
Reducible gluing of abelian varieties

DAMIEN ROBERT

Abstract. This note extend Kani’s work on reducible gluing of elliptic curves to abelian
varieties.

1. Introduction

Kani’s lemma [Kan97, § 2] has been a hot topic in isogeny based cryptography [CD22;
MM22; Rob22a; Rob22b]. It is easy to extend it to abelian varieties, see [Rob22a, Lemma 3.4].
But Kani’s work on reducible gluing of elliptic curves in [Kan97] goes further than just
this lemma. The purpose of these notes is to cover the extension of Kani’s work to higher
dimensional abelian varieties. This is mostly a straightforward adaptation of Kani’s proofs
from elliptic curves to abelian varieties, with a few subtleties stemming from the fact that
maximal isotropic kernels in abelian varieties are not always nicely described.

Kani’s work in [Kan97, § 2] cover three related topics: how to combine an 𝑁1-isogeny
𝑓1 ∶ 𝐸0 → 𝐸1, and a𝑁2-isogeny 𝑓2 ∶ 𝐸0 → 𝐸2 into an𝑁1+𝑁2-isogeny𝐹 ∶ 𝐸0×𝐸′

0 → 𝐸1×𝐸2,
why they are all of this form, and describe the kernel of 𝐹. The applications mentioned above
only really need the case where 𝑁1 is prime to 𝑁2 which simplify things. Nevertheless, the
general case is interesting and Kani deals with it in details for elliptic curves. In Section 3 we
show how his results extend to dimension 𝑔 abelian varieties. But first we need to describe
maximal isotropic subgroups in more details, this is done in Section 2.

Throughout these notes we only deal with separable isogenies. In particular, when looking
at 𝑁-isogenies, we implicitly restrict to the case where 𝑁 is prime to the characteristic 𝑝 of
the base field (or 𝑝 = 0).

2. Maximal isotropic kernels

Let (𝐴, 𝜆𝐴) be a ppav.

Definition 2.1. A subgroup 𝐾 ⊂ 𝐴[𝑁] is called isotropic (with respect to the Weil pairing
𝑒𝐴,𝑁 on 𝐴) if 𝐾 ⊂ 𝐾⟂, ie if 𝑒𝐴,𝑁(𝑃, 𝑄) = 1 for all 𝑃, 𝑄 ∈ 𝐾.

In the theory of bilinear form, such a subgroup 𝐾 is usually called totally isotropic. An
isotropic subgroup 𝐻 ⊂ 𝐺 for a quadratic form 𝑞 on 𝐺 usually means that there is an
isotropic element 𝑥 ≠ 0 ∈ 𝐻, ie such that 𝑞(𝑥) = 0. However, since 𝑒𝐴,𝑁 is alternating,
every non trivial subgroup of 𝐴[𝑁] is isotropic in this sense.

Lemma 2.2. Let 𝐾 ⊂ 𝐴[𝑁] be a subgroup. The following are equivalent:
(1) 𝐾 is isotropic, and maximal among isotropic kernels (ie 𝐾 is maximal isotropic);
(2) 𝐾 = 𝐾⟂.
(3) 𝐾 is isotropic of cardinal 𝑁𝑔.
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Proof. 1 ⇒ 2 ⇒ 3 ⇒ 1, using that #𝐾⟂#𝐾 = 𝑁2𝑔 since 𝑒𝐴,𝑁 is symplectic, which shows that
in particular an isotropic group has cardinal #𝐾 ≤ 𝑁𝑔. �

Lemma 2.3. Let 𝐾 be a maximal isotropic subgroup and ℓ ∣ #𝐾. Then 𝐾[ℓ] is of dimension at
least 𝑔 (over ℤ/ℓℤ), so contains a maximal isotropic subgroup 𝐾′ for 𝐴[ℓ].

Proof. By the symplectic CRT theorem, we may assume 𝑁 = ℓ𝑒. If 𝐾[ℓ] was of dimension
𝑟 < 𝑔, we would have #𝐾 ≤ (ℓ𝑒)𝑟 < (ℓ𝑒)𝑔, and 𝐾 would not be maximal. So 𝐾[ℓ] is of
rank 𝑟 ≥ 𝑔, hence we can always extract an isotropic subgroup of rank 𝑔 by the structure
theorem of symplectic vector spaces. (Be careful that 𝐾 itself will not be isotropic for 𝐴[ℓ] if
𝑟 > 𝑔). �

Corollary 2.4. Every 𝑁-isogeny can be decomposed as product of ℓ𝑖-isogenies with 𝑁 = ∏ ℓ𝑖.

If 𝐾 is a finite abelian group, we define its rank 𝑟 has the minimal integer 𝑟 such that there
exists a surjectionℤ𝑟 → 𝐾.This is also the number of elementary divisors 𝑑1 ∣ 𝑑2 ∣ … 𝑑𝑟 with
𝑑1 ≠ 1, giving the structure 𝐾 ≃ ∏ ℤ/𝑑𝑖ℤ. This is also the maximum of the dimensions of
the 𝐾[𝑝] as a ℤ/𝑝ℤ vector space over all 𝑝 (dividing #𝐾). We call a “basis” of 𝐾 a system of
generators (𝑔1, … , 𝑔𝑟) of cardinal 𝑟.

Lemma 2.5. A maximal isotropic kernel 𝐾 ⊂ 𝐴[𝑁] of rank 𝑔 always has an isotropic
complement 𝐾′, meaning that 𝐴[𝑁] = 𝐾 ⊕ 𝐾′ is a symplectic decomposition. In particular, if
(𝑒1, … , 𝑒𝑔) is a basis of 𝐾, it extends into a symplectic basis (𝑒1, … , 𝑒𝑔, 𝑓1, … 𝑓𝑔) of 𝐴[𝑁], and
if 𝑚 ∣ 𝑁, 𝐾[𝑚] is maximal isotropic in 𝐴[𝑚].

Proof. By the symplectic CRT theorem, we may reduce to the case 𝑁 = ℓ𝑔. Since 𝐾 is of
rank 𝑔 and is of cardinal ℓ𝑔, it is homogeneous. It has a symplectic complement by [PSV10,
Theorem 10.14]. �

Example 2.6. In 𝐴[ℓ] (with ℓ prime) an isotropic subgroup 𝐾 is maximal iff it is of rank 𝑔
(by the structure theorem of symplectic vector spaces).

Lemma 2.7. If 𝐾 ⊂ 𝐴[ℓ𝑒] is homogeneous (all its invariants are equal), it is either of rank 𝑔
or of rank 2𝑔, In the latter case, 𝑒 = 2𝑓 and 𝐾 = 𝐴[ℓ𝑓].

If 𝐾 ⊂ 𝐴[𝑁] is homogeneous or more generally if each ℓ-Sylow of 𝐾 is homogeneous (this
condition is equivalent to, if 𝑑1 ∣ ⋯ ∣ 𝑑2𝑔 are the invariants of 𝐻 where 𝑑𝑖 is allowed to be 1,
then each prime divisor ℓ of 𝑁 divides at most one quotient 𝑑𝑖+1/𝑑𝑖), then 𝑁 = 𝑁2

1𝑁2 with
gcd(𝑁1, 𝑁2) = 1, 𝐾[𝑁2

1] = 𝐾[𝑁1] = 𝐴[𝑁1] and 𝐾[𝑁2] maximal isotropic of rank 𝑔 in
𝐴[𝑁2].

Proof. By [PSV10, Theorem 10.14], 𝐾 is standard (see below). Let (𝑒1, … , 𝑒𝑔, 𝑓1, … , 𝑓𝑔) a
symplectic basis of 𝐴[𝑁] adapted to a standard decomposition 𝐾 = 𝐾1 ⊕ 𝐾2. Then since
𝐾 is homogeneous, either 𝐾 has for basis (say) (𝑒1, … , 𝑒𝑘, 𝑓𝑘+1, … 𝑓𝑔) so it has rank 𝑔, or for
basis (ℓ𝑓𝑒1, … , ℓ𝑓𝑒𝑔, ℓ𝑓𝑓1, … ℓ𝑓𝑓𝑔) with 𝑒 = 2𝑓.

The general case comes from the symplectic CRT. �

It is often convenient to treat the case of maximal isotropic subgroups of the form 𝐴[𝑛]
and those of rank 𝑔 together. The following notion encompass these two cases:

Lemma 2.8. Let 𝐴[𝑁] = 𝐴1[𝑁] ⊕ 𝐴2[𝑁] be a symplectic decomposition. Let 𝐾1 ⊂ 𝐴1[𝑁]
be any subgroup. Let 𝐾2 = 𝐾⟂

1 ∩ 𝐴2[𝑁]. Then 𝐾 = 𝐾1 ⊕ 𝐾2 is maximal isotropic. Conversely,
if 𝐾 = 𝐾1 ⊕ 𝐾2 is maximal isotropic with 𝐾𝑖 ⊂ 𝐴𝑖[𝑁], then 𝐾2 = 𝐾?

1 ∩ 𝐴2[𝑁].
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Proof. 𝐾2 is orthogonal to𝐾1 by definition, and orthogonal to itself because it lives in𝐴2[𝑁].
Hence 𝐾 is isotropic. We have 𝐾?

1 = 𝐴1[𝑁] ⊕ 𝐾2, so since 𝐾?
1

? = 𝐾1, 𝐾?
2 = 𝐾1 ⊕ 𝐴2[𝑁].

So 𝐾? = 𝐾?
1 ∩ 𝐾?

2 = 𝐾, hence 𝐾 is maximal isotropic. The converse follows by the same
calculation. �

Definition 2.9. A isotropic subgroup 𝐾 is called standard if there is a symplectic decompo-
sition 𝐴[𝑁] = 𝐴1[𝑁] ⊕ 𝐴2[𝑁] such that 𝐾 = 𝐾1 ⊕ 𝐾2 where 𝐾𝑖 = 𝐾 ∩ 𝐴𝑖[𝑁].

In particular, if 𝐾 = 𝐾1 ⊕ 𝐾2 is a standard isotropic subgroup, 𝐾2 ⊂ 𝐾⟂
1 ∩ 𝐴2[𝑁], and

by Lemma 2.8, 𝐾 is maximal iff we have equality.

Example 2.10. • a maximal isotropic kernel of rank 𝑔 is standard by Lemma 2.5.
• a homogeneous maximal isotropic kernel is standard by Lemma 2.7.
• For an elliptic curve, a maximal isotropic subgroup 𝐾 ⊂ 𝐸[𝑁] is always of the form

𝐾 = ⟨𝑃, 𝑄⟩ where 𝑃 = 𝑚𝑒1, 𝑄 = 𝑛𝑓1 with (𝑒1, 𝑓1) a symplectic basis of 𝐸[𝑁],
𝑚 ∣ 𝑛 and 𝑁 = 𝑚𝑛. In particular, 𝐾 is standard.

If 𝑚 = 1, 𝐾 = ⟨𝑃⟩ is cyclic. If 𝑚 = 𝑛, 𝐾 = 𝐸[𝑛] ⊂ 𝐸[𝑛2]. Since an isogeny
𝑓 ∶ 𝐸 → 𝐸′ of degree 𝑁 is always an 𝑁-isogeny, 𝐾 = Ker 𝑓 is maximal isotropic, and
𝑓 decomposes as 𝑓 = 𝑔 ∘ [𝑚], where 𝑔 has cyclic kernel, where 𝑚 is as above for 𝐾.

• Let (𝑒1, 𝑒2, 𝑓1, 𝑓2) be a symplectic basis of 𝐴[ℓ2], 𝐴 an abelian surface. Then 𝐾 =
⟨𝑒1, 𝑒2⟩ is maximal isotropic of rank 𝑔 = 2.

𝐾 = ⟨𝑒1, ℓ𝑒2, ℓ𝑓2⟩ is standard of rank 3. Notice that 𝐾[ℓ] is not isotropic in 𝐴[ℓ].
• In higher dimension, not every maximal isotropic kernel is standard [PSV10, Theo-

rem 10.13].

The nice thing about standard maximal isotropic subgroups is that we can reduce to
hyperbolic planes.

Lemma 2.11. Let 𝐴[𝑁] = ⊕𝑔
𝑖=1𝐻𝑖 be a symplectic decomposition of 𝐴[𝑁] into hyperbolic

planes (ie a subgroup of rank 2 such that the symplectic forms stay non degenerate), 𝐾𝑖 ⊂ 𝐻𝑖
an isotropic subgroup of 𝐻𝑖 and 𝐾 = ⊕𝑔

𝑖=1𝐾𝑖. Then 𝐾 is standard isotropic, and is maximal iff
each 𝐾𝑖 is maximal in 𝐻𝑖.

Conversely, if 𝐾 is maximal standard isotropic, then there exists a symplectic decomposition
𝐴[𝑁] = ⊕𝑔

𝑖=1𝐻𝑖 such that 𝐾 = ⊕𝑔
𝑖=1𝐾 ∩ 𝐻𝑖.

Proof. By the symplectic CRT, we reduce to the case 𝑁 = ℓ𝑒. Each 𝐾𝑖 ⊂ 𝐻𝑖 is standard
in 𝐻𝑖 by Example 2.10. Let (𝑒𝑖, 𝑓𝑖) be a symplectic basis of 𝐻𝑖, these glue together to form
a symplectic basis of 𝐴[𝑁], hence a symplectic decomposition of 𝐴[𝑁]. This shows that
𝐾 = ⊕𝑔

𝑖=1𝐾𝑖 is standard. Furthermore, 𝐾⟂ ∩ 𝐻𝑖 = 𝐾
⟂𝐻𝑖
𝑖 , so 𝐾 is maximal in 𝐴[𝑁] iff each

𝐾𝑖 is maximal in 𝐻𝑖.
Conversely, let𝐾 = 𝐾1×𝐾2 be a decomposition of amaximal standard isotropic𝐾 induced

by a symplectic decomposition of 𝐴[𝑁]. Take (𝑒1, … , 𝑒𝑔) a basis of 𝐴1[𝑁] compatible with
𝐾, ie such that 𝐾 = ⊕𝑖=1𝑔𝐾 ∩ ⟨𝑒𝑖⟩. This is possible because 𝐴1[𝑁] is homogeneous. Then
the dual basis (𝑓1, … , 𝑓𝑔) of 𝐴2[𝑁] with respect to (𝑒1, … , 𝑒𝑔) is adapted to 𝐾2 because
𝐾2 = 𝐾⟂

1 ∩ 𝐴2[𝑁]. Letting 𝐻𝑖 = (𝑒𝑖, 𝑓𝑖), we get that 𝐾 = ⊕𝑔
𝑖=1𝐾 ∩ 𝐻𝑖. �

3. Gluing abelian varieties

We generalize Kani’s study of gluing of elliptic curves [Kan97, § 2] to the case of abelian
varieties. As mentioned in the introduction, this is mostly a straightforward generalisation
of his proofs.
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3.1. Gluing. Let 𝐴, 𝐵 be two abelian varieties of dimension 𝑔. A gluing 𝐹 ∶ 𝐴 × 𝐵 → 𝐶 is
an isogeny from the product 𝐴 × 𝐵 to a dimension 2𝑔 abelian variety 𝐶. An uninteresting
case is when 𝐹 can be written as a diagonal isogeny 𝐹 = (𝑓1, 𝑓2) ∶ 𝐴 × 𝐵 → 𝐴′ × 𝐵′ where
𝑓1 ∶ 𝐴 → 𝐴′ and 𝑓2 ∶ 𝐵 → 𝐵′ are two isogenies. More generally, if Ker𝐹 = 𝐻𝐴 × 𝐻𝐵 then 𝐹
is the composition of a diagonal isogeny followed by an automorphism. We call such a 𝐹 a
product gluing (because its kernel is a diagonal product).

We will look at the case when 𝐴, 𝐵 are principally polarised, and 𝐹 is an 𝑁-isogeny. Note
that in the case of a product isogeny 𝐹 = (𝑓1, 𝑓2), if 𝑓1 is an 𝑁1-isogeny and 𝑓2 a 𝑁2-isogeny,
then 𝐹 is a (𝑁1, 𝑁2)-isogeny.

We will call 𝐹 aminimal gluing if it does not factorize through such a product gluing. An
equivalent condition is that Ker𝐹 ∩ 𝐴 × 0 = {0} and Ker𝐹 ∩ 0 × 𝐵 = {0}. Let 𝑔1 = dim𝐴,
𝑔2 = dim𝐵, and 𝐹 be a 𝑁-minimal gluing. Then the projections 𝑝𝐴 and 𝑝𝐵 are injective on
Ker𝐹. Since Ker𝐹 is maximal isotropic in (𝐴 × 𝐵)[𝑁], it is of cardinal 𝑁𝑔1+𝑔2, so we get
that 𝑔1 + 𝑔2 ≤ 2𝑔1 and 𝑔1 + 𝑔2 ≤ 2𝑔2, so 𝑔1 = 𝑔2. Henceforth, we let 𝑔 = 𝑔1 = 𝑔2.
Lemma 3.1. Let 𝜓 ∶ 𝐴[𝑁] → 𝐵[𝑁] be an anti-isometry with respect to the Weil pairing.
Then 𝐾 = {(𝑃, 𝜓(𝑃) ∣ 𝑃 ∈ 𝐴[𝑁]} is the kernel of a minimal 𝑁-gluing 𝐹 ∶ 𝐴 → 𝐵 × 𝐶.
Conversely, the kernel Ker𝐹 of a minimal 𝑁-gluing is of this form. Furthermore, to check that
𝐹 is minimal it suffices to check that Ker𝐹 ∩ 0 × 𝐵 = 0 or Ker𝐹 ∩ 𝐴 × 0 = 0.
Proof. Let 𝐹 be a minimal gluing and 𝐾 = Ker𝐹. Since 𝐾 ∩ 0 × 𝐵 = {0}, the projection
𝑝𝐴 ∶ 𝐴 × 𝐵 → 𝐴 is injective on 𝐾. Since 𝐾 ⊂ (𝐴 × 𝐵)[𝑁] is maximal isotropic in the 𝑁-
torsion, it is of cardinal𝑁2𝑔, so the image of𝐾 is surjective in𝐴[𝑁]. Hence 𝑝−1

𝐴 ∶ 𝐴[𝑁] → 𝐾
is well defined, and composing with 𝑝𝐵 we see that there is a well defined function 𝜓 such
that 𝐾 = {(𝑃, 𝜓(𝑃)) ∣ 𝑃 ∈ 𝐴[𝑁]}.

Since𝐾 ismaximal isotropic, we get 𝑒𝐴×𝐵,𝑁((𝑃1, 𝜓(𝑃1)), (𝑃2, 𝜓(𝑃2))) = 𝑒𝐴,𝑁(𝑃1, 𝑃2)𝑒𝐵,𝑁(𝜓(𝑃1), 𝜓(𝑃2)) =
1, so 𝜓 ∶ 𝐴[𝑁] → 𝐵[𝑁] is an anti-isometry.

Conversely, the same computation shows that if 𝜓 is an anti-isometry, 𝐾 = {(𝑃, 𝜓(𝑃) ∣
𝑃 ∈ 𝐴[𝑁]} is isotropic in (𝐴×𝐵)[𝑁], hence is maximal isotropic since it is of cardinal 𝑁2𝑔.
Furthermore, since 𝜓 is an anti-isometry, it is injective (hence bijective), so 𝐾 ∩ 𝐴 × 0 = 0.
This proves the last statement. �

Remark 3.2. Since (1, −1) and (−1, 1) are automorphisms of 𝐴 × 𝐵, the kernel 𝐾′ =
{(𝑃, −𝜓(𝑃) ∣ 𝑃 ∈ 𝐴[𝑁]} also define a minimal 𝑁-gluing which is isomorphic to the one
associated to 𝐾.
3.2. Reducible gluing. Now it can happen that in a minimal gluing 𝐹 ∶ 𝐴 × 𝐵 → 𝐶, 𝐶 splits
into a product even when 𝐹 is not a product isogeny. We say that 𝐹 is reducible.

When 𝑔 = 1, in that case 𝐶 splits as a product of elliptic curves, so 𝐹 = (𝑎 𝑐
𝑏 𝑑) is

automatically a matrix of 𝑛-isogenies (𝑛 depending on the component), because elliptic
curves have their Neron-Severi group of rank 1 (ie is trivial). In dimension 𝑔 > 1, 𝐶 may
not split into a product of two dimension 𝑔 abelian varieties. And even if it does, the matrix

𝐹 = (𝑎 𝑐
𝑏 𝑑) may not be given by individual 𝑛-isogenies if 𝐴 or 𝐵 has non trivial Neron-

Severi group.
Definition 3.3. A (minimal) gluing 𝐹 ∶ 𝐴×𝐵 → 𝐶 is said to be reducible if𝐶 ≃ 𝐴′ ×𝐵′ with

𝐴′, 𝐵′ of dimension 𝑔, and 𝐹 = (𝑎 𝑐
𝑏 𝑑) is given by a 𝑛𝑎-isogeny 𝑎 ∶ 𝐴 → 𝐴′, a 𝑛𝑏-isogeny

𝐴 → 𝐵′, a 𝑛𝑐-isogeny 𝑐 ∶ 𝐵 → 𝐴′ and a 𝑛𝑑-isogeny 𝑑 ∶ 𝐵 → 𝐵′. It is said to be non trivial
reducible if 𝐹 is not a product gluing.
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Here by abuse of notation, we allow the case 𝑛 = 0, where the notion of “0-isogeny”
means that the morphism is 0 (so is not an actual isogeny).

Lemma 3.4. Let 𝐹 be a reducible 𝑁-gluing. Then 𝐹 = (𝑎 𝑐
𝑏 𝑑), with 𝑛𝑎 = 𝑛𝑑, 𝑛𝑏 = 𝑛𝑐,

𝑛𝑎 + 𝑛𝑏 = 𝑁, ̃𝑐𝑎 = − ̃𝑑𝑏.
In particular, 𝐹 is not diagonal iff 𝑛𝑏 = 𝑛𝑐 ≠ 0.

Proof. The contragredient isogeny is given by ̃𝐹 = ( ̃𝑎 ̃𝑏
̃𝑐 ̃𝑑), and the equation ̃𝐹𝐹 = 𝑁 gives

𝑛𝑎 + 𝑛𝑏 = 𝑁, 𝑛𝑐 + 𝑛𝑑 = 𝑁, ̃𝑎𝑐 + ̃𝑏𝑑 = 0, ̃𝑐𝑎 + ̃𝑑𝑏 = 0. By duality the last equation is
already implied by the third one. The third equation also implies 𝑛𝑎𝑛𝑐 = 𝑛𝑏𝑛𝑑, so 𝑛𝑎 = 𝑛𝑑,
𝑛𝑏 = 𝑛𝑐. �

3.3. Isogeny diamonds. Lemma 3.4 shows that the following notion is natural:

Definition 3.5. A (𝑛1, 𝑛2)-isogeny diamond is a decomposition of a 𝑛1𝑛2-isogeny 𝑓 ∶
𝐴 → 𝐵 between principally polarised abelian varieties into two different decompositions
𝑓 = 𝑓 ′

1 ∘ 𝑓1 = 𝑓 ′
2 ∘ 𝑓2 where 𝑓1 is a 𝑛1-isogeny and 𝑓2 is a 𝑛2-isogeny. (Then 𝑓 ′

1 will be a 𝑛2-
isogeny and 𝑓 ′

2 a 𝑛1-isogeny.)This decomposition is said to beminimal ifKer 𝑓1∩Ker 𝑓2 = {0}
(this is equivalent to the fact that 𝑓1 and 𝑓2 do not factorize through a common isogeny), and
it is said to be orthogonal if 𝑛1 is prime to 𝑛2 (in which case it is automatically minimal).

𝐴 𝐴1

𝐴2 𝐵

𝑓1

𝑓2 𝑓 ′
1

𝑓 ′
2

In [Kan97, § 2], Kani reserves the name isogeny diamond to what we call here a minimal
isogeny diamond. We changed the term here slightly, because an isogeny diamond always
induces a reducible gluing 𝐹 ∶ 𝐴 × 𝐵 → 𝐴1 × 𝐵2, even if it is not minimal.

Remark 3.6.
If we have an isogeny diamond starting from 𝐴 as above, taking duals where needed we
also have an isogeny diamond starting from 𝐴1, 𝐴2 and 𝐵. If the isogeny diamond starting
from 𝐴 is minimal, we will see in the proof of Corollary 3.9 that the one from 𝐵 is too, ie
Ker 𝑓 ′

1 ∩ Ker 𝑓 ′
2 = 0. However, the one from 𝐴1 (or 𝐴2) may not be minimal.

As a counterexample, take a symplectic decomposition 𝐴[ℓ] = 𝐾1 ⊕ 𝐾2, 𝑓1 ∶ 𝐴 → 𝐴1
the quotient by 𝐾1 and 𝑓2 ∶ 𝐴 → 𝐴2 the quotient by 𝐾2; 𝑓 ′

1 the quotient of 𝐴1 by 𝑓1(𝐾2)
and 𝑓 ′

2 the quotient of 𝐴2 by 𝑓2(𝐾1). Then 𝑓 ′
1 ∶ 𝐴1 → 𝐴 is exactly the dual isogeny 𝑓1, so

Ker 𝑓 ′
1 ∩ Ker 𝑓1 = Ker 𝑓 ′

1 ≠ 0.
An isogeny diamond is completely determined by (𝑓1, 𝑓2, 𝑓 ). So it determines 𝐻1 = Ker 𝑓1,
𝐻2 = Ker 𝑓2 and 𝐻 = Ker 𝑓. In particular, 𝐻 is maximal isotropic in 𝐴[𝑛1𝑛2], 𝐻1 ⊂
𝐻 maximal isotropic in 𝐴[𝑛1], and 𝐻2 ⊂ 𝐻 maximal isotropic in 𝐴[𝑛2]. Note that if
𝐻1 ∩ 𝐻2 = 0 (ie the diamond is minimal), then 𝐻 = 𝐻1 ⊕ 𝐻2 since both members have
the same cardinality.
When we have a commutative square as above, this square is a pushout iff Ker 𝑓 = Ker 𝑓1 +
Ker 𝑓2 where 𝑓 = 𝑓 ′

2 ∘ 𝑓2 = 𝑓 ′
1 ∘ 𝑓1. So a minimal isogeny diamond is a pushout square.

Conversely, if 𝑓 is the pushout of a 𝑛1-isogeny 𝑓1 by a 𝑛2-isogeny 𝑓2, and gcd(𝑛1, 𝑛2) = 1,
then 𝑓 is a (orthogonal) isogeny diamond. But in general, the pushout 𝑓 ′

1 of 𝑓1 need not be an
𝑛1-isogeny, in which case the pushout is not a diamond.
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Lemma 3.7 (Kani). Let 𝑓 = 𝑓 ′
1 ∘ 𝑓1 = 𝑓 ′

2 ∘ 𝑓2 be a (𝑛1, 𝑛2)-isogeny diamond as above. Then

𝐹 = ( 𝑓1 𝑓 ′
1

−𝑓2 𝑓 ′
2
) is a 𝑛-isogeny 𝐴 × 𝐵 → 𝐴1 × 𝐴2 where 𝑛 = 𝑛1 + 𝑛2. Furthermore, if 𝑓 is

minimal, Ker𝐹 = {( ̃𝑓1, 𝑓 ′
1𝑥), 𝑥 ∈ 𝐴1[𝑛]}, and if 𝑓 is an orthogonal isogeny diamond, then

Ker𝐹 = {(𝑛1𝑥, 𝑓 𝑥), 𝑥 ∈ 𝐴[𝑛]}.

Proof. For the product polarisations, the dual isogeny ̃𝐹 is given by ̃𝐹 = ( 𝑓1 𝑓2
−𝑓 ′

1 𝑓 ′
2
) and we

directly check that ̃𝐹𝐹 = (𝑛1 +𝑛2) Id. Furthermore,Ker𝐹 is the image of ̃𝐹 on𝐴×𝐵[𝑑], and
if 𝑛1 is prime to 𝑛2 this is also the image of ̃𝐹 on 𝐴[𝑛] × {0}, so Ker 𝑓 = {( ̃𝑓1𝑥, −𝑓 ′

1𝑥), 𝑥 ∈
𝐴[𝑛]} = {(𝑛1𝑥, −𝑓 𝑥), 𝑥 ∈ 𝐴[𝑛]}. �

Remark 3.8. • One may of course permute 𝑓1 and 𝑓2, to get the same matrix 𝐹 up
to permutation of the coordinates. In terms of kernels, this amount to permut-
ing 𝐻1 and 𝐻2 and replacing 𝑓 by −𝑓. It is not hard to prove that Ker𝐹 is com-
pletely determined by (𝐻1, 𝐻2, 𝑓 ), and that there is a bijection between the Ker𝐹
for the isogeny diamonds, and the triplet (𝐻1, 𝐻2, 𝑓 ) modulo the above equivalence:
(𝐻1, 𝐻2, 𝑓 ) ≡ (𝐻2, 𝐻1, −𝑓 ). The exact same proof as in [Kan97, Theorem 2.3]
(more precisely the first three paragraphs p. 9) hold.

• Since we have automorphisms (−1, −1), (−1, 1) and (1, −1) on 𝐴 × 𝐵, we can also

use the matrix 𝐹′ = (𝑓1 −𝑓 ′
1

𝑓2 𝑓 ′
2

), whose kernel, in the case of an orthogonal isogeny

diamond, is Ker𝐹′ = {(𝑛1𝑥, −𝑓 𝑥), 𝑥 ∈ 𝐴[𝑛]}. In general, Ker𝐹′ ≠ Ker𝐹: there
are two different reducible isogenies 𝐴 × 𝐵 → 𝐴1 × 𝐴2.

• Note that 𝐹 is not a product gluing, so in particular is a non trivial reducible glu-
ing. Indeed if Ker𝐹 was a digonal product 𝐺1 × 𝐺2, we would have 𝐺1 ⊂ Ker 𝑓1,
𝐺2 ⊂ Ker 𝑓 ′

2. So #𝐺1 ≤ 𝑛𝑔
1, #𝐺2 ≤ 𝑛𝑔

2, but Ker𝐹 = #𝐺1#𝐺2 = 𝑛2𝑔, which is a
contradiction.

Corollary 3.9. There is a bijection between triple (𝐻1, 𝐻2, 𝑓 ) of isogeny diamonds modulo
the equivalence defined above, and non diagonal maximal reducible kernels 𝐾 of 𝐴[𝑛].

This bijection induces an equivalence between minimal isogeny diamonds and minimal
reducible gluing.

Proof. Thefirst statement result from the combination of Lemmas 3.4 and 3.7 andRemark 3.8.
For the second statement, we need to prove that 𝐹 is minimal iff Ker 𝑓1 ∩ Ker 𝑓2 = 0.

Note that Ker𝐹 ∩ 𝐴 × 0 = Ker 𝑓1 ∩ Ker 𝑓2, so one application is clear. For the converse,
since Ker𝐹 ∩ 0 × 𝐵 = Ker 𝑓 ′

1 ∩ Ker 𝑓 ′
2 we need to prove that if the diamond is minimal,

Ker 𝑓 ′
1 ∩Ker 𝑓 ′

2 = 0, ie the diamond starting from 𝐵 is also minimal. But this is a consequence
of Lemma 3.1. �
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