

We remark that 𝑇1 is sent to (−𝑎2 ∶ 𝑏2), the kernel of the next isogeny, while (0 ∶ 1) is
sent to (−𝑏2 ∶ 𝑎2), which is not the kernel of the next isogeny.

We now describe our optimisation. Let 𝑖 ∈ 𝑍(2), and 𝑇𝑖 be the corresponding normalised
point of 4-torsion. Its image by our isogeny 𝑓 has to be the normalised point of 2-torsion
induced by 𝑖 given in Section 3. Since this image is given by the operator 𝐻 ∘ 𝐶 ∘ 𝐻 ∘ 𝑆 with
𝐶 = 1/𝜃′𝐵

𝑖 (0), this means that if we apply 𝐶 ∘ 𝐻 ∘ 𝑆 to 𝑇𝑖, we obtain the point (𝜃′𝐵
𝜒𝑖+𝜒(0))𝜒,

where 𝜒𝑖 is the character dual to 𝜒. So 𝐻 ∘ 𝑆(𝑇𝑖) = (𝜃′𝐵
𝜒𝑖+𝜒(0)𝜃′𝐵

𝜒(0)).
In particular, applying this to all the 𝑇𝑖, we recover all two by two product (𝜃′𝐵

𝜒(0)𝜃′𝐵
𝜒′(0)),

which gives an alternative way to recover the theta null point of 𝐵. But actually, it is enough
to recover this theta null point by applying 𝐻 ∘ 𝑆 to only a basis 𝑇1, … , 𝑇𝑔 along with the
theta null point 𝑇0. Indeed, an explicit computation shows that we recover all 𝜃′𝐵

𝜒(0)/𝜃′𝐵
0 (0)

for all characters 𝜒 of Hamming weight 1, then 2, and so on.

A note on optimising 2𝑛-isogenies in higher dimension 13

Example 11.2. When 𝑔 = 1, we have 𝑇1 = (𝜆, 0) with 𝜆4 = 𝐴2𝐵2. We apply 𝐻 ∘ 𝑆 to
𝑇0 = (𝑎, 𝑏) to get (𝐴2, 𝐵2), and to 𝑇1 to get (𝜆2, 𝜆2) = (𝐴𝐵, 𝐴𝐵). From this we recover
𝐵/𝐴, hence (𝑎2, 𝑏2).

We remark that applying 𝐻 ∘ 𝑆 to (0, 𝜆) gives (𝐴𝐵, −𝐴𝐵). In fact, for all sign choices of
(𝐴 ∶ 𝐵), while 𝑓 (1 ∶ 0) = (𝑎2 ∶ −𝑏2), the kernel of the next isogeny, we have 𝑓 (0 ∶ 1) =
(𝑏2 ∶ 𝑎2).

The case 𝑔 = 1 is particular in that we have some explicit points of 4-torsion in the theta
model. So in that case, rather than looking at the preimage of our isogeny of the points
of 2-torsion, we could look at the preimage of (1 ∶ 0). So let 𝑇′ = (𝑟 ∶ 𝑠) a point of 8-
torsion, this point fixes the (projective) theta null point of 𝐵. In particular, we should have
𝑓 (𝑇′) = (1 ∶ 0). Doing the computation, we get (𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2) = (𝐴 ∶ 𝐵). So in that
case we can directly recover (𝐴 ∶ 𝐵) from 𝑇′ in projective coordinates, without requiring
any normalisation. The sign choice of (𝐴 ∶ 𝐵) induced from 𝑇′ ensures that 𝑓 (𝑇′) = (1 ∶ 0)
becomes the compatible point of 4-torsion.

Example 11.3. When 𝑔 = 2, let (𝑎00, 𝑎01, 𝑎10, 𝑎11) be our theta null point on𝐴, (𝑎′
00, 𝑎′

01, 𝑎′
10, 𝑎′

11)
our theta null point on 𝐵, and (𝐴00, 𝐴01, 𝐴10, 𝐴11) = 𝐻(𝑎′

00, 𝑎′
01, 𝑎′

10, 𝑎′
11) our dual theta

null point on 𝐵. Recall that 𝐻 is given by 𝐻(𝑥00, 𝑥01, 𝑥10, 𝑥11) = (𝑥00 + 𝑥01 + 𝑥10 +
𝑥11, 𝑥00 + 𝑥01 − 𝑥10 − 𝑥11, 𝑥00 − 𝑥01 + 𝑥10 − 𝑥11, 𝑥00 − 𝑥01 − 𝑥10 + 𝑥11).

Assume that we have normalised our points of 4-torsion 𝑇𝑖. Recall that the isogeny is
given by 𝑓 = 𝐻 ∘ 𝐶 ∘ 𝐻 ∘ 𝑆 with 𝐶 = (1/𝐴𝑖), and let 𝑔 = 𝐻 ∘ 𝑓 = 𝐶 ∘ 𝐻 ∘ 𝑆 the isogeny
given in dual theta coordinates on 𝐵, and ℎ = 𝐻 ∘ 𝑆 the isogeny given in twisted dual
theta coordinates on 𝐵. We have 𝑓 (𝑇0) = 𝑓 (𝑎00, 𝑎01, 𝑎10, 𝑎11) = (𝑎′

00, 𝑎′
01, 𝑎′

10, 𝑎′
11), so

𝑔(𝑇0) = (𝐴00, 𝐴01, 𝐴10, 𝐴11), and ℎ(𝑇0) = (𝐴2
00, 𝐴2

01, 𝐴2
10, 𝐴2

11).
We know that 𝑓 (𝑇1) = (𝑎′

00, −𝑎′
01, 𝑎′

10, −𝑎′
11), so 𝑔(𝑇1) = (𝐴01, 𝐴00, 𝐴11, 𝐴10), and

ℎ(𝑇1) = (𝐴00𝐴01, 𝐴00𝐴01, 𝐴10𝐴11, 𝐴10𝐴11).
We know that 𝑓 (𝑇2) = (𝑎′

00, 𝑎′
01, −𝑎′

10, −𝑎′
11), so 𝑔(𝑇2) = (𝐴10, 𝐴11, 𝐴00, 𝐴01), and

ℎ(𝑇2) = (𝐴00𝐴10, 𝐴01𝐴11, 𝐴00𝐴10, 𝐴01𝐴11).
Finally, we know that 𝑓 (̃𝑇1 + 𝑇2) = (𝑎′

00, −𝑎′
01, −𝑎′

10, 𝑎′
11), so 𝑔(̃𝑇1 + 𝑇2) = (𝐴11, 𝐴10, 𝐴01, 𝐴00),

and ℎ(̃𝑇1 + 𝑇2) = (𝐴00𝐴11, 𝐴01𝐴10, 𝐴01𝐴10, 𝐴00𝐴11).
We see that the four points 𝑇0, 𝑇1, 𝑇2, ̃𝑇1 + 𝑇2 allow to recover all 2 by 2 products 𝐴𝑖𝐴𝑗.

But the first three are already enough: dividing by 𝐴2
00, we recover 𝐴01/𝐴00 from 𝑇1 and

𝐴10/𝐴00 from 𝑇2, which allows us to recover 𝐴11/𝐴00 from either of these two points.

Example 11.4. Assume that 𝑔 = 3, and lets look at the image of the operator ℎ = 𝐻 ∘ 𝑆, i.e,
the isogeny 𝑓 given in twisted dual theta coordinates on 𝐵.

We compute

ℎ(𝑇0) = (𝐴2
000, 𝐴2

001, 𝐴2
010, 𝐴2

011, 𝐴2
100, 𝐴2

101, 𝐴2
110, 𝐴2

111),
ℎ(𝑇1) = (𝐴000𝐴001, 𝐴001𝐴000, 𝐴010𝐴011, 𝐴011𝐴010, 𝐴100𝐴101, 𝐴101𝐴100, 𝐴110𝐴111, 𝐴111𝐴110),
ℎ(𝑇2) = (𝐴000𝐴001, 𝐴001𝐴011, 𝐴010𝐴000, 𝐴011𝐴001, 𝐴100𝐴110, 𝐴101𝐴111, 𝐴110𝐴100, 𝐴111𝐴101),
ℎ(𝑇3) = (𝐴000𝐴100, 𝐴001𝐴100, 𝐴010𝐴110, 𝐴011𝐴111, 𝐴100𝐴000, 𝐴101𝐴001, 𝐴110𝐴010, 𝐴111𝐴011).

Looking at the image of the ∑̃ 𝜀𝑖𝑇𝑖 wewould also get all the 2 by 2 products 𝐴𝑖𝐴𝑗, but these
points are enough. We first recover 𝐴001/𝐴000, 𝐴010/𝐴000, 𝐴100/𝐴000, then 𝐴011/𝐴000,
𝐴101/𝐴000, 𝐴110/𝐴000 and finally 𝐴111/𝐴000.

14 DAMIEN ROBERT

12. The image of a point

We already saw how to compute the image of a point by the 2-isogeny 𝑓 once we have the
dual theta coordinates 𝜃′𝐵

𝜒(0) on 𝐵. Namely the formula is given by the operator 𝐻 ∘𝐶∘𝐻 ∘𝑆
where 𝐶 = 1/𝜃′𝐵

𝜒(0). This assume that these theta constants are non zero however.
In this section we explain how to deal with the annulation of some of these theta constants.

This will typically be the case when the starting variety is a product of elliptic curves and the
first isogeny a gluing isogeny.

Let (𝑇1, … , 𝑇𝑔) be our basis of normalised points in 𝐾[4]. Let 𝑃 be a point on 𝐴, fix an
arbitrary lift �̃�, and assume we have computed coherent lifts ̃𝑃 + 𝑇𝑖 relatively to �̃� and the
𝑇𝑖. Note that if 𝑃 ∈ 𝐾 and we have already normalised all points in 𝐾, we can use these as
normalisations.

The operator ℎ = 𝐻 ∘ 𝑆 gives the image of 𝑃 in terms of the twisted dual theta coordinates
on 𝐵. In particular, if 𝑄 = 𝑓 (�̃�), we have ℎ(�̃�) = (𝜃′𝐵

𝜒(𝑄)𝜃′𝐵
𝜒(0)), and for 𝑖 ∈ 𝑍(2),

ℎ(̃𝑃 + 𝑇𝑖) = (𝜃′𝐵
𝜒+𝜒𝑖

(𝑄)𝜃′𝐵
𝜒(0)). So we can use these points to recover all the coordinates

of ℎ(�̃�).

Example 12.1. When 𝑔 = 2, and 𝜃′𝐵
𝜒(𝑓 (�̃�)) = (𝑥00, 𝑥01, 𝑥10, 𝑥11), we compute ℎ(�̃�) =

(𝐴00𝑥00, 𝐴01𝑥01, 𝐴10𝑥10, 𝐴11𝑥11, ℎ(̃𝑃 + 𝑇1) = (𝐴00𝑥01, 𝐴01𝑥00, 𝐴10𝑥11, 𝐴11𝑥10, ℎ(̃𝑃 + 𝑇2) =
(𝐴00𝑥10, 𝐴01𝑥11, 𝐴10𝑥00, 𝐴11𝑥01, and ℎ(̃𝑃 + 𝑇1 + 𝑇2) = (𝐴00𝑥11, 𝐴01𝑥10, 𝐴10𝑥01, 𝐴11𝑥00.

We see that even if one of the dual isogenous theta null point 𝐴𝑖 is zero, knowing the
(affine) theta coordinates of 𝑃, 𝑃 + 𝑇1, 𝑃 + 𝑇2 still allows to compute ℎ(𝑃).

13. The full algorithm

Let us summarize the steps to compute a 2𝑛-isogeny with kernel 𝐾.
(1) Start with a theta null point of level 2 and 𝐴 induced by some explicit symplectic

basis (𝑒′
1, … , 𝑒′

𝑔, 𝑓 ′
1, … , 𝑓 ′

𝑔) of the 4-torsion. This can be done using Section 8 when
𝐴 is a product of elliptic curves.

(2) Let 𝑣′
1, … , 𝑣′

𝑔 be a basis of 𝐾[4], and complete this basis into a symplectic ba-
sis (𝑢′

1, … , 𝑢′
𝑔, 𝑣′

1, … , 𝑣′
𝑔). Let 𝑀 be the symplectic matrix (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) to

(𝑢′
1, … , 𝑢′

𝑔, 𝑣′
1, … , 𝑣′

𝑔). Apply the theta transformation formula induced by 𝑀 to
get the linear change of variable inducing new theta coordinates compatible with
our kernel 𝐾.

(3) Let 𝑇1, … , 𝑇𝑔 be a basis of 𝐾. For reasons explained in Section 9, it is convenient to
assume that we are given 𝑇"𝑖 an isotropic basis of 𝐴[2𝑛+2] with 𝑇𝑖 = 4𝑇"𝑖. Using
Section 7, normalise each 𝑇"𝑖 to get an affine point 𝑇"𝑖. If 𝐴 is a product of elliptic
curves, it will be easier and faster to normalise before the linear change of variable
from the preceding step, because the normalisation for the product theta structure
can be done in dimension 1.

(4) Compute 2𝑛𝑇"𝑖 using Section 6, and use this normalised basis of 𝐾[4] to compute
the first isogeneous theta null point using Section 11.

(5) Compute the image of the 𝑇"𝑖 using Section 12.
(6) Go back to step Item 4, with 𝑛 decremented by 1.

We will also look at the variant where instead of normalising the points of 2𝑛+2-torsion
𝑇″

𝑖 at the beginning, we will only normalize points of 8-torsion at each step. In this variant
we compute 𝑈𝑖 = 2𝑛−1𝑇″

𝑖 to get 𝑔 points of 8-torsion, which we normalise using Section 7.
We then compute the affine 4-torsion point 2𝑈𝑖 to recover the isogeneous theta null point

A note on optimising 2𝑛-isogenies in higher dimension 15

using Section 11. Then we compute the image of 𝑇″
𝑖 using Section 12 as above, except that

in this case we only need the projective image rather than the affine image since 𝑇″
𝑖 is no

longer normalised).

14. Complexity

Because of the dynamic nature of the algorithm optimising the number of isogeny images
vs doubling, we need to plug parameters to compare algorithm. Still, we can do some naive
complexity estimate to estimate the cost of the full isogeny computations with respect to the
dimension.

14.1. The old algorithm. For the isogeny algorithm of [DLRW23], the naive ratio was given
by 𝜅2𝑔2𝑔: 2𝑔 points to track, each point using 2𝑔 coordinates.

For the more refined estimation, we have the following complexities:
• Doubling a point still costs 2.2𝑔𝑆 + 2.2𝑔𝑀 = 4.2𝑔 operation by points and comput-

ing the image of a point 2𝑔𝑆 + 2𝑔𝑀 = 2.2𝑔 operations (without any inversions).
• Computing an isogenous theta null point costs 2𝑔(7.2𝑔−2)−2 arithmetic operations

(neglecting additions and soustractions). This involves computing the necessary
inverse needed for the doublings and images of points.

The discrepancy with themore precise estimated ratio comes from the fact that computing
the theta null points behave differently from computing the other 2𝑔 − 1 points.

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 8028 44328 850464 228774144
2216 14476 80376 1546608 416370768
2250 17060 94860 1826700 491877900
2305 21350 118950 2292990 617612190
2372 26576 148296 2861016 770779416
2486 35904 200844 3879828 1045623348

𝑔 Naive ratios Estimated ratios

2 ×4 ×5.5
4 ×64 ×110
8 ×16384 ×29000

In these notes, we will try to minimise the number of inversions and divisions, since they
are much more expensive than the other arithmetic operations (squares and multiplications).
Also we will count one division as 1𝐼 + 1𝑀, so we will only track the number of inversions.

To normalize a point of 8-torsion 𝑇″
𝑖 , we compute 2𝑇″

𝑖 , 3𝑇″
𝑖 . The computations of the

theta coordinates of the 𝑇″
𝑖 require some divisions: the duplication formula naturally give

the 𝜃𝑗(3𝑇″
𝑖)𝜃𝑗(𝑇″

𝑖). But we don’t actually need these divisions, 3𝑇″
𝑖 is needed only for the

normalisation constant, so we need just one of his coordinate. And we can compute this
constant as 𝐶 = 𝜃𝑗(3𝑇″

𝑖)𝜃𝑗(𝑇″
𝑖)/𝜃𝑗(5𝑇″

𝑖)𝜃𝑗(𝑇″
𝑖). Recall that 5𝑇″

𝑖 is computed at 𝑇″
𝑖 + 𝑇𝑖

where 𝑇𝑖 = 4𝑇″
𝑖 is a point of 2-torsion (hence the translation is given by the explicit linear

action of Section 3).
So the first doubling for 2𝑇″

𝑖 (taking into account we are going to do a tripling) will cost
2𝑔𝑆 + 3.2𝑔𝑀 (using the fact that we precomputed the inverse of some theta constants). Then
for computing one coordinate of 3𝑇″

𝑖 we need 2𝑔𝑆 + 2𝑔𝑀. As an aside, this will compute

16 DAMIEN ROBERT

the square of the coordinates of the 4-torsion points 2𝑇″
𝑖 , which are needed to compute the

isogenous theta null point.
We then compute 𝐶 by the equation above, this costs 2𝑀 + 1𝐼. Using this constant to

normalize our sum adds 1𝑀.
Since we normalize 2𝑔 − 1 points, the total cost to compute the isogenous theta null point

is (2𝑔 − 1)(2.2𝑔𝑆 + 4.2𝑔𝑀 + 3𝑀 + 1𝐼).
Note that here we don’t take into account the cost of computing the squares of the theta

null point, this was already done for the doubling computations. For the image of points we
need to invert the (dual) coordinates of the isogenous theta null point, this costs 2𝑔𝐼.

We also need to compute 2𝑔𝑆 + 2𝑔𝐼 for the doubling operations on 𝐵, for computing the
inverse of the square of the isogenous theta coordinates (it might seem that we would need
2𝑔𝐼 more to compute the inverse of the theta constants of 𝐵, but we already have the inverse
of the dual coordinates, so we can compute the doubling in dual coordinates, and we just
need the 1/𝜃𝐴

𝑖 (0)2).
So the total cost to compute the theta null point and all inverse needed for images and

doublings is (2𝑔 − 1)(2.2𝑔𝑆 + 4.2𝑔𝑀 + 3𝑀 + 1𝐼) + 2𝑔𝑆 + 2.2𝑔𝐼 = 2𝑔(6.2𝑔 + 1) − 4
arithmetic operations, including 3.2𝑔 − 1 inversions.

With these new estimates, the above tables become:

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 8028 43560 823584 220483584
2216 14476 79080 1501248 402380448
2250 17060 93360 1774200 475685400
2305 21350 117120 2228940 597857340
2372 26576 146064 2782896 746684976
2486 35904 197928 3777768 1014145128

𝑔 Naive ratios Estimated ratios

2 ×4 ×5.5
4 ×64 ×105
8 ×16384 ×28000

We will use these operations count to compare the new algorithm with the old one.

14.2. The new algorithm. To compute a 2𝑛-isogeny in dimension 𝑔, we need to keep track
of the theta null points and of a basis 𝑇"𝑖. Then we only compute image of points, which cost
roughly 2𝑔(𝑆 + 𝑀) by point, doublings, which cost roughly the same as 2 images, and the
isogeneous theta null point, which cost roughly 1 + 𝑔 images, 𝑔 normalisations (which is
roughly one doubling + one differential additino) along with some inverse to speed up the
upcoming computations.

A rough estimate of the complexity to compute the isogenous theta constants is then
around 𝜅(1 + 𝑔)2𝑔, where 𝜅 will not depend too much on the dimension: we have (1 + 𝑔)
points to push and each point is represented by 2𝑔-coordinates. But for 2𝑛-isogenies we
need to keep track of the basis, the optimal strategy uses a dynamic strategy due to [DJP14]
optimising the number of doublings vs images according to their cost. This part of the
algorithm can be estimated as 𝜅2𝑔2𝑔: 𝑔 points for the basis with 2𝑔 coordinates each. In
practice this part is dominating, it is roughly twice as expensive as the theta constant phase

A note on optimising 2𝑛-isogenies in higher dimension 17

(see below for more precise ratios). So we will use this to estimate our complexity ratio as
our dimension increase.

Amore refined estimate relies on using the optimal algorithm to choose between doubling
points and pushing them by the isogeny.

14.3. The new algorithm: normalising 8-torsion points at each steps. Let us first begin
with the case where we normalize at each step like the previous algorithm, rather than once
at the beginning. This allows for a better comparison with the old algorithm, the difference
being that we need to keep track of only 𝑔 points (along with the theta null point), rather
than 2𝑔 − 1.

(1) Doubling a point costs 2.2𝑔𝑆 + (2.2𝑔 − 1)𝑀 = 4.2𝑔 − 1 operation by points and
computing the image of a point 2𝑔𝑆 + (2𝑔 − 1)𝑀 = 2.2𝑔 − 1 operations (without
any inversion). The difference with the complexity of the old algorithm is that in this
case we naturally compute the isogenous theta null point with the first coordinate
normalised to 1.

(2) For each isogeny, we normalize points of 8 torsion (a basis of 𝐾[8]), we already saw
above that this costs 2.2𝑔𝑆 + 4.2𝑔𝑀 + 1𝑀 + 1𝐼 = 6.2𝑔 + 2 by point (we gain 1𝑀
in our doubling because of the normalised theta constant).

We compute 1/𝐴2
0 in 1𝐼, recover the 𝐴𝑖/𝐴0, 𝐴0/𝐴𝑖 for 𝑖 of Hamming weight

one in 1𝑀 + 1𝐼, and then the 𝐴𝑖/𝐴0, 𝐴0/𝐴𝑖 for the other 𝑖 in 2𝑀 + 1𝐼 (write
𝐴𝑖/𝐴0 = 𝐴𝑖𝐴𝑗×𝐴0/𝐴𝑗×1/𝐴2

0). Also each of these constants need to be normalised
by the appropriate projective factor, this costs (2𝑔−1)𝑀.The final cost is 1𝐼+𝑔(1𝑀+
1𝐼) + (2𝑔 − 𝑔 − 1)(2𝑀 + 1𝐼) + (2𝑔 − 1)𝑀 = 4.2𝑔 − 𝑔 − 3.

For our doubling on the isogenous variety, we need to precompute some constants,
for a total of 2𝑔𝑆 + 2𝑔𝐼.

The total cost to compute the isogenous theta null point along with all the inverses
needed for the doublings and images is thus of 𝑔(6.2𝑔 + 2) + 4.2𝑔 − 𝑔 − 3 + 2.2𝑔 =
6(𝑔 + 1)2𝑔 + 𝑔 − 3, including 2.2𝑔 inversions.

We can plug these costs into the dynamic algorithm optimising the number of doublings
vs images for a 2𝑛-isogeny. This gives us the following estimation of the number of arithmetic
operations for computing 2𝑛-isogenies in different dimensions, we can also estimate the
ratios and compare them with the naive expected ratios, and more importantly look at the
efficiency gain compared to the previous algorithm.

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 7076 28032 224544 7099584
2216 12704 50688 407976 12930264
2250 14953 59776 481742 15277834
2305 18663 74841 604437 19187709
2372 23254 93340 754196 23951236
2486 31275 126096 1022034 32500950

𝑔 Naive ratios Estimated ratios Gain

1 ×0.87
2 ×4 ×4 ×0.64
4 ×32 ×32 ×0.27
8 ×1024 ×1024 ×0.032

18 DAMIEN ROBERT

If we look at the proportion of operations needed to compute the isogenous theta constants
(along with all the constants needed for doubling and images), we see that depending on the
isogeny size, this proportion is 35–40% for 𝑔 = 1, 27–32% for 𝑔 = 2, 22–27% for 𝑔 = 4 and
20–25% for 𝑔 = 8 (the longer the isogeny, the less the proportion).

We remark that once the chain of 2-isogenous theta null point is computed (along with
the associated constants), we can compute the image of any point by our big 2𝑛-isogeny 𝑓 or
its dual in 𝑛 × (2𝑔𝑆 + 2𝑔𝑀) (we gain one 𝑀 by image if our constants have been normalised
to have one dual theta coordinate equal to 1).

14.4. The new algorithm, normalizing points at the beginning. Now we look at the
complexity of the new algorithm, where we normalize points at the beginning and use
affine images and doublings at every step. We treat here the case of a general kernel, already
compatible with the theta null point.

(1) Normalising the point𝑇″
𝑖 costs a scalarmultiplication to compute (2𝑛+1−1)𝑇″

𝑖 , 2𝑛+1𝑇″
𝑖 ,

and one more differential addition to compute (2𝑛+1 + 1)𝑇″
𝑖 . The scalar multipli-

cation costs 7.2𝑔 arithmetic operations by bits (in the general case, it is slightly
faster if we normalise one of the theta null coordinate to be 1). We need to compute
the inverse of the theta coordinates of 𝑇″

𝑖 first (for 2𝑔𝐼), and then we only need
multiplications and squares afterwards. The extra differential addition costs 4.2𝑔

arithmetic operations, but since this is only used to get the normalisation factor, as
explained above, we actually only need 2𝑔𝑆 + 2𝑔𝑀 + 2𝑀 + 1𝐼.

Since we have 𝑔 points to normalize, the normalisation phase costs 𝑔 × ((𝑛 +
1).7.2𝑔 + 3.2𝑔 + 3), including 𝑔(2𝑔 + 1) inversions.

(2) Keeping track of the normalisation factor. Recall that we have an equation 𝜆2𝑛+2
1 = 𝐶

for our each of our normalisation factor. To compute the points of 4-torsion from
the 𝑇″

𝑖 , we need to adjust our points by the normalisation factor 𝜆′
1 = 𝜆22𝑛

1 . For
computing the theta null point, we only need 𝜆′

1
2 = 𝜆22𝑛+1

1 = 𝐶2𝑛−1 .
When we compute the image of 𝑇″

𝑖 , the new normalisation factor is 𝜆2 = 𝜆2
1.

We have 𝜆2𝑛+1
2 = 𝜆2𝑛+2

1 = 𝐶. so for the second isogeny, the normalisation factor
on the points of 4-torsion is then 𝐶2𝑛−2 and so on, until at the last step we use 𝐶.
In total we need 𝑛 − 1 squares to compute the actual constants which will give us
our normalisation factors for each of our isogenies. Since we have 𝑔 normalisation
factors, this adds 𝑔(𝑛 − 1)𝑆 = 𝑔(𝑛 − 1) arithmetic operations.

(3) Doubling a point costs 4.2𝑔 − 1 operation by points (we are in a situation where
one of the theta constant is normalised to 1).

(4) Computing the image of a point costs 2.2𝑔 − 1 operations.
(5) Computing an isogenous theta null point require computing the squares of the

domain theta null point and the 𝑔 points of 4-torsion forming a basis of 𝐾[4]; this
costs (1 + 𝑔)2𝑔 squares.

We need to compute the 𝐴𝑖/𝐴0 (for the isogenous theta null point), 1/𝐴0𝐴𝑖 (for
the isogeny images, unlike the previous algorithm where we used 𝐴0/𝐴𝑖 here we
need to use the affine isogeny formula, so correct by the renormalisation we used
for the theta null point), and the 𝐴0/𝐴𝑖 (for doubling in the dual theta coordinates).

We can compute them as follow: first compute 1/𝐴2
0, then compute 𝐴𝑖/𝐴0 =

𝐴𝑖𝐴𝑗/𝐴𝑗𝐴0, 𝐴0/𝐴𝑖 = 1/(𝐴𝑖/𝐴0), 1/𝐴0𝐴𝑖 = 𝐴0/𝐴𝑖 × 1/𝐴2
0 for a total cost of

1𝐼 + 2𝑀 by coefficient. We need to add 1𝑀 to take into account the normalisation
factor. Thus computing the isogenous theta null points costs 1𝐼 + (2𝑔 − 1)(1𝐼 +
3𝑀) = 4.2𝑔 − 3 operations.

A note on optimising 2𝑛-isogenies in higher dimension 19

For doubling (in dual theta coordinates) on the isogenous abelian variety, we need
the coefficients 𝐴2

0/𝑎2
𝑖 (because we need to do affine doublings and we renormalised

our theta null point), this costs 2𝑔𝐼 + 2𝑔𝑀.
The grand total to compute the theta null points and all inverse needed for images

and doublings is (1 + 𝑔)2𝑔 + 4.2𝑔 − 3 + 2.2𝑔 = 2𝑔(𝑔 + 7) − 3, including including
2.2𝑔𝐼.

In summary, the amortised cost for computing an isogenous theta null point (taking into
account the normalisation at the beginning) is of 𝑔.7.2𝑔+2𝑔(𝑔+7)−3 = 2𝑔(7𝑔+𝑔+7)−3
arithmetic operations, including 2.2𝑔𝐼.

The amortised cost for the normalisation is roughly a doubling and differential addition
for each of the 𝑔 points in our basis. So this is about the same cost as we obtain by normalising
the points of 8-torsion anew for each isogeny, except that in the latter case we don’t need
a full differential addition, only a partial one, and we can compute doublings and images
projectively since we don’t need to keep track of our normalisation factors because we
recompute them at each step.

Thats why, normalising at each steps gives better complexity. But note that for crypto-
graphic applications where 𝐴 = 𝐸𝑔

1 × 𝐸𝑔
2, we could just normalize a basis of 𝐸𝑖[𝑁], and

then switch to affine differential additions when computing Ker𝐹 to keep points normalised.
This allows to normalize only 4 points in dimension 1, instead of 2𝑔 points in dimension
2𝑔 (which amount roughly to normalizing 4𝑔2 points in dimension 1). This gains a factor
roughly 4 when 𝑔 = 2, i.e., dim𝐴 = 4 (roughly because once the points are normalised, to
compute the kernel of 𝐹 we need to use affine differential additions rather than projective
ones, this will cost 1𝑀 more). So we expect that for the cryptographic setting of 2𝑛-isogenies
in dimension 4, the method of normalising points globally will be more effective, because
we will be able to do the normalisation in dimension 1.

The estimated number of operations is summarised in the following table, note that here
these operations count do not assume that the initial variety is a product, so we compute the
normalisation in dimension 𝑔.

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 7866 30676 243624 7677136
2216 14022 55092 439728 13890792
2250 16475 64860 518390 16386330
2305 20515 81025 649005 20535565
2372 26576 146064 2782896 746684976
2486 35904 197928 3777768 1014145128

𝑔 Naive ratios Estimated ratios Gain

1 ×0.95
2 ×3 ×4 ×0.7
4 ×20 ×32 ×0.29
8 ×576 ×1000 ×0.034

15. 2𝑛-isogenies in dimension 1

15.1. 2-isogenies in the theta model. The above algorithm is generic and work in any
dimension; the resulting number of operations in dimension 1 simply amount to plugging
𝑔 = 1 in the formula.

20 DAMIEN ROBERT

However in practice computing 2𝑛-isogenies in the theta model in dimension 1 is faster
than the generic algorithm, because we can dispense with point normalisation in dimension
one. (Update: see Section 17 for the same tricks in higher dimension.)

The algorithm is thus as follow: let 0𝐸 = (𝑎 ∶ 𝑏) be the theta null point, given by a theta
structure such that our small kernel is generated by 𝑇 = (−𝑎 ∶ 𝑏).

We assume that we have a point of 8-torsion 𝑇″ above 𝑇, if 𝑛 ≥ 3 we want 𝑇″ ∈ 𝐾, and if
𝑛 = 2 we want 2𝑇″ in 𝐾, this ensure that if our isogenous theta null point on 𝐸2 is (𝑎2 ∶ 𝑏2),
our next kernel will be generated by the point (−𝑎2 ∶ 𝑏2).

The formula are sufficiently simple that we will also keep track of the additions/soustrac-
tions.

Let 𝑇″ = (𝑟 ∶ 𝑠), we have by Example 11.2 (𝐴 ∶ 𝐵) = (𝑟2 + 𝑠2 ∶ 𝑟2 − 𝑠2), and
(𝑎2 ∶ 𝑏2) = (𝐴 + 𝐵 ∶ 𝐴 − 𝐵) = (𝑟2 ∶ 𝑠2). This requires 2𝑆 + 2𝑎.

The image of a point 𝑃 = (𝑥 ∶ 𝑧) is given by (𝑥 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑧2) ↦ (𝑋 = 𝑥2 + 𝑧2 ∶
𝑍 = 𝑥2 − 𝑧2) ↦ (𝐵𝑋 ∶ 𝐴𝑍) ↦ (𝑥′ = 𝐵𝑋 + 𝐴𝑍 ∶ 𝑧′ = 𝐵𝑋 − 𝐴𝑍), and is computed in
2𝑆 + 2𝑀 + 4𝑎.

Doubling on 𝐸2 cost two images, the first one for the dual isogeny ̃𝑓 using the coefficients
(𝑎 ∶ 𝑏) instead of (𝐴 ∶ 𝐵) in the formula above, and the second using 𝑓 to go back to 𝐸2, for a
total cost of 4𝑆 + 4𝑀 + 8𝑎.

If we havemany doublings and images to compute, it might be worth to compute (1, 𝐵/𝐴).
This can be donewith one division, that is 1𝐼+1𝑀.We then gain 1𝑀 for images and doubling.
At this point we might as well compute also (1, 𝑏/𝑎). We can compute both 1/𝑎, 1/𝐴 in
1𝐼 + 3𝑀, so compute (1, 𝑏/𝑎), (1, 𝐵/𝐴) in 1𝐼 + 5𝑀. We then gain 2𝑀 for images and
doubling. In summary, adding one inversion, computing the normalised theta null points
and associated constant costs 1𝐼 + 5𝑀 + 2𝑆 + 2𝑎 (instead of 2𝑆 + 2𝑎), and the computing
an image costs 2𝑆 + 1𝑀 + 4𝑎 and a doubling 4𝑆 + 2𝑀 + 8𝑎 (instead of 2𝑆 + 2𝑀 + 4𝑎 and
4𝑆 + 4𝑀 + 8𝑎 respectively).

We obtain the following costs in dimension 1 (which give roughly a twenty percent
speedup compared to the generic algorithm, not counting the fact that here the arithmetic
operations are without any inversion).

2𝑛 𝑔 = 1

2128 5468
2216 10156
2250 12060
2305 15250
2372 19136
2486 26184

If we don’t have an available point of 8-torsion 𝑇″, we simply compute 𝐴2 = 𝑎2+𝑏2, 𝐵2 =
𝑎2 − 𝑏2 and take an arbitrary square root of 𝐵2/𝐴2. What we can do also, without requiring
a square root, is to compute the codomain in the Montgomery model, see the next section.

15.2. Theta versus Montgomery. To summarize, the complexities for computing isogenies
in the theta model are as follows:

(1) 2𝑆 + 2𝑎 for the codomain
(2) 2𝑆 + 2𝑀 + 4𝑎 for an image
(3) 4𝑆 + 4𝑀 + 8𝑎 for doubling

A note on optimising 2𝑛-isogenies in higher dimension 21

The input is the theta null point (𝑎 ∶ 𝑏), which implicitly contains the 2-torsion point (−𝑎 ∶ 𝑏)
used for our kernel; and the images computations needs (some constants computed during)
the codomain. We refer to [Rob23b] for similar formulas on twisted theta models.

In the Montgomery model, the costs are, using [CLN16; CH17; Ren18]:
(1) 2𝑆 + 1𝑎 for the codomain
(2) 4𝑀 + 4𝑎 for an image (using a precomputation of 2𝑎)
(3) 2𝑆 + 4𝑀 + 4𝑎 for doubling

Here the input is a two torsion point (different from (0 ∶ 1)) giving the kernel (and implicitly
the curve); the image computation does not needs the codomain.

In [RS24] (see the notes [Rob23b] for more on the arithmetic of Kummer lines), we
explain how to combine the best of both worlds. Provided we have a point of 4-torsion 𝑇
above our kernel ⟨𝑇1⟩, we can:

(1) Compute a representation of the codomain in 2𝑆. The representation is given by the
2-torsion point 𝑓 (𝑇) = 𝑇2, which is the kernel of the next isogeny.

If we need to compute doublings on the codomain, we need to add a 2𝑆 + 2𝑎
precomputation to compute (𝒜 + 2 ∶ 4), and if we need to compute images we need
to add a 2𝑎 precomputation (which is already done if we did the previous 2𝑆 + 2𝑎
precomputation needed for doublings).

(2) Compute “images” in 2𝑀 + 2𝑆 + 4𝑎.
(3) Compute “doublings” in 4𝑀 + 2𝑆 + 4𝑎.

The words “images” and “doublings” are in quotes because if we consider that we are on a
twisted theta models the “doublings” we compute are actually 2𝑃 + 𝑇1, while if we consider
that we are in the Montgomery model it is the images that are actually given by 𝑓 (𝑃) + 𝑇2.
The images need some of the constants computed for the codomain.

As an aside, we can also explain how to compute the isogeny from a theta model to a
Montgomery model if we do not have access to a 8-torsion point. From the theta null point
(𝑎 ∶ 𝑏) of 𝐸1, we can compute (𝑎2 ∶ 𝑏2) the theta null point of 𝐸2 in the 𝜃2

𝐸1
= 𝜃′𝑡𝑤′

𝐸2
model,

and the isogeny map is (𝑥 ∶ 𝑧) ↦ (𝑥2 ∶ 𝑧2). Translating by 𝑇2 = (1 ∶ 0) we obtain the
coordinates on the Montgomery model of 𝐸2, with 𝒜2 = −𝛼2 − 1/𝛼2, 𝛼2 = 𝑏2/𝑎2.

We conclude this with a discussion on 4-isogenies. On theMontgomerymodel, a 4-isogeny
can be computed in [CH17]:

(1) 4𝑆 + 5𝑎 for the codomain
(2) 6𝑀 + 2𝑆 + 6𝑎 for images.

Using these formula, it is faster to split a 2𝑛-isogeny in dimension 1 into blocks of 4-isogenies
rather than blocks of 2-isogenies.

We leave as an open question the task of generalising these efficient 4-isogenies formula
to the theta model in dimension 1 (or even better in higher dimension).

16. 2𝑛-isogenies in dimension 2

16.1. Isogeny formula. The estimation above are very rough because we count an inversion
as much as a square or a multiplication. In this section we detail the detail the case of 𝑔 = 2,
and we try to use Montgomery’s trick as much as possible to reduce the number of inversions
needed by isogeny. Recall that this trick replace 𝑚 parallel inversions by 1𝐼 + 3(𝑚 − 1)𝑀.

For 𝑔 = 2 we normalize our basis (𝑃1, 𝑃2) of 8-torsion of 𝐾[8] by one doubling, which
cost (by point) 2.2𝑔𝑆 + (2.2𝑔 − 1)𝑀 = 8𝑆 + 7𝑀, and then a partial differential addition
which costs 2𝑔𝑆+2𝑔𝑀+2𝑀+1𝐼 = 4𝑆+6𝑀+1𝐼. Since we have two points, we can replace
2𝐼 by 1𝐼 +3𝑀. The total cost is then 1𝐼 +2.(8𝑆+7𝑀 +4𝑆+6𝑀)+3𝑀 = 1𝐼 +24𝑆+29𝑀.

22 DAMIEN ROBERT

These operations already give us the squares of the coordinates of the points of 4-torsion
2𝑃1, 2𝑃2, and if we add the squares of the theta constants, we obtain by Example 11.3
(𝐴2, 𝐵2, 𝐶2, 𝐷2), (𝐴𝐵, 𝐴𝐵, 𝐶𝐷, 𝐶𝐷), (𝐴𝐶, 𝐵𝐷, 𝐴𝐶, 𝐵𝐷) (up to the projective factors com-
puted above) via 2𝑔𝑆 = 4𝑆. We need to add 3𝑀 to take into account the correcting
factors for the coefficients 𝐴𝐵, 𝐴𝐶, 𝐵𝐷, so the total cost is 4𝑆 + 3𝑀. We can exploit the
fact that we work with projective coordinates to dispense with the 1𝐼 in the computation
of the normalisation factor. If we don’t compute this inversion, what we obtain are the
points (𝐴2, 𝐵2, 𝐶2, 𝐷2, 𝜅𝐴𝐵, 𝜅𝐶𝐷, 𝜅𝐴𝐶, 𝜅𝐵𝐷) where 𝜅 is the element we did not inverse
(which is the product of all elements we needed to inverse in parallel and which is com-
puted as part of Montgomery’s trick). So via 4𝑀, we can recover the projective vector
(𝐴2 ∶ 𝐵2 ∶ 𝐶2, 𝐷2 ∶ 𝐴𝐵 ∶ 𝐴𝐶 ∶ 𝐵𝐷), we actually won’t need 𝐶2 so we just need 3𝑀. The
final cost for this vector, in order to gain our 1𝐼, is 4𝑆 + 6𝑀.

We want to compute the isogeneous dual theta null point (1 ∶ 𝐵/𝐴 ∶ 𝐶/𝐴 ∶ 𝐷/𝐴),
and also for the image of the points the constants (1 ∶ 𝐴/𝐵 ∶ 𝐴/𝐶, 𝐴/𝐷). We compute
1/𝐴2, 1/𝐴𝐵, 1/𝐴𝐶, 1/𝐵𝐷.We recover 𝐵/𝐴 = 𝐴𝐵∗1/𝐴2, 𝐴/𝐵 = 1/𝐴𝐵∗𝐴2, 𝐶/𝐴 = 𝐴𝐶∗
1/𝐴2, 𝐴/𝐶 = 1/𝐴𝐶∗𝐴2, 𝐷/𝐴 = 1/𝐵𝐷∗𝐵/𝐴∗𝐷2, 𝐴/𝐷 = 1/𝐵𝐷∗𝐴/𝐵∗𝐵2 in 4𝐼+8𝑀 =
1𝐼 + 17𝑀. In fact, using the same trick as above, we can entirely dispense with the inversion.
If we do we obtain the coordinates 𝜅′𝐵/𝐴, 𝜅′𝐴/𝐵, 𝜅′𝐶/𝐴, 𝜅′𝐴/𝐶, 𝜅′2𝐷/𝐴𝜅′2𝐴/𝐷 where 𝜅′

is the product of all coordinates we inverted. To recover the projective vectors (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷)
and (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) we thus need to compute 𝜅′2 and do 4𝑀. This adds 1𝑆 + 4𝑀,
for a cost of 1𝑆 + 21𝑀.

For the doubling on the isogenous abelian variety, we need to inverse 4 coordinates (the
4 squares of the theta constants needed are already taken into account above), for 4𝐼, i.e.,
1𝐼 + 9𝑀. In this case, the inversion is not needed, since the projective factor will be the same.

However, while this is ok for projective doubling, for the affine doubling and differential
addition we need when computing 3.𝑇″

𝑖 for the normalisation, we will be off by some
projective factors. Namely, since I compute the vector (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) up to some
factor 𝜅1, and the vector (1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2) up to some projective factor 𝜅2, the first
doubling is off by a factor 𝜅1𝜅2, and then the differential addition is off by a factor (𝜅1𝜅2)3.
This constant is computed via 2𝑀 + 1𝑆, and we need to use it for our 2 normalisation which
adds 2𝑀.

The final cost is (24𝑆 + 29𝑀) + (4𝑆 + 6𝑀) + (1𝑆 + 21𝑀) + (9𝑀) + (1𝑆 + 4𝑀) =
30𝑆 + 69𝑀 ≤ 99𝑀. In this case, the (dual) theta null point (𝐴, 𝐵, 𝐶, 𝐷) is not normalised
to have 𝐴 = 1, so the image of a point then costs 4𝑆 + 4𝑀, and doubling costs 8𝑆 + 8𝑀.

If we have many doublings and images to compute, it might be interesting to add back
1𝐼 to normalise our coefficient 𝐴 to be 𝐴 = 1, and while we are at it 𝑎 = 1. The image of a
point then costs 4𝑆 + 3𝑀, and (projective) doubling costs 8𝑆 + 6𝑀.

We obtain the following number of arithmetic operations for our isogenies, without
any inversion. We see that replacing all inversions by multiplication roughly augment the
arithmetic count by twenty percent compared to the previous table, which is mainly due
to the fact that our images are 15% slower (4𝑆 + 4𝑀 vs 4𝑆 + 3𝑀) and our doublings 5%
slower (8𝑆 + 8𝑀 vs 8𝑆 + 7𝑀); the remaining cost being due to the fact that the isogenous
theta constant and the associated constants needed for images and doublings take more
arithmetic operations when we remove all inversions. The proportion of operations related
to computing the isogenous theta null points (and associated constants for doubling and
images) compared to doublings and images is between 32–37%.

A note on optimising 2𝑛-isogenies in higher dimension 23

2𝑛 𝑔 = 2

2128 33520
2216 60280
2250 70990
2305 88755
2372 110396
2486 148962

Remark 16.1. In our estimation of roughly 100𝑀 to compute the theta null point, half of it
(24𝑆 + 29𝑀) is spent normalizing our two points of 8-torsion (𝑃1, 𝑃2). The normalisation
computes (affinely) 2𝑃𝑖, 3𝑃𝑖. At the next isogeny step, say we have for 8-torsion points on 𝐵
the points (𝑃′

1, 𝑃′
2). Then we have 2𝑃′

𝑖 = 𝑓 (𝑃𝑖) projectively. So we can replace a doubling by
an image (which is twice as fast, and in fact when computing 3𝑃𝑖 we essentially compute
𝑓 (𝑃𝑖) along the way), and we just need one affine coordinate of 2𝑃′

𝑖 to correct 𝑓 (𝑃𝑖) to obtain
the correct affine lift of 2𝑃′

𝑖 .
In other words, we can reuse part of the work of normalising our 8-torsion points on 𝐴

to speed up normalising our 8-torsion points on 𝐵.

16.2. Splitting isogenies. In the contest of cryptography, the last 2-isogeny will be a splitting
𝐴 → 𝐸1 × 𝐸2. During the isogeny computation, we will not in general obtain a product
theta structure on 𝐸1 × 𝐸2. In [DLRW23, Appendix C.1] we explain how, if we have enough
information, we can precompute (by working in dimension 1) the linear change of variable
giving a product theta structure.

But in dimension 2 it is easy to obtain it directly. First we know that we are on a product
when one of the 10 even level (2, 2)-theta constant is zero, and we know that we have a
product theta structure where the zero theta constant is 𝜃[11; 11].

We might as well take a random linear change of variable induced by a symplectic action
until we are on this case. A more deterministic algorithm (using Appendix B to stay in level 2)
is as follows:

(1) The square of the level (2, 2) theta functions can be computed from the level 2 theta
function via (this is a special case of the duplication formula) 𝑈2

𝜒,𝑖 = ∑𝑡 𝜒(𝑡)𝜃𝑡𝜃𝑖+𝑡.
Suppose that we have a theta null point (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑) on a product. Let (𝜒, 𝑖) be

the coordinate of the even theta constant which is zero.
(2) if 𝜒 = 𝑖 = (00), act by (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑) ↦ (𝑎 ∶ 𝑖𝑏 ∶ 𝑐 ∶ 𝑖𝑑), the new zero level

(2, 2)-theta function is given by (𝜒′, 𝑖′) with 𝜒′ ≠ 0, 𝑖′ = 0.
(3) if 𝑖 = 0 but 𝜒 ≠ 0 uses the action by 𝐻, this permutes 𝜒 and 𝑖.
(4) We can now assume 𝑖 ≠ 0. Take any invertible matrix 𝐴 such that 𝐴(11) = 𝑖. Acting

by 𝜃𝑖 ↦ 𝜃𝐴𝑖 we get that the new zero theta function is (𝜒′, 𝑖′) with 𝜒′ = 𝜒𝑜𝐴, and
𝑖′ = (11).

(5) We can now assume 𝑖 = (11). Act by 𝜃𝑖 ↦ (−1)(1−𝜒)(𝑖)𝜃𝑖. The new zero theta
function is given by (chi’, i’)=(1 1, 1 1) and we have won.

(6) If we have a point (𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑡) on the product theta structure, the theta coordinates
on 𝐸1, 𝐸2 are given by (𝑥 ∶ 𝑧), (𝑥 ∶ 𝑦).

16.3. Gluing isogenies. When we start with a product of two elliptic curves 𝐸1 × 𝐸2 and a
product theta structure (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑), then since the dual theta coordinates on the isogeneous
surface (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) can also be interpreted as the level (2, 2)-theta coordinates on

24 DAMIEN ROBERT

the original surface given by 𝑈𝜒,0(0), they are not zero (because the one which is zero
corresponds to 𝜒 = 𝑖 = (11)).

However, if we take an isogeny which is not a diagonal isogeny, we will do a linear change
of variable as explained in Sections 8 and 9 and one of the 𝐴, 𝐵, 𝐶, 𝐷 will become zero.

For the arithmetic on 𝐸1 × 𝐸2 this is not a problem (we would compute the arithmetic
in dimension 1 before taking the product theta structure and doing the linear change of
variable anyway), but this is a problem for the images of a point. The solution is given in
Section 12: to compute 𝑓 (𝑃), we need one of 𝑃 + 𝑇1, 𝑃 + 𝑇2 for 𝑇1, 𝑇2 the 2-points of
4-torsion compatible with our isogeny.

We note that if we only have 𝑃 and 𝑇1, there are four choices for 𝑃 + 𝑇1 on the Kummer.
This corresponds to the fact that the map 𝐸1 × 𝐸2 → 𝐸1/ ± 1 × 𝐸2/ ± 1 has degree 4, and
given a point [𝑃] ∈ 𝐸1/ ± 1 × 𝐸2/ ± 1 we have 4 possibilities for 𝑃 on 𝐸1 × 𝐸2, which
induces 4 possibilities on the codomain 𝐵, which induces 2 possibilities on 𝐵/ ± 1. So [𝑃]
has two possible images on 𝐵/ ± 1, and we need a point of 4 torsion to fix one.

If our big kernel 𝐾 is generated by 𝑃1, 𝑃2 of 2𝑛-torsion, we can take 𝑇𝑖 = 2𝑛−2𝑃𝑖. To
compute our isogenies we need 𝑓 (𝑃1), 𝑓 (𝑃2). But 𝑃𝑖 + 𝑇𝑖 = (1 + 2𝑛−2)𝑃𝑖 which can be
computed via a scalar multiplication.

More concretely write 𝑃𝑖 = (𝑅𝑖, 𝑆𝑖), then the four possibilities for 𝑃𝑖+𝑇𝑖 can be written as
(1 ± 2𝑛−2𝑅𝑖, 1 ± 2𝑛−2𝑆𝑖). If we make some choice of sign for 𝑃1 (say (+, +)) it is important
to make the same for 𝑃2 (say (+, +) or (−, −) but not (+, −) or (−, +)) for our images of
𝑃1, 𝑃2 to be compatible. (The four choices for 𝑃1 + 𝑇1 corresponds to replacing 𝑃1 by −𝑃1
or 𝑓 by −𝑓 in Kani’s lemma. It might seem that we would need to fix 𝑇1 + 𝑇2 in order to fix
the sign of 𝑃1 relatively to 𝑃2, but this is already done, at least implicitly, in our linear change
of variable from our product theta structure: for this theta structure the basis of 4-torsion is
of the form (𝑈1, 0), (0, 𝑈2), (𝑉1, 0), (0, 𝑉2) which are points that only admits 2 preimages
on 𝐸1 × 𝐸2).

16.4. Annulation of the theta null points. Analytically, if 𝐴 corresponds to the period
matrix Ω, we have (𝑎, 𝑏, 𝑐, 𝑑) = 𝜃[0, 𝑖/2](0, Ω/2) and (𝐴, 𝐵, 𝐶, 𝐷) = 𝜃[𝑖/2, 0](0, Ω).

The 10 level four even theta constants are 𝜃[𝑖/2, 𝑗/2](0, Ω) are non zero, except when 𝐴
is a product where exactly one of them is zero. And if 𝐴 has a product theta structure, the
zero even theta constant is 𝜃[1/21/2; 1/21/2](0, Ω).

From this we deduce that:
• (𝐴, 𝐵, 𝐶, 𝐷) are non zero, except if 𝐴 is a product with a non product theta structure.
• (𝑎, 𝑏, 𝑐, 𝑑) are non zero, except if the isogenous abelian variety 𝐴/𝐾2 corresponding

to Ω/2 is a product with a non product theta structure.
So unless we encounter a product along our path (very unlikely), the only annulation we will
see is at the first and last isogeny.

16.5. Further optimisations in dimension 2. Due to the ongoing work on implementing
the formula in dimension 2, it is now easier to find new optimisation possibilities.

The image of a point is pretty fast, so the remaining bottleneck is to try to compute the
theta constants as fast as possible.

There are two optimisations: first the normalisation procedure, a lot of the computations
can be shared. Secondly, as remarked by Pierrick Dartois, the points of 4-torsion we deal
with have 2 zero coordinates, so this simplify the computations.

First let’s explain look at the points of 4-torsion: we have 𝑇′ + 𝑇 = 𝑇′ in the Kummer,
where 𝑇 = 2𝑇′ ∈ 𝐾2. Since 𝑇 acts by sign, this equation gives that half of the coordinates

A note on optimising 2𝑛-isogenies in higher dimension 25

are zero (we can even know which ones should be zero since we require the compatibility
with the theta structure).

Secondly, let’s look at the normalisation procedure. We have 𝑇″ a point of 8-torsion, and
we compute 3𝑇″ to compute the correct projective factor 𝜆. Note that we only need to apply
this factor to 𝜃′(𝑓 (𝑇′)).

Now from Section 5, our first (affine) doubling 𝑇′ = 2𝑇″ can be written as 𝜃𝑖(𝑇′)𝜃𝑖(0) =
𝐻(𝜃′

𝑖(𝑇″)2). As explained in Section 16.1, a doubling is 8𝑀 +8𝑆 (if the appropriate inverses
have been computed), but since we have two zero coordiantes the cost reduces to 6𝑀 + 8𝑆.

The main gain we can have is for the differential addition 3𝑇″ = 𝑇″ + 𝑇′, remember that
𝜃𝑖(3𝑇″) = 𝜃𝑖(5𝑇″) = 𝜃𝑖(𝑇″ + 𝑇) hence is equal to 𝜃𝑖(𝑇″) up to an explicit sign.

In particular, by the duplication formula, we have 𝜃′
𝑖(𝑓 (𝑇″))𝜃′

𝑖(𝑓 (𝑇′)) = 𝐻(𝜃𝑖(3𝑇″)𝜃𝑖(𝑇″)).
Now we have already mostly computed 𝜃′

𝑖(𝑓 (𝑇″)) and 𝜃𝑖(𝑇″)2 during the doubling. To com-
pute 𝜃′

𝑖(𝑓 (𝑇′)) usually requires 4𝑆 + 4𝑀, but the multiplication by the required constants
can already be done during the doubling of 𝑇″, and the 4𝑆 is a 2𝑆 because two coordinates
are zero. However this changes the ordering of operations for the doubling, which now costs
10𝑀 + 4𝑆 rather than 6𝑀 + 8𝑆.

So 𝜃′
0(𝑓 (𝑇′)) requires (essentially) 2𝑆, and 𝜃′

0(𝑓 (𝑇″))𝜃′
0(𝑓 (𝑇′)) adds 1𝑀. The correcting

factor is then one division 𝐷, which we use to multiply two coordinates (because 𝑇′ give
half of the coordinates we are interested in), for a cost of 2𝑀. And in fact for the second
generator, we just need one coefficient of 𝑓 (𝑇′) so we just add 1𝑀 for the correction.

In total, we have spent (10𝑀 + 4𝑆) + (2𝑆 + 1𝑀) + 1𝐷 + 2𝑀 = 13𝑀 + 6𝑆 + 1𝐷 to
get the correct affine value of 𝑓 (𝑇′). Doing this twice (once for each projective factor), we
get (𝐴𝐵, 𝐶𝐷, 𝐴𝐶) with a cost of 25𝑀 + 12𝑆 + 2𝐷. Since we already know the value of
(𝐴2, 𝐵2, 𝐶2, 𝐷2) (since they were used for doubling; if we count them as precomputed then
we need to add the computation of (𝐴2

2 ∶ 𝐵2
2 ∶ 𝐶2

2 ∶ 𝐷2
2) as required precomputations for

our theta null point), we recover as in Section 16.1 the values (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷), and then
(𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2).

By contrast, the method outlined in Section 16.1 was costing 32𝑀 + 24𝑆 + 2𝐼 for the
same result. We gain about 19 arithmetic operations.

We also need for the images (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) (which can be done in 4𝑀 because
we already have (1/𝐴2 ∶ 1/𝐵2 ∶ 1/𝐶2 ∶ 1/𝐷2) and for doublings on the isogenous curve
(𝑎2

2 ∶ 𝑏2
2 ∶ 𝑐2

2 ∶ 𝑑2
2) to compute (𝐴2

2 ∶ 𝐵2
2 ∶ 𝐶2

2 ∶ 𝐷2
2), (1/𝐴2

2 ∶ 1/𝐵2
2 ∶ 1/𝐶2

2 ∶ 1/𝐷2
2) and

(1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2). This requires 4𝑆 + 4𝑀 + 8𝐼.
A trick is to instead do doubling in 𝜃′ coordinates; for that we need (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶

1/𝐷) which we already have for images, and (1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2). So from this point
of view, anticipating the next isogeny, we need (𝑎2

2 ∶ 𝑏2
2 ∶ 𝑐2

2 ∶ 𝑑2
2) and their inverse, so this

does not change much the number of operations: 4𝑆 + 8𝐼, so we save 4𝑀.
For this part, we refer to Section 16.1; we can apply the same various 𝑀/𝐼 tradeoffs to get

rid of all inversions at the cost of more multiplication. Remark 16.1 also apply, at the next
step we could compute an isogeny image rather to speed up the doubling procedure.

16.6. What if we don’t have 8-torsion points? If we only have points of 4-torsion 𝑇′
1, 𝑇′

2
above our kernel 𝐾2, applying ℎ ≔ 𝐻 ∘ 𝑆 to them gives (𝐴𝐵 ∶ 𝐴𝐵 ∶ 𝐶𝐷 ∶ 𝐶𝐷), (𝐴𝐶 ∶ 𝐴𝐶 ∶
𝐵𝐷 ∶ 𝐵𝐷). We also have (𝐴2 ∶ 𝐵2 ∶ 𝐶2 ∶ 𝐷2) from the theta null point.

We cannot recover the theta null point (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) directly because we are in
projective coordinates. We can normalize 𝑇′

𝑖 via the equation 2.𝑇′
𝑖 = 𝑇𝑖, this determines the

normalisation factor 𝜆𝑖 up to an equation 𝜆4
𝑖 = 𝐶𝑖, hence this we square the coordinates,

ℎ(𝑇′
𝑖) up to a sign. Hence we have 2 signs; and by the same method in dimension 𝑔 we would

have 𝑔 signs, which are all valid by Appendix B.2. In particular, in dimension 2 we need

26 DAMIEN ROBERT

two square roots to compute the codomain theta null point when we only have points of
4-torsion and not of 8-torsion. In fact, we can rewrite the normalisation process as follow:
let ℎ(𝑇′

1) = (𝜆1𝑥, 𝜆1𝑥, 𝜆1𝑦, 𝜆1𝑦) for some unknown projective factor 𝜆1. Fix a choice of
(𝐴2, 𝐵2, 𝐶2, 𝐷2). Then for the correct choice of 𝜆1, we should have 𝜆1𝑥 = 𝐴𝐵, 𝜆1𝑦 = 𝐶𝐷,
and we have an equation 𝜆2

1𝑥2 = 𝐴2𝐵2, which gives 𝜆1 from a square root computation.
The same method works for 𝜆2. If (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) is one of the computed isogeneous theta
null point, the other choice of signs give (𝐴 ∶ −𝐵 ∶ 𝐶 ∶ −𝐷), (𝐴 ∶ 𝐵 ∶ −𝐶 ∶ −𝐷), (𝐴 ∶ −𝐵 ∶
−𝐶 ∶ 𝐷).

If we don’t even have the compatible points of 4-torsion above the kernel, we can write
down equations which determines 𝑇′

1, 𝑇′
2, or even just ℎ(𝑇′

1), ℎ(𝑇′
2) which is what we really

need for the codomain. Since 𝑇′
1 is a compatible point of 4-torsion, and 𝑇′

1 + 𝑇1 = 𝑇′
1, we

have 𝑇′
1 = (𝑥 ∶ 0 ∶ 𝑧 ∶ 0). From ℎ(𝑇′

1) = (𝐴𝐵 ∶ 𝐴𝐵 ∶ 𝐶𝐷 ∶ 𝐶𝐷) we obtain a degree 2
homogeneous equation in 𝑥2, 𝑧2 (say ℎ(𝑇′

1) = (𝑥1 ∶ 𝑥1 ∶ 𝑧1 ∶ 𝑧1) with 𝑥1, 𝑧1 homogeneous
of degree 2 in 𝑥, 𝑧, then 𝐶2𝐷2𝑥2

1 − 𝐴2𝐵2𝑧2
1), so we have two solutions for ℎ(𝑇′

1) (which is
linear in 𝑥2, 𝑧2). Now 𝑇′

2 = (𝑢 ∶ 𝑣 ∶ 0 ∶ 0), and write ℎ(𝑇′
2) = (𝑥2 ∶ 𝑧2 ∶ 𝑥2 ∶ 𝑧2). We have

1/𝐴2𝑥1𝑥2 − 1/𝐷2𝑧1𝑧2. This equation determines the projective point ℎ(𝑇′
2) uniquely from

𝑥2, 𝑧2. To our choice of signs above, this adds the possibility (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ −𝐷).

17. Even better formula: getting rid of the normalisation process

We have seen that in dimension 1 (Example 11.2) we don’t need to normalize points of
8 and 4-torsion. So why do we need to normalize points in higher dimension? The answer
is that we actually don’t need this, which leads to both faster formula and much easier
implementations.

The basic idea is as follow. Let’s work in dimension 𝑔 = 2 for simplicity. Let 𝑃1, 𝑃2 be a
basis of 𝐾[8], then we know that applying 𝑆 → 𝐻 → 𝐶 gives the images 𝑓 (𝑃1), 𝑓 (𝑃2) in 𝜃′

coordinates.
Our kernels are set up so that 𝐾[2] = 𝐾2, in particular 4𝑃1, 4𝑃2 acts by sign. So in 𝜃′

coordinates, 2𝑓 (𝑃𝑖) acts by permutation. 𝑓 (𝑃1), 𝑓 (𝑃2) are points of 4-torsions, and since we
are on the Kummer, we have 𝑓 (𝑃𝑖) + 2𝑓 (𝑃𝑖) = 𝑓 (𝑃𝑖).

Recall that 𝜃′(𝑓 (𝑃)) = 𝑔(𝑃) ≔ 𝐶∘𝐻∘𝑆.Thismeans that 𝑔(𝑃1) = (𝑥1 ∶ 𝑥1 ∶ 𝑧1 ∶ 𝑧1) and
𝑔(𝑃2) = (𝑥2 ∶ 𝑧2 ∶ 𝑥2 ∶ 𝑧2). Going one step back in the isogeny image formula, it means that
if we apply ℎ ≔ 𝑆 → 𝐻 to 𝑃1, 𝑃2 (remember that 𝐶 = (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) is unknown
for now), we have ℎ(𝑃1) = (𝐴𝑥1 ∶ 𝐵𝑥1 ∶ 𝐶𝑧1 ∶ 𝐷𝑧1) and ℎ(𝑃2) = (𝐴𝑥2 ∶ 𝐵𝑧2 ∶ 𝐶𝑥2 ∶ 𝐷𝑧2)
where 𝑥1, 𝑧1, 𝑥2, 𝑧2 are unknown projective factors.

But from this we can recover 𝐵/𝐴, 𝐶/𝐴 and 𝐷/𝐴 = 𝐷/𝐶×𝐶/𝐴 in only 2×4𝑆+1𝑀+3𝐷.
Actually, for isogeny images we need (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷), and we can compute
(1, 𝐴/𝐵, 𝐴/𝐶, 𝐴/𝐷) in 2 × 4𝑆 + 1𝑀 + 3𝐷. The nice thing is that a constant is normalised
to 1, so images only cost 4𝑆 + 3𝑀. Then doublings could be implemented as composing ̂𝑓
with 𝑓. For that we need (1/𝑎 ∶ 1/𝑏 ∶ 1/𝑐 ∶ 1/𝑑), or better (1, 𝑎/𝑏, 𝑎/𝑐, 𝑎/𝑑); each doubling
would cost 8𝑆 + 6𝑀.

As for doubling precomputations, for the next isogeny we would need to compute (1/𝑎2 ∶
1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2) (or better (1, 𝑎2/𝑏2, 𝑎2/𝑐2, 𝑎2/𝑑2)) from (1, 𝐴/𝐵, 𝐴/𝐶, 𝐴/𝐷). This can
clearly be done through 3𝐼 + 3𝐷, but maybe there are some optimisations to be gained.

In higher dimension, the same strategy as in Section 11 holds. Let’s work out the case 𝑔 = 3,
we have for𝑃1, 𝑃2, 𝑃3 a basis of𝐾[8], 𝑔(𝑃1) = (𝑥1𝐴000, 𝑥1𝐴001, 𝑦1𝐴010, 𝑦1𝐴011, 𝑧1𝐴100, 𝑧1𝐴101, 𝑡1𝐴110, 𝑡1𝐴111),
𝑔(𝑃2) = (𝑥2𝐴000, 𝑦2𝐴001, 𝑥2𝐴010, 𝑦2𝐴011, 𝑧2𝐴100, 𝑡2𝐴101, 𝑧2𝐴110, 𝑡2𝐴111), 𝑔(𝑃3) =
(𝑥3𝐴000, 𝑦3𝐴001, 𝑧3𝐴010, 𝑡3𝐴011, 𝑥3𝐴100, 𝑦3𝐴101, 𝑧3𝐴110, 𝑡3𝐴111).

A note on optimising 2𝑛-isogenies in higher dimension 27

So from the 𝑔(𝑃𝑖), whichwe can compute, we can recover the quotients𝐴001/𝐴000, 𝐴010/𝐴000, 𝐴100/𝐴000,
and then iteratively 𝐴011/𝐴000 = 𝐴011/𝐴010 × 𝐴010/𝐴000, 𝐴110/𝐴000 = 𝐴110/𝐴100 ×
𝐴100/𝐴000, 𝐴111/𝐴000 = 𝐴111/𝐴110 × 𝐴110/𝐴000.

In dimension 𝑔, computing the 𝑔(𝑃𝑖) costs 𝑔 × 2𝑔𝑆, and then reconstituting the 𝐴𝑖/𝐴0
for isogeny images costs at most 2𝑔 × (1𝑀 + 1𝐷), to which we need to add 2.2𝑔𝐼 for the
arithmetic precomputations. So the total cost for the codomain, including the arithmetic
precomputation, is 2𝑔(𝑔 + 4) arithmetic operations.

It is time for our table counting the number of arithmetic operations: we count each image
as costing 2𝑔𝑆+(2𝑔 −1)𝑀 = 2.2𝑔 −1, and each doubling 2.2𝑔𝑆+2.(2𝑔 −1)𝑀 = 4.2𝑔 −2.
We have seen that the codomain and arithmetic precomputation costs 2𝑔(𝑔 + 4).

2𝑛 𝑔 = 1 𝑔 = 2 𝑔 = 4 𝑔 = 8

2128 5189 21314 177956 5719880
2216 9453 39218 329092 10601480
2250 11170 46460 390360 12582320
2305 14030 58560 492880 15899040
2372 17514 73300 617768 19939408
2486 23769 99906 843780 27259656

As a concrete example, the strategy for computing a 2602-isogeny in dimension 2 involves
3274 doublings and 7108 images (plus 26 gluing images).

17.1. Removing inversions. It is also much easier to analyze the complexity where we get
rid of all inversions. We treat the case 𝑔 = 2 for simplicity.

We compute ℎ(𝑃1) = (𝐴𝑥1 ∶ 𝐵𝑥1 ∶ 𝐶𝑧1 ∶ 𝐷𝑧1) and ℎ(𝑃2) = (𝐴𝑥2 ∶ 𝐵𝑧2 ∶ 𝐶𝑥2 ∶ 𝐷𝑧2)
in 2.2𝑔𝑆 = 8, since 𝑔 = 2. From this data we want (1/𝐴 ∶ 1/𝐵 ∶ 1/𝐶 ∶ 1/𝐷) projectively
for images, and also (1/𝑎2 ∶ 1/𝑏2 ∶ 1/𝑐2 ∶ 1/𝑑2) for doublings.

Batching inversions, we can compute 𝐵/𝐴, 𝐶/𝐴, 𝐷/𝐶 in 1𝐼 + 6𝑀 + 3𝑀, except we don’t
want to actually compute the inversion so we have (𝜅𝐵/𝐴, 𝜅𝐶/𝐴, 𝜅𝐷/𝐶) for some known
factor 𝜆. We then get (𝜅2, 𝜅2𝐵/𝐴, 𝜅2𝐶/𝐴, 𝜅2𝐷/𝐶) in 1𝑆 + 3𝑀. We compute the inverse of
these coordinates in 1𝐼 + 9𝑀 (except we don’t actually compute the inverse), and likewise
we have (𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2) through a Hadamard transform of (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) and
then compute the inverses in 1𝐼 + 9𝑀. The total cost for the codomain is than 8𝑆 + 9𝑀 +
(1𝑆 + 3𝑀) + 9𝑀 + 9𝑀 = 30𝑀 + 9𝑆 ≥ 39𝑀. Comparing with Section 16 we see that the
codomain computation is more than twice as fast, as was expected (since the normalisation
process took half the time). Here, images and doublings costs 2𝑔𝑆 + 2𝑔𝑀 ≤ 2.2𝑔𝑀 and
2.(2𝑔𝑆 + 2𝑔𝑀) ≤ 4.2𝑔𝑀 respectively because the coordinates of our theta null points are
no longer normalised.

Depending on the number of doubling and isogeny images we need, it might make sense
(especially at the beginning of the isogeny chain) to bach one inversion to gain the 1𝑀 (resp.
2𝑀) by doublings and images.

We obtain the following number of arithmetic operations, whenwe get rid of all inversions:

28 DAMIEN ROBERT

2𝑛 𝑔 = 2

2128 25840
2216 47320
2250 55990
2305 70455
2372 88076
2486 119802

References

[BRS23] R. Barbulescu, D. Robert, and N. Sarkis. “Models of Kummer lines and
Galois representations”. June 2023. In preparation. (Cit. on pp. 9, 30).

[BMP23] A. Basso, L. Maino, and G. Pope. “FESTA: Fast Encryption from Super-
singular Torsion Attacks”. In: Cryptology ePrint Archive (2023) (cit. on
p. 4).

[CD21] W. Castryck and T. Decru. “Multiradical isogenies”. In: Cryptology ePrint
Archive (2021) (cit. on p. 36).

[CD23] W. Castryck and T. Decru. “An efficient key recovery attack on SIDH”. In:
Springer-Verlag (Eurocrypt 2023), Apr. 2023 (cit. on p. 4).

[CR15] R. Cosset and D. Robert. “An algorithm for computing (ℓ, ℓ)-isogenies
in polynomial time on Jacobians of hyperelliptic curves of genus 2”. In:
Mathematics of Computation 84.294 (Nov. 2015), pp. 1953–1975. doi:
10.1090/S0025-5718-2014-02899-8. url: http://www.normalesup.
org/~robert/pro/publications/articles/niveau.pdf. HAL: hal-
00578991, eprint: 2011/143. (Cit. on pp. 4, 5, 36).

[CH17] C. Costello andH. Hisil. “A simple and compact algorithm for SIDHwith ar-
bitrary degree isogenies”. In:Advances in Cryptology–ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and
Information Security, Hong Kong, China, December 3-7, 2017, Proceedings,
Part II 23. Springer. 2017, pp. 303–329 (cit. on p. 21).

[CLN16] C. Costello, P. Longa, and M. Naehrig. “Efficient algorithms for supersin-
gular isogeny Diffie-Hellman”. In: Advances in Cryptology–CRYPTO 2016:
36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I 36. Springer. 2016, pp. 572–601
(cit. on p. 21).

[DLRW23] P. Dartois, A. Leroux, D. Robert, and B. Wesolowski. “SQISignHD: New
Dimensions in Cryptography”. Accepted for publication at Eurocrypt
2024. Mar. 2023. url: http://www.normalesup.org/~robert/pro/
publications/articles/SQISignHD.pdf. eprint: 2023/436, HAL: hal-
04056062v1. (Cit. on pp. 3–5, 7, 8, 11, 12, 15, 23).

[DMPR23a] P. Dartois, L. Maino, G. Pope, and D. Robert. “An Algorithmic Approach
to (2, 2)-isogenies in the Theta Model and Applications to Isogeny-based
Cryptography”. Nov. 2023. url: http://www.normalesup.org/~robert/
pro/publications/articles/_2_2__isogenies_in_the_theta_model.

pdf. eprint: 2023/1747. (Cit. on p. 4).

https://doi.org/10.1090/S0025-5718-2014-02899-8
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf
http://www.normalesup.org/~robert/pro/publications/articles/niveau.pdf
http://hal.archives-ouvertes.fr/hal-00578991
http://hal.archives-ouvertes.fr/hal-00578991
http://eprint.iacr.org/2011/143
 https://eurocrypt.iacr.org/2024/
 https://eurocrypt.iacr.org/2024/
http://www.normalesup.org/~robert/pro/publications/articles/SQISignHD.pdf
http://www.normalesup.org/~robert/pro/publications/articles/SQISignHD.pdf
http://eprint.iacr.org/2023/436
http://hal.archives-ouvertes.fr/hal-04056062v1
http://hal.archives-ouvertes.fr/hal-04056062v1
http://www.normalesup.org/~robert/pro/publications/articles/_2_2__isogenies_in_the_theta_model.pdf
http://www.normalesup.org/~robert/pro/publications/articles/_2_2__isogenies_in_the_theta_model.pdf
http://www.normalesup.org/~robert/pro/publications/articles/_2_2__isogenies_in_the_theta_model.pdf
http://eprint.iacr.org/2023/1747

REFERENCES 29

[DMPR23b] P. Dartois, L. Maino, G. Pope, and D. Robert. ThetaIsogenies. Fast compu-
tations of isogenies in dimension two. Nov. 2023. url: https://github.
com/ThetaIsogenies/two-isogenies (cit. on p. 4).

[DJP14] L. De Feo, D. Jao, and J. Plût. “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies”. In: Journal of Mathematical
Cryptology 8.3 (2014), pp. 209–247 (cit. on pp. 4, 16).

[FLR11] J.-C. Faugère, D. Lubicz, and D. Robert. “Computing modular correspon-
dences for abelian varieties”. In: Journal of Algebra 343.1 (Oct. 2011), pp. 248–
277. doi: 10.1016/j.jalgebra.2011.06.031. arXiv: 0910.4668 [cs.SC].
url: http : / / www . normalesup . org / ~robert / pro / publications /
articles/modular.pdf. HAL: hal-00426338. (Cit. on p. 36).

[LR10] D. Lubicz and D. Robert. “Efficient pairing computation with theta func-
tions”. In: ed. by G. Hanrot, F. Morain, and E. Thomé. Vol. 6197. Lec-
ture Notes in Comput. Sci. 9th International Symposium, Nancy, France,
ANTS-IX, July 19-23, 2010, Proceedings. Springer–Verlag, July 2010. doi:
10.1007/978-3-642-14518-6_21. url: http://www.normalesup.
org/~robert/pro/publications/articles/pairings.pdf. Slides: 2010-
07-ANTS-Nancy.pdf (30min, International Algorithmic Number Theory
Symposium (ANTS-IX), July 2010, Nancy), HAL: hal-00528944. (Cit. on
p. 8).

[LR12] D. Lubicz and D. Robert. “Computing isogenies between abelian vari-
eties”. In: Compositio Mathematica 148.5 (Sept. 2012), pp. 1483–1515.
doi: 10.1112/S0010437X12000243. arXiv: 1001.2016 [math.AG]. url:
http://www.normalesup.org/~robert/pro/publications/articles/

isogenies.pdf. HAL: hal-00446062. (Cit. on pp. 4, 5, 36).
[LR15a] D. Lubicz and D. Robert. “A generalisation of Miller’s algorithm and appli-

cations to pairing computations on abelian varieties”. In: Journal of Symbolic
Computation 67 (Mar. 2015), pp. 68–92. doi: 10.1016/j.jsc.2014.08.
001. url: http://www.normalesup.org/~robert/pro/publications/
articles/optimal.pdf. HAL: hal-00806923, eprint: 2013/192. (Cit. on
p. 8).

[LR15b] D. Lubicz and D. Robert. “Computing separable isogenies in quasi-optimal
time”. In: LMS Journal of Computation and Mathematics 18 (1 Feb. 2015),
pp. 198–216. doi: 10.1112/S146115701400045X. arXiv: 1402.3628. url:
http://www.normalesup.org/~robert/pro/publications/articles/

rational.pdf. HAL: hal-00954895. (Cit. on pp. 4, 5).
[LR16] D. Lubicz and D. Robert. “Arithmetic on Abelian and Kummer Varieties”.

In: Finite Fields and Their Applications 39 (May 2016), pp. 130–158. doi:
10.1016/j.ffa.2016.01.009. url: http://www.normalesup.org/
~robert / pro / publications / articles / arithmetic . pdf. HAL: hal-
01057467, eprint: 2014/493. (Cit. on p. 8).

[LR22a] D. Lubicz and D. Robert. “Fast change of level and applications to isogenies”.
In: Research in Number Theory (ANTS XV Conference) 9.1 (Dec. 2022).
doi: 10.1007/s40993-022-00407-9. url: http://www.normalesup.
org/~robert/pro/publications/articles/change_level.pdf. HAL:
hal-03738315. (Cit. on pp. 4, 5, 8, 36).

[LR22b] D. Lubicz and D. Robert. “Multiradical isogenies in the theta model”. Sept.
2022. In preparation. (Cit. on p. 36).

https://github.com/ThetaIsogenies/two-isogenies
https://github.com/ThetaIsogenies/two-isogenies
https://doi.org/10.1016/j.jalgebra.2011.06.031
https://arxiv.org/abs/0910.4668
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://www.normalesup.org/~robert/pro/publications/articles/modular.pdf
http://hal.archives-ouvertes.fr/hal-00426338
https://doi.org/10.1007/978-3-642-14518-6_21
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/articles/pairings.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-ANTS-Nancy.pdf
http://ants9.org/
http://ants9.org/
http://hal.archives-ouvertes.fr/hal-00528944
https://doi.org/10.1112/S0010437X12000243
https://arxiv.org/abs/1001.2016
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/articles/isogenies.pdf
http://hal.archives-ouvertes.fr/hal-00446062
https://doi.org/10.1016/j.jsc.2014.08.001
https://doi.org/10.1016/j.jsc.2014.08.001
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://www.normalesup.org/~robert/pro/publications/articles/optimal.pdf
http://hal.archives-ouvertes.fr/hal-00806923
http://eprint.iacr.org/2013/192
https://doi.org/10.1112/S146115701400045X
https://arxiv.org/abs/1402.3628
http://www.normalesup.org/~robert/pro/publications/articles/rational.pdf
http://www.normalesup.org/~robert/pro/publications/articles/rational.pdf
http://hal.archives-ouvertes.fr/hal-00954895
https://doi.org/10.1016/j.ffa.2016.01.009
http://www.normalesup.org/~robert/pro/publications/articles/arithmetic.pdf
http://www.normalesup.org/~robert/pro/publications/articles/arithmetic.pdf
http://hal.archives-ouvertes.fr/hal-01057467
http://hal.archives-ouvertes.fr/hal-01057467
http://eprint.iacr.org/2014/493
https://doi.org/10.1007/s40993-022-00407-9
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://www.normalesup.org/~robert/pro/publications/articles/change_level.pdf
http://hal.archives-ouvertes.fr/hal-03738315

30 REFERENCES

[MMPPW23] L. Maino, C. Martindale, L. Panny, G. Pope, and B. Wesolowski. “A Direct
Key Recovery Attack on SIDH”. In: Springer-Verlag (Eurocrypt 2023), 2023
(cit. on p. 4).

[Mum66] D. Mumford. “On the equations defining abelian varieties. I”. In: Invent.
Math. 1 (1966), pp. 287–354 (cit. on p. 5).

[Ren18] J. Renes. “Computing isogenies between Montgomery curves using the ac-
tion of (0, 0)”. In: Post-Quantum Cryptography: 9th International Conference,
PQCrypto 2018, Fort Lauderdale, FL, USA, April 9-11, 2018, Proceedings.
Springer. 2018, pp. 229–247 (cit. on p. 21).

[Rob10] D. Robert. “Theta functions and cryptographic applications”. PhD thesis.
Université Henri-Poincarré, Nancy 1, France, July 2010. url: http://
www.normalesup.org/~robert/pro/publications/academic/phd.pdf.
Slides: 2010-07-Phd-Nancy.pdf (1h, Nancy), TEL: tel-00528942. (Cit. on
pp. 4, 5, 8, 9, 11, 12, 32, 34).

[Rob21] D. Robert. “Efficient algorithms for abelian varieties and their moduli
spaces”. HDR thesis. Université Bordeaux, June 2021. url: http : / /
www.normalesup.org/~robert/pro/publications/academic/hdr.pdf.
Slides: 2021-06-HDR-Bordeaux.pdf (1h, Bordeaux). (Cit. on pp. 4, 5, 8, 9).

[Rob23a] D. Robert. “Breaking SIDH in polynomial time”. Apr. 2023. url: http:
/ / www . normalesup . org / ~robert / pro / publications / articles /

breaking_sidh.pdf. eprint: 2022/1038, HAL: hal-03943959, Slides: 2023-
04-Eurocrypt.pdf (15 min, Eurocrypt 2023, April 2023, Lyon, France). (Cit.
on p. 4).

[Rob23b] D. Robert. “Improving the arithmetic of Kummer lines”. Aug. 2023. url:
http://www.normalesup.org/~robert/pro/publications/notes/

2023-11-kummer_lines.pdf (cit. on p. 21).
[RS24] D. Robert and N. Sarkis. “Computing 2-isogenies between Kummer lines”.

Jan. 2024. url: http://www.normalesup.org/~robert/pro/publications/
articles/kummer_isogenies.pdf. eprint: 2024/037. (Cit. on p. 21).

Appendix A. Conversion formula between the theta model and the
Montgomery model in dimension 1

These formula are extracted from [BRS23].

A.1. Theta and Montgomery. Let 𝐸/𝑘 be an elliptic curve, and (𝑎 ∶ 𝑏) = (𝜃0(0𝐸), 𝜃1(0𝐸))
be its theta null point. We give formula to convert the theta points (𝜃0(𝑃) ∶ 𝜃1(𝑃)) into the
Montgomery coordinates (𝑥(𝑃) ∶ 𝑧(𝑃)).

When the theta null point is rational, the elliptic curve 𝐸 admits both a rational Mont-
gomery model and a rational Legendre model. They are given by

𝑦2 = 𝑥(𝑥 − 𝛼)(𝑥 − 1/𝛼) = 𝑥(𝑥2 + 𝒜𝑥 + 1)

and (up to a quadratic twist, which is harmless because we work on the Kummer line anyway)
by

𝑦2 = 𝑥(𝑥 − 1)(𝑥 − 𝜆).

http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/academic/phd.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2010-07-Phd-Nancy.pdf
http://tel.archives-ouvertes.fr/tel-00528942
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2021-06-HDR-Bordeaux.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://www.normalesup.org/~robert/pro/publications/articles/breaking_sidh.pdf
http://eprint.iacr.org/2022/1038
http://hal.archives-ouvertes.fr/hal-03943959
http://www.normalesup.org/~robert/pro/publications/slides/2023-04-Eurocrypt.pdf
http://www.normalesup.org/~robert/pro/publications/slides/2023-04-Eurocrypt.pdf
https://eurocrypt.iacr.org/2023/
http://www.normalesup.org/~robert/pro/publications/notes/2023-11-kummer_lines.pdf
http://www.normalesup.org/~robert/pro/publications/notes/2023-11-kummer_lines.pdf
http://www.normalesup.org/~robert/pro/publications/articles/kummer_isogenies.pdf
http://www.normalesup.org/~robert/pro/publications/articles/kummer_isogenies.pdf
http://eprint.iacr.org/2024/037

REFERENCES 31

These constants are determined as follows: let (𝐴 ∶ 𝐵) be the dual coordinates of the
canonical 2-isogenous curve (we will only need their square). We have

𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2,(4)

𝛼 = 𝐴2/𝐵2 = (𝑎2 + 𝑏2)/(𝑎2 − 𝑏2),(5)

𝜆 = 𝛼2 = 𝐴4/𝐵4 = (𝑎2 + 𝑏2)2/(𝑎2 − 𝑏2)2,(6)

𝒜 = −(𝛼 + 1/𝛼) = −(𝛼2 + 1)/𝛼 = −(𝐴4 + 𝐵4)/(𝐴2𝐵2) = −2(𝑎4 + 𝑏4)/(𝑎4 − 𝑏4),
(7)

(𝒜 + 2)/4 = −𝑏4/(𝑎4 − 𝑏4).(8)

Conversely, from 𝒜, we can recover (𝑎 ∶ 𝑏) via

𝛼 + 1/𝛼 = −𝒜,(9)

𝐴2/𝐵2 = 𝛼,(10)

𝑎2 = 𝐴2 + 𝐵2, 𝑏2 = 𝐴2 − 𝐵2, (𝑎2 ∶ 𝑏2) = (𝛼 + 1 ∶ 𝛼 − 1).(11)

We note that if (𝑎 ∶ 𝑏) is a solution, then (𝑎 ∶ 𝜁𝑏) also with 𝜁 ∈ 𝜇4, these correspond to
different theta structures.

With these constants defined, we can now explain how to convert the points. If 𝑃 = (𝑥 ∶ 𝑧)
in Montgomery coordinates, then

(12) (𝜃0(𝑃) ∶ 𝜃1(𝑃)) = (𝑎(𝑥 − 𝑧) ∶ 𝑏(𝑥 + 𝑧)).

Conversely, if 𝑃 = (𝜃0 ∶ 𝜃1), then in Montgomery coordinates

(13) (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃1 + 𝑏𝜃0 ∶ 𝑎𝜃1 − 𝑏𝜃0).

On the theta model 0𝐸 = (𝑎 ∶ 𝑏), we have a canonical basis of the 2-torsion given by
𝑇1 = (𝑎 ∶ −𝑏) and 𝑇2 = (𝑏 ∶ 𝑎). We have a canonical basis of the 4-torsion given by
𝑇′

1 = (1 ∶ 0) above 𝑇1 and 𝑇′
2 = (1 ∶ 1) above 𝑇2. The map above sends 𝑇1 to (0 ∶ 1) in the

Montgomery model, 𝑇′
1 to (1 ∶ 1), 𝑇2 to (𝐴2 ∶ 𝐵2), 𝑇′

2 to (𝑎 + 𝑏 ∶ 𝑎 − 𝑏).
So conversely, given a Montgomery curve, the canonical point 𝑇′ = (1 ∶ 1) of 4-torsion

above the 2-torsion point 𝑇 = (0 ∶ 1) and a second point 𝑇" = (𝑟 ∶ 𝑠) above another point
of 2-torsion, then the theta null point (𝑎 ∶ 𝑏) induced by the basis (𝑇′, 𝑇") of the 4-torsion
is given by (𝑟 + 𝑠 ∶ 𝑟 − 𝑠).

For the case of a general elliptic curve 𝐸 with a basis (𝑇′, 𝑇") of the 4-torsion, we first
convert 𝐸 to a Montgomery model by sending 𝑇′ to (1 ∶ 1) and 𝑇 = 2𝑇′ to (0 ∶ 1), the map
is then 𝑥 ↦ (𝑥 − 𝑥(𝑇))/(𝑥(𝑇′) − 𝑥(𝑇)). Then we apply the above formula to the image of
𝑇".

A.2. The alternative Montgomery model. When we have a theta model, we can also intro-
duce the dual theta coordinates

(𝜃′
0 ∶ 𝜃′

1) = (𝜃0 + 𝜃1 ∶ 𝜃0 − 𝜃1),

in particular the dual theta null point is given by (𝑎′ ∶ 𝑏′) = (𝑎 + 𝑏 ∶ 𝑎 − 𝑏). We can
construct another Montgomery model by replacing in the above formula (𝑎, 𝑏, 𝜃0, 𝜃1) by
(𝑎′, 𝑏′, 𝜃′

0, 𝜃′
1).

32 REFERENCES

Plugging in this different model the equations expressing (𝑎′, 𝑏′, 𝜃′
0, 𝜃′

1) in terms of
(𝑎, 𝑏, 𝜃0, 𝜃1), we obtain alternative formulas:

𝐴′2 = 𝑎′2 + 𝑏′2 = 2(𝑎2 + 𝑏2), 𝐵′2 = 𝑎′2 − 𝑏′2 = 4𝑎𝑏,(14)

𝛼′ = 𝐴′2/𝐵′2 = (𝑎2 + 𝑏2)/(2𝑎𝑏), 𝜆′ = 𝛼′2,(15)

𝒜 ′ = −(𝛼′ + 1/𝛼′) = −(𝑎4 + 6𝑎2𝑏2 + 𝑏4)/(2(𝑎3𝑏 + 𝑎𝑏3)),(16)
𝑃 = (𝑥 ∶ 𝑧) ↦ (𝜃0(𝑃), 𝜃1(𝑃)) = (𝑎𝑥 − 𝑏𝑧 ∶ 𝑏𝑥 − 𝑎𝑧),(17)
(𝜃0, 𝜃1) ↦ (𝑥(𝑃) ∶ 𝑧(𝑃)) = (𝑎𝜃0 − 𝑏𝜃1 ∶ 𝑏𝜃0 − 𝑎𝜃1).(18)

Appendix B. The algebraic theta transformation formula

We briefly describe the algebraic theta transformation formula in level 𝑛, see [Rob10] for
more details.

Assume that we have a symmetric theta structure of level 𝑛, induced by a symplectic
basis (𝑒′

1, … , 𝑒′
𝑔, 𝑓 ′

1, … , 𝑓 ′
𝑔) of 𝐴[2𝑛]. Let 𝑀 ∈ Sp2𝑔(ℤ), this induces a symplectic matrix of

ℤ/𝑛ℤ hence a symplectic change of variable on our basis above. The new symplectic basis
will give a new symmetric theta structure, hence a linear change of variable on our theta
functions. We now describe this action.

The group Sp2𝑔(ℤ) is generated by these three types of matrices:

(1) The matrix 𝒮 = (0 1
−1 0). This matrix acts by the Hadamard transform 𝐻.

(2) The matrix 𝑀 = (𝐴 0
0 𝐴−𝑇) where 𝐴 is in Gl𝑔(ℤ). This matrix acts by 𝜃𝑖 ↦ 𝜃𝐴.𝑖,

where the action is the natural action of 𝐴 on (ℤ/𝑛ℤ)𝑔 induced by the action of 𝐴
on ℤ𝑔.

(3) The matrix 𝑀 = (1 𝐶
0 1) where 𝐶 is symmetric. Fix 𝜁 a primitive 2𝑛-root of unity

induced by a symplectic basis of the 2𝑛-torsion inducing our theta strucutre. This
matrix acts by 𝜃𝑖 ↦ 𝜁 𝑖𝑇𝐶𝑖𝜃𝑖. For instance if 𝐶 is diagonal with the only non zero
entry being a one at position (𝑗, 𝑗), the action is 𝜃𝑥 ↦ 𝜁𝑥2

𝑗 𝜃𝑥. If 𝐶 is diagonal with
only two non zero entries at position (𝑖, 𝑗), (𝑗, 𝑖), the action is 𝜃𝑥 ↦ 𝜁2𝑥𝑖𝑥𝑗𝜃𝑥.

Example B.1. In dimension 1, Γ/Γ(2, 4) is of cardinal 6 ∗ 4 = 24, the modular action
induces all possible permutation on the four points of ramification of 𝐸 → ℙ1.

Example B.2. In dimension 2, Γ/Γ(2, 4) is of cardinal 720 ∗ 24. If the abelian surface is
a product of two elliptic curves, the subgroup preserving a product theta structure is of
cardinal 2 ∗ 24 ∗ 24 so is of index 10. There are ten even theta constants of level (2, 2), an
abelian surface is a product theta if and only if the even theta constant 𝜃[11; 11](0) = 0. The
index 10 corresponds to sending this null theta constant to one of the other 10 even theta.

B.1. Directly computing theta constants. The original proposal of these notes suggested
to compute the theta constants in level 2 by going through the product theta structure (via
the dimension 1 conversion of Appendix A) followed by a symplectic transform.

However, Sage’s linear algebra is quite slow, so the current implementation directly com-
putes the theta constants from a symplectic basis on the elliptic product.

An advantage of this approach is as follow: going to the direct product theta structure
involve starting with a tuple (𝑃1, 𝑃2) in Montgomery coordinate, applying a linear trans-
form (in dimension 1) on the coordinates of 𝑃𝑖 to obtain theta coordinates, take the Segre

REFERENCES 33

embedding to get the product theta structure coordinates, and apply a linear transform again
(in dimension 2) to get the theta coordinates compatible with our kernel. With the direct
approach we take the Segre embedding on the Montgomery coordinate and directly apply a
dimension 2 base change; this save the 2 dimension 1 linear base change.

We briefly explain how this works: on a dimension 1 theta model (𝑎 ∶ 𝑏), the point
𝑇2 = (−𝑎 ∶ 𝑏) as for symmetric lifts in the theta group the linear transformation (𝑋, 𝑍) ↦
(𝑋, −𝑍) (associated to the 4-torsion point (1 ∶ 0)) and (𝑋, 𝑍) ↦ (−𝑋, 𝑍) (associated to
the 4-torsion point (0 ∶ 1)). And the point 𝑇1 = (𝑏 ∶ 𝑎) as for symmetric lifts the linear
transformation (𝑋, 𝑍) ↦ (𝑍, 𝑋) (associated to the 4-torsion point (1 ∶ 1)) and the linear
transformation (𝑋, 𝑍) ↦ (−𝑍, −𝑋) (associated to the 4-torsion point (−1 ∶ 1)).

From the conversionmaps Appendix A, we see that on aMontgomery curve, the 4-torsion
point 𝑇 = (1 ∶ 1) above (0 ∶ 1) is associated to the linear map 𝑔𝑇 ∶ (𝑋, 𝑍) ↦ (−𝑍, −𝑋),
while the point (−1 ∶ 1) is associated to (𝑋, 𝑍) ↦ (𝑍, 𝑋).

For a general elliptic curve, if 𝑇 = (𝑥, 𝑦, 𝑧) is a point of 4-torsion and 2𝑇 = (𝑢, 𝑣, 𝑤), we
can map 𝑇 to the Montgomery point (1 ∶ 1) via the linear transformation (in the Kummer
line): (𝑋 ∶ 𝑍) ↦ (𝑋′, 𝑍′) = (𝑧𝑤𝑋 − 𝑧𝑢𝑍 ∶ (𝑥𝑤 − 𝑧𝑢)𝑍). It follows that in (𝑋, 𝑍)
coordinates, the action of 𝑔𝑇 is given by

𝑀𝑇𝑈𝑀−𝑇 = (𝑢𝑧/(𝑤𝑥 − 𝑢𝑧) 𝑧𝑤/(𝑤𝑥 − 𝑢𝑧)
(−𝑤𝑥2 + 2𝑢𝑧𝑥)/(−𝑧𝑤𝑥 + 𝑢𝑧2) −𝑢𝑧/(𝑤𝑥 − 𝑢𝑧)) ,

with 𝑀 = (𝑤𝑧 −𝑧𝑢
0 𝑥𝑤 − 𝑢𝑧), 𝑈 = (0 1

1 0).

Given a symplectic decomposition 𝐴[2] = 𝐾1⊕𝐾2 and a decomposition𝐴[4] = 𝐾′
1⊕𝐾′

2
above it, and a section 𝑠 ∈ Γ(𝐿) (𝐿 of level 2), we can construct a basis of level 2 theta
functions by taking the trace (provided it is non zero) 𝜃0 of 𝑠 under the level 2 elements
induced by the linear transformation 𝑔𝑇′, 𝑇′ ∈ 𝐾′

2 above each 𝑇 ∈ 𝐾2. Then for 𝑖 ∈ 𝐾1,
𝑖′ ∈ 𝐾′

1 above 𝑖, we let 𝜃𝑖 = 𝑔𝑖′ ⋅ 𝜃0.
As an example, on aMontgomery curvewe have𝑇2 = (−1 ∶ 1)which acts by 𝑔2⋅(𝑋, 𝑍) =

(−𝑍, −𝑋). Taking the trace of 𝑋 under this action we get: 𝜃0 = id ⋅𝑋 + 𝑔1 ⋅ 𝑋 = 𝑋 − 𝑍.
Let 𝑇1 = (𝑎+𝑏 ∶ 𝑎−𝑏) be another point of 4-torsion; its double is then (𝑎2+𝑏2 ∶ 𝑎2−𝑏2).

So with 𝑥 = 𝑎 + 𝑏,𝑧 = 𝑎 − 𝑏,𝑢 = 𝑎2 + 𝑏2,𝑤 = 𝑎2 − 𝑏2, we compute 𝜃1 = 𝑔1 ⋅ 𝜃0 =
𝑔1 ⋅ (𝑋 −𝑍) = (𝑢𝑧−𝑤𝑥𝑥/𝑧+2𝑢𝑥)/(𝑤𝑥−𝑢𝑧)𝑋 +𝑧(𝑤+𝑢)/(𝑤𝑥−𝑢𝑧)𝑍 = 𝑏/𝑎𝑋 +𝑏/𝑎𝑍.
Hence we recover exactly the base change (𝑋, 𝑍) ↦ (𝑎(𝑋 − 𝑍) ∶ 𝑏(𝑋 + 𝑍)) of Appendix A
from Montgomery to theta.

We can use the same strategy to compute the theta null point associated to a symplectic
basis of the 4-torsion on a product of elliptic curve. If 𝑇 = (𝑇1, 𝑇2) ∈ 𝐸1 ×𝐸2 is a point of 4-
torsion, the associated element 𝑔𝑇 is given by 𝑔𝑇 = 𝑔𝑇1

⊗𝑔𝑇2
.Thenwe can (for instance) take

𝜃0 as the trace of 𝑋1 ⊗𝑋2 under 𝐾2, with (𝑔𝑇1
⊗𝑔𝑇2

) ⋅(𝑋1 ⊗𝑋2) = (𝑔𝑇1
⋅𝑋1)⊗(𝑔𝑇2

⋅𝑋2).

B.2. Thechoice of signs. Wecanuse this action to explore our choice of sign. Fix (𝑒′
1, … , 𝑒′

𝑔, 𝑓 ′
1, … , 𝑓 ′

𝑔)
a symplectic basis of 𝐴[4] inducing our symmetric theta structure, and let 𝐾 = ⟨𝑓1, … , 𝑓𝑔⟩
where 𝑓𝑖 = 2𝑓 ′

𝑖 our kernel, and let 𝑓 ∶ 𝐴 → 𝐵 = 𝐴/𝐾. The image 𝑓 (𝑒′
𝑖) gives an isotropic sub-

group 𝐵1[4] of 𝐵[4], while 𝑓 (𝑓 ′
𝑖) gives 𝐵2[2] such that we have a symplectic decomposition

𝐵[2] = 𝐵1[2] ⊕ 𝐵2[2]. The choice of sign in our isogenous theta constant corresponds to
fixing a symplectic basis of 𝐵[4] compatible with the 𝑓 (𝑒′

𝑖), 𝑓 (𝑓𝑖).

These choice of signs corresponds to the action of thematrix 𝑀 = (1 𝐶
0 1) on 𝐵. We note

that there are two kind of action: the one where 𝐶 leaves 𝐵[2] invariant, this corresponds on
𝐴 to leaving the 𝑓 ′

𝑖 invariant and changing the points of 8-torsion above them. An example

34 REFERENCES

is given by 𝐶 which is diagonal with entries equal to 0 modulo 2. The second type changes
𝐵[2], hence changes the 𝑓 ′

𝑖 (but in a way that is still compatible with our theta structure on
𝐴).

This shows that we have 𝑔(𝑔 + 1)/2 choice of sign possible on 𝐵 (because the matrix 𝐶
has to be symmetric), but that if we fix the 4-torsion 𝑓 ′

1, 𝑓 ′
2 on 𝐴 we now only have 𝑔 choice

of signs. Algebraically these can be determined as follow: normalize the 𝑓 ′
𝑖 , because 𝑓 ′

𝑖 is of
order 4 this still leaves a choice of sign for each 𝑓 ′

𝑖 (specifically, we have an equation 𝜆4
𝑖 = 𝐶𝑖,

but the duplication formula only involve the 𝜆2
𝑖). This is enough to compute the isogenous

theta null point by Section 11.
In fact this is also enough to also normalize all of 𝐾[4]: normalize 𝑓 ′

𝑖 +𝑓 ′
𝑗 via ̃𝑓 ′

𝑖 + 𝑓 ′
𝑗 +𝑓 ′

𝑗 =
𝑓 ′
𝑖 + ̃𝑓𝑗, this involve an equation 𝜆2

𝑖𝑗 = 𝐶𝑖𝑗 so no choice of sign since the duplication formula
only involve the 𝜆2

𝑖𝑗. Next use the differential additions and three way additions to normalize
any remaining point. See [Rob10] for more details.

Example B.3. When 𝑔 = 1, our point of 4-torsion is 𝑇′ = (1 ∶ 0), which is normalized
to (𝜆, 0) where 𝜆4 = 𝐴2𝐵2. Since we know 𝐴2 = 𝑎2 + 𝑏2, 𝐵2 = 𝑎2 − 𝑏2, fixing 𝜆2 = 𝐴𝐵
is enough to fix (𝐴 ∶ 𝐵); changing to 𝜆2 = −𝐴𝐵 gives (𝐴 ∶ −𝐵), and this correspond to
normalising 𝑇′ by another point of 8-torsion above it.

When 𝑔 = 2, let’s say that our point of 8-torsion determined the coefficients (𝐴 ∶ 𝐵 ∶
𝐶 ∶ 𝐷). Our points of four torsion (suitably normalised by the 8-torsion) is then 𝑓 ′

1 which
determines (𝐴𝐵, 𝐶𝐷, 𝐴𝐵, 𝐶𝐷) and 𝑓 ′

2 which determines (𝐴𝐶, 𝐵𝐷, 𝐴𝐶, 𝐵𝐷). Changing 𝑓 ′
1

by 𝑓 ′
1 + 𝑒2 and 𝑓 ′

2 by 𝑓 ′
2 + 𝑒1 will give instead the coefficients (𝐴𝐵, −𝐶𝐷, 𝐴𝐵, −𝐶𝐷) and

(𝐴𝐶, −𝐵𝐷, 𝐴𝐶, −𝐵𝐷), hence corresponds to changing the sign of 𝐷. Keeping 𝑓 ′
1 and 𝑓 ′

2
but changing the points of 8-torsion above 𝑓 ′

1, hence changing their normalisation, then 𝑓 ′
1

will now give (−𝐴𝐵, −𝐶𝐷, −𝐴𝐵, −𝐶𝐷), hence this changes the sign of 𝐵 and 𝐷. Similarly
changing the point of 8-torsion above 𝑓 ′

2 will change the sign of 𝐶 and 𝐷. We do recover that
we have 2 possible choice of signs when the 𝑓 ′

1, 𝑓 ′
2 are fixed, and one more when we change

them (while staying compatible with the theta structure).
By theway,we remark that if we don’t normalize 𝑓 ′

1, 𝑓 ′
2, we recover𝜆1𝐴𝐵, 𝜆1𝐶𝐷, 𝜆2𝐴𝐶, 𝜆2𝐵𝐷

for some unknown projective factors 𝜆1, 𝜆2. Since we also know 𝐴2, 𝐵2, 𝐶2, 𝐷2, it is easy
to find equations for 𝜆2

1, 𝜆2
2. By the above discussion, all 4 solutions of these two equations

determine a valid isogenous (dual) theta null point; but they require to take two square roots.
The advantage of requiring points of 8-torsion is to dispense with these square roots.

However, for a 2𝑛-isogeny, this requires to start with points of 2𝑛+2-torsion above our kernel
𝐾. If we only have 𝐾, we could switch to the square root method for the second to last (which
requires 2 square roots because we have points of 4-torsion), and last (which requires 3
square roots because we now only have the 2-torsion) isogenies. This slow down the last two
codomain computations, however this does not change the images.

Example B.4. When 𝑔 = 2, it was remarked by Giacomo Pope that we don’t need to start
our isogeny chain with isotropic 2𝑛+2-torsion points 𝑃″

1, 𝑃″
2 above the kernel 𝑃1, 𝑃2, we just

need non necessarily isotropic points.
The first 𝑛 − 2 steps are the same, we just need to explain why the formula still work at

the last two steps.
At the penultimate step, assume that our 8-torsion 𝑇"1, 𝑇"2 is correct and that 𝑓 (𝑇"1) =

(𝑥 ∶ 𝑥 ∶ 𝑦 ∶ 𝑦), and 𝑓 (𝑇"2) = (𝑧 ∶ 𝑡 ∶ 𝑧 ∶ 𝑡) in 𝜃′ coordinate. If we change our points by
𝑇 ∈ 𝐾2 this changes nothing because 𝐾2 is our kernel so the images are the same. If 𝑇 ∈ 𝐾1,
𝑇 acts by a shift in 𝜃 coordinates, so by a sign in 𝜃′-coordinate. So if 𝑇"2 is wrong we could

REFERENCES 35

have 𝑓 (𝑇"2) = (𝑧 ∶ 𝑡 ∶ −𝑧 ∶ −𝑡). If we look at our code, we see that this changes by a sign
one of the constant (𝐴 ∶ 𝐵 ∶ 𝐶 ∶ 𝐷) we compute.

So when the 4-torsion is correct, but the 8 torsion is wrong, then in the codomain the
4-torsion is wrong, rather than getting (𝑥 ∶ 𝑥 ∶ 𝑦 ∶ 𝑦) say above (𝐵 ∶ 𝐴 ∶ 𝐷 ∶ 𝐶), we get
(𝑥 ∶ −𝑥 ∶ 𝑦 ∶ −𝑦). So instead of getting (𝐴, 𝐵, 𝐶, 𝐷), we get −𝐵, −𝐷, but (𝐴 ∶ −𝐵 ∶ 𝐶 ∶ −𝐷)
is still a valid theta null point. But compared to our true image map, our image map has sign
flips. In particular, the 4-torsion point which was sent to (𝐵 ∶ 𝐴 ∶ 𝐷 ∶ 𝐶) before, is now sent
to (𝐵 ∶ −𝐴 ∶ 𝐷 ∶ −𝐶). But compared our new theta null point (𝐴 ∶ −𝐵 ∶ 𝐶 ∶ −𝐷), this is
still the correct 2-torsion point for the next isogeny!

We can do a similar reasoning for the last isogeny. Here even the 4-torsion is wrong, so
our 2-torsion on the codomain is wrong: say rather than getting (𝐵 ∶ 𝐴 ∶ 𝐷 ∶ 𝐶) we get
(𝐵 ∶ −𝐴 ∶ 𝐷 ∶ −𝐶). Then it follows that our 8-torsion point is sent to a 4-torsion point
above this 2-torsion, which means it is of the form (𝑥, 𝑖𝑥, 𝑦, 𝑖𝑦) or (𝑥, −𝑖𝑥, 𝑦, −𝑖𝑦). If we use
this point, this will change 𝐵 to 𝑖𝐵 say (and maybe for 𝐷 too), but this kind of change also
comes from a symplectic automorphism. And since we don’t take any more kernel, we don’t
care what the images of our 4-torsion points are anyway afterwards.

Appendix C. Other applications of the duplication formula

By now the reader should be convinced that the duplication formula for theta functions
allows for very fast 2-isogeny formula. The Sage implementation (due to Pierrick Dartois,
Sabrina Kunzweiler, Luciano Maino, Giacomo Pope and myself) shows a nice speed up
compared to Richelot formula, this will be detailed in a follow up work.

One can wonder if theta coordinates can be used for other applications. The following use
case was suggested by Sabrina Kunzweiler in dimension 2: look at CGL like hash function in
dimension 2 in the theta model, by computing chuncks of 2𝑛-isogenies.

Altough the formula from these notes can be used, there are two problems remaining:
• Compute the symplectic change of basis to make the kernels 𝐾 in a way such that

𝐾[4] is canonical. A method is probably to compute a basis of 𝐴[4] compatible
with our theta structure (unfortunately this involves square roots), as described in
Section 16.6, complete 𝐾[4] into a symplectic basis, compute the symplectic change
of basis, eg using Weil pairings (but since we are in level 2 this involves more square
roots), and apply the theta transformation formula. If we start with a Jacobian, and
we compute the theta constants through Thomaes formula, a better method would
be to use formula due to Sabrina which gives the correct square roots to take in
Thomae’s formula according to a fixed symplectic basis of Jac𝐶[4].

• Once 𝐾 is in suitable form, andmore generally we have 𝑒′
1, 𝑒′

2, 𝑓 ′
1, 𝑓 ′

2 a symplectic basis
of 𝐴[2𝑛], such that the induced symplectic basis 𝑒1, 𝑒2, 𝑓1, 𝑓2 a symplectic basis of
𝐴[4] is compatible with the theta structure and 𝐾 = ⟨𝑓 ′

1, 𝑓 ′
2⟩ (so that ⟨𝑓1, 𝑓2⟩ = 𝐾[4]

and 𝐾 is compatible with our theta structure); we can compute the isogeny 𝑓 ∶ 𝐴 → 𝐵
and the images 𝑓 (𝑒′

1), 𝑓 (𝑒′
2).

We now need to regenerate the 2𝑛-torsion of 𝐵 by computing a symplectic basis
𝑓 (𝑒′

1), 𝑓 (𝑒′
2), 𝑔′

1, 𝑔′
2 and take a kernel 𝐾′ whose intersection with ⟨𝑓 (𝑒′

1), 𝑓 (𝑒′
2)⟩ is

trivial (so the next isogeny has no (partial) backtracking.
Since we are in level 2 however it is not clear how to best do this step. Sample ran-

dom points, multiply by the cofactor, and do someWeil pairing computations (which
as mentioned involve square roots since we are in level 2)? Go back to a Jacobian
representation to compute the 2𝑛-torsion and switch back to theta afterwards?

We leave the best method as an open problem.

36 REFERENCES

What is much easier though is to only do chuncks of 2-isogenies and use multiradical
2-isogeny formula in the spirit of [CD21] to regenerate the 2-torsion at each step (in a
non backtracking way). Remember that in dimension 𝑔, multiradical formula will involve
𝑔(𝑔 + 1)/2 square roots.

Using the duplication formula, 2-isogeny multiradical formula are particularly simple in
the level 2 theta model in dimension 1 and 2:

• In dimension 1 start with the theta null point (𝑎 ∶ 𝑏), apply the square operator
𝑆 to get (𝑎2 ∶ 𝑏2), the Hadamard operator 𝐻(𝑥 ∶ 𝑦) = (𝑥 + 𝑦 ∶ 𝑥 − 𝑦) to get
(𝐴2 ∶ 𝐵2) = (𝑎2 +𝑏2 ∶ 𝑎2 −𝑏2). Take an arbitrary square root of 𝐵2/𝐴2. To prevent
an inversion, a solution is to instead take an arbitrary square root 𝐴𝐵 (depending on
the current bit of the message we want to hash) of 𝐴2𝐵2, which give the projective
dual isogeneous theta null point (𝐴2 ∶ 𝐴𝐵). Apply the Hadamard operator 𝐻 again
to get (𝑎2 ∶ 𝑏2), this is our isogeneous theta null point. Iterate for each bit of our
message. The whole formula cost one square root, 2𝑆 + 1𝑀 + 4𝑎.

• In dimension 2, the same formula hold: start with the theta null point (𝑎 ∶ 𝑏 ∶ 𝑐 ∶ 𝑑),
apply 𝑆 to get (𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2), then 𝐻(𝑥 ∶ 𝑦 ∶ 𝑧 ∶ 𝑡) = (𝑥 + 𝑦 + 𝑧 + 𝑡, 𝑥 −
𝑦 + 𝑧 − 𝑡, 𝑥 + 𝑦 − 𝑧 − 𝑡, 𝑥 − 𝑦 − 𝑧 + 𝑡) to get (𝐴2 ∶ 𝐵2 ∶ 𝐶2 ∶ 𝐷2), take arbitrary
square roots (depending on our bits) 𝐴𝐵, 𝐴𝐶, 𝐴𝐷 of 𝐴2𝐵2, 𝐴2𝐶2, 𝐴2𝐷2 to get
(𝐴2 ∶ 𝐴𝐵 ∶ 𝐴𝐶 ∶ 𝐴𝐷), and apply 𝐻 again to get (𝑎2 ∶ 𝑏2 ∶ 𝑐2 ∶ 𝑑2) for a total cost of
three square roots and 4𝑆 + 3𝑚 + 8𝑎.

It would be interesting to compare these methods with the usual methods:
• In dimension 1 using themodular polynomial 𝜙2, removing the linear factor coming

from the preceding isogeny and solving a degree 2 equation
• In dimension 2 using Richelot formula, factorizing 3 degree 2 polynomials at each

step.
We also leave that for future work!

An interesting open problem is to generalize this approach to higher dimension. From
the theta transformation formula, one can see that we can only take 𝑔(𝑔 + 1)/2 arbitrary
square roots (the ones coming from 𝑒𝑖, 𝑒𝑖 + 𝑒𝑗 where 𝑒𝑖 is a basis of (ℤ/2ℤ)𝑔), once these are
taken the rest are fixed. But I don’t know how to most efficiently determine these remaining
choices (apart from a rather expensive Grobner basis computation), unless we already have
some information on the 4-torsion on the domain. When 𝑔 = 1, 2, all choices are possible,
so this problem goes away.

Another interesting direction is to extend these 2-radical formulas to 4-radical and 8-
radical formula. Using the generic isogeny algorithm [LR12; CR15; LR22a] combined with
[FLR11], I have a generic multiradical isogeny formula in any dimension in the theta model
[LR22b]. But we have just seen that 2𝑛-isogenies in the theta model can be made much faster
than the generic isogeny computation, so it’s probably better to find direct radical isogeny
formula for ℓ = 4, 8.

INRIA Bordeaux–Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien.robert@inria.fr
URL: http://www.normalesup.org/~robert/

Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex
FRANCE

	1. Context
	2. Introduction
	3. The two torsion on a level 2 theta structure
	4. The Hadamard transform
	5. The duplication formula
	6. Differential additions
	7. Normalising points
	8. The choice of the theta constant for a 2-isogeny
	9. The choice of theta constants for a 2n-isogeny
	10. Normalising the points for a 2n-isogeny
	11. Computing the isogenous theta null point
	12. The image of a point
	13. The full algorithm
	14. Complexity
	14.1. The old algorithm
	14.2. The new algorithm
	14.3. The new algorithm: normalising 8-torsion points at each steps
	14.4. The new algorithm, normalizing points at the beginning

	15. 2n-isogenies in dimension 1
	15.1. 2-isogenies in the theta model
	15.2. Theta versus Montgomery

	16. 2n-isogenies in dimension 2
	16.1. Isogeny formula
	16.2. Splitting isogenies
	16.3. Gluing isogenies
	16.4. Annulation of the theta null points
	16.5. Further optimisations in dimension 2
	16.6. What if we don't have 8-torsion points?

	17. Even better formula: getting rid of the normalisation process
	17.1. Removing inversions

	References
	Appendix A. Conversion formula between the theta model and the Montgomery model in dimension 1
	A.1. Theta and Montgomery
	A.2. The alternative Montgomery model

	Appendix B. The algebraic theta transformation formula
	B.1. Directly computing theta constants
	B.2. The choice of signs

	Appendix C. Other applications of the duplication formula

