Reducible gluing of abelian varieties

DAMIEN ROBERT

Abstract. This note extend Kani's work on reducible gluing of elliptic curves to abelian varieties.

1. Introduction

Kani's lemma [Kan97, § 2] has been a hot topic in isogeny based cryptography [CD22; MM22; Rob22a; Rob22b]. It is easy to extend it to abelian varieties, see [Rob22a, Lemma 3.4]. But Kani's work on reducible gluing of elliptic curves in [Kan97] goes further than just this lemma. The purpose of these notes is to cover the extension of Kani's work to higher dimensional abelian varieties. This is mostly a straightforward adaptation of Kani's proofs from elliptic curves to abelian varieties, with a few subtleties stemming from the fact that maximal isotropic kernels in abelian varieties are not always nicely described.

Kani's work in [Kan97, $\$ 2$] cover three related topics: how to combine an N_{1}-isogeny $f_{1}: E_{0} \rightarrow E_{1}$, and a N_{2}-isogeny $f_{2}: E_{0} \rightarrow E_{2}$ into an $N_{1}+N_{2}$-isogeny $F: E_{0} \times E_{0}^{\prime} \rightarrow E_{1} \times E_{2}$, why they are all of this form, and describe the kernel of F. The applications mentioned above only really need the case where N_{1} is prime to N_{2} which simplify things. Nevertheless, the general case is interesting and Kani deals with it in details for elliptic curves. In Section 3 we show how his results extend to dimension g abelian varieties. But first we need to describe maximal isotropic subgroups in more details, this is done in Section 2.

Throughout these notes we only deal with separable isogenies. In particular, when looking at N-isogenies, we implicitly restrict to the case where N is prime to the characteristic p of the base field (or $p=0$).

2. MAXIMAL ISOTROPIC KERNELS

Let $\left(A, \lambda_{A}\right)$ be a ppav.
Definition 2.1. A subgroup $K \subset A[N]$ is called isotropic (with respect to the Weil pairing $e_{A, N}$ on A) if $K \subset K^{\perp}$, ie if $e_{A, N}(P, Q)=1$ for all $P, Q \in K$.

In the theory of bilinear form, such a subgroup K is usually called totally isotropic. An isotropic subgroup $H \subset G$ for a quadratic form q on G usually means that there is an isotropic element $x \neq 0 \in H$, ie such that $q(x)=0$. However, since $e_{A, N}$ is alternating, every non trivial subgroup of $A[N]$ is isotropic in this sense.
Lemma 2.2. Let $K \subset A[N]$ be a subgroup. The following are equivalent:
(1) K is isotropic, and maximal among isotropic kernels (ie K is maximal isotropic);
(2) $K=K^{\perp}$.
(3) K is isotropic of cardinal N^{g}.

[^0]Proof. $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 1$, using that $\# K^{\perp} \# K=N^{2 g}$ since $e_{A, N}$ is symplectic, which shows that in particular an isotropic group has cardinal $\# K \leq N^{g}$.

Lemma 2.3. Let K be a maximal isotropic subgroup and $\ell \mid \# K$. Then $K[\ell]$ is of dimension at least $g($ over $\mathbb{Z} / \ell \mathbb{Z})$, so contains a maximal isotropic subgroup K^{\prime} for $A[\ell]$.

Proof. By the symplectic CRT theorem, we may assume $N=\ell^{e}$. If $K[\ell]$ was of dimension $r<g$, we would have $\# K \leq\left(\ell^{e}\right)^{r}<\left(\ell^{e}\right)^{g}$, and K would not be maximal. So $K[\ell]$ is of rank $r \geq g$, hence we can always extract an isotropic subgroup of rank g by the structure theorem of symplectic vector spaces. (Be careful that K itself will not be isotropic for $A[\ell]$ if $r>g)$.

Corollary 2.4. Every N-isogeny can be decomposed as product of ℓ_{i}-isogenies with $N=\prod \ell_{i}$.
If K is a finite abelian group, we define its rank r has the minimal integer r such that there exists a surjection $\mathbb{Z}^{r} \rightarrow K$. This is also the number of elementary divisors $d_{1}\left|d_{2}\right| \ldots d_{r}$ with $d_{1} \neq 1$, giving the structure $K \simeq \prod \mathbb{Z} / d_{i} \mathbb{Z}$. This is also the maximum of the dimensions of the $K[p]$ as a $\mathbb{Z} / p \mathbb{Z}$ vector space over all p (dividing $\# K$). We call a "basis" of K a system of generators $\left(g_{1}, \ldots, g_{r}\right)$ of cardinal r.

Lemma 2.5. A maximal isotropic kernel $K \subset A[N]$ of rank g always has an isotropic complement K^{\prime}, meaning that $A[N]=K \oplus K^{\prime}$ is a symplectic decomposition. In particular, if $\left(e_{1}, \ldots, e_{g}\right)$ is a basis of K, it extends into a symplectic basis $\left(e_{1}, \ldots, e_{g}, f_{1}, \ldots f_{g}\right)$ of $A[N]$, and if $m \mid N, K[m]$ is maximal isotropic in $A[m]$.

Proof. By the symplectic CRT theorem, we may reduce to the case $N=\ell^{g}$. Since K is of rank g and is of cardinal ℓ^{g}, it is homogeneous. It has a symplectic complement by [PSV10, Theorem 10.14].

Example 2.6. In $A[\ell]$ (with ℓ prime) an isotropic subgroup K is maximal iff it is of rank g (by the structure theorem of symplectic vector spaces).

Lemma 2.7. If $K \subset A\left[\ell^{e}\right]$ is homogeneous (all its invariants are equal), it is either of rank g or of rank $2 g$, In the latter case, $e=2 f$ and $K=A\left[\ell^{f}\right]$.

If $K \subset A[N]$ is homogeneous or more generally if each ℓ-Sylow of K is homogeneous (this condition is equivalent to, if $d_{1}|\cdots| d_{2 g}$ are the invariants of H where d_{i} is allowed to be 1 , then each prime divisor ℓ of N divides at most one quotient d_{i+1} / d_{i}), then $N=N_{1}^{2} N_{2}$ with $\operatorname{gcd}\left(N_{1}, N_{2}\right)=1, K\left[N_{1}^{2}\right]=K\left[N_{1}\right]=A\left[N_{1}\right]$ and $K\left[N_{2}\right]$ maximal isotropic of rank g in $A\left[N_{2}\right]$.

Proof. By [PSV10, Theorem 10.14], K is standard (see below). Let ($e_{1}, \ldots, e_{g}, f_{1}, \ldots, f_{g}$) a symplectic basis of $A[N]$ adapted to a standard decomposition $K=K_{1} \oplus K_{2}$. Then since K is homogeneous, either K has for basis (say) $\left(e_{1}, \ldots, e_{k}, f_{k+1}, \ldots f_{g}\right)$ so it has rank g, or for basis ($\ell^{f} e_{1}, \ldots, \ell^{f} e_{g}, \ell^{f} f_{1}, \ldots \ell f_{g}$) with $e=2 f$.

The general case comes from the symplectic CRT.
It is often convenient to treat the case of maximal isotropic subgroups of the form $A[n]$ and those of rank g together. The following notion encompass these two cases:

Lemma 2.8. Let $A[N]=A_{1}[N] \oplus A_{2}[N]$ be a symplectic decomposition. Let $K_{1} \subset A_{1}[N]$ be any subgroup. Let $K_{2}=K_{1}^{\perp} \cap A_{2}[N]$. Then $K=K_{1} \oplus K_{2}$ is maximal isotropic. Conversely, if $K=K_{1} \oplus K_{2}$ is maximal isotropic with $K_{i} \subset A_{i}[N]$, then $K_{2}=K_{1}^{?} \cap A_{2}[N]$.

Proof. K_{2} is orthogonal to K_{1} by definition, and orthogonal to itself because it lives in $A_{2}[N]$. Hence K is isotropic. We have $K_{i}^{?}=A_{1}[N] \oplus K_{2}$, so since $K_{1}^{? ?}=K_{1}, K_{2}^{?}=K_{1} \oplus A_{2}[N]$. So $K^{?}=K_{1}^{?} \cap K_{2}^{?}=K$, hence K is maximal isotropic. The converse follows by the same calculation.

Definition 2.9. A isotropic subgroup K is called standard if there is a symplectic decomposition $A[N]=A_{1}[N] \oplus A_{2}[N]$ such that $K=K_{1} \oplus K_{2}$ where $K_{i}=K \cap A_{i}[N]$.

In particular, if $K=K_{1} \oplus K_{2}$ is a standard isotropic subgroup, $K_{2} \subset K_{1}^{\perp} \cap A_{2}[N]$, and by Lemma $2.8, \mathrm{~K}$ is maximal iff we have equality.

Example 2.10. - a maximal isotropic kernel of $\operatorname{rank} g$ is standard by Lemma 2.5.

- a homogeneous maximal isotropic kernel is standard by Lemma 2.7.
- For an elliptic curve, a maximal isotropic subgroup $K \subset E[N]$ is always of the form $K=\langle P, Q\rangle$ where $P=m e_{1}, Q=n f_{1}$ with $\left(e_{1}, f_{1}\right)$ a symplectic basis of $E[N]$, $m \mid n$ and $N=m n$. In particular, K is standard.

If $m=1, K=\langle P\rangle$ is cyclic. If $m=n, K=E[n] \subset E\left[n^{2}\right]$. Since an isogeny $f: E \rightarrow E^{\prime}$ of degree N is always an N-isogeny, $K=\operatorname{Ker} f$ is maximal isotropic, and f decomposes as $f=g \circ[m]$, where g has cyclic kernel, where m is as above for K.

- Let $\left(e_{1}, e_{2}, f_{1}, f_{2}\right)$ be a symplectic basis of $A\left[\ell^{2}\right], A$ an abelian surface. Then $K=$ $\left\langle e_{1}, e_{2}\right\rangle$ is maximal isotropic of rank $g=2$.
$K=\left\langle e_{1}, \ell e_{2}, \ell f_{2}\right\rangle$ is standard of rank 3 . Notice that $K[\ell]$ is not isotropic in $A[\ell]$.
- In higher dimension, not every maximal isotropic kernel is standard [PSV10, Theorem 10.13].

The nice thing about standard maximal isotropic subgroups is that we can reduce to hyperbolic planes.

Lemma 2.11. Let $A[N]=\oplus_{i=1}^{g} H_{i}$ be a symplectic decomposition of $A[N]$ into hyperbolic planes (ie a subgroup of rank 2 such that the symplectic forms stay non degenerate), $K_{i} \subset H_{i}$ an isotropic subgroup of H_{i} and $K=\oplus_{i=1}^{g} K_{i}$. Then K is standard isotropic, and is maximal iff each K_{i} is maximal in H_{i}.

Conversely, if K is maximal standard isotropic, then there exists a symplectic decomposition $A[N]=\oplus_{i=1}^{g} H_{i}$ such that $K=\oplus_{i=1}^{g} K \cap H_{i}$.
Proof. By the symplectic CRT, we reduce to the case $N=\ell^{\ell}$. Each $K_{i} \subset H_{i}$ is standard in H_{i} by Example 2.10. Let $\left(e_{i}, f_{i}\right)$ be a symplectic basis of H_{i}, these glue together to form a symplectic basis of $A[N]$, hence a symplectic decomposition of $A[N]$. This shows that $K=\oplus_{i=1}^{g} K_{i}$ is standard. Furthermore, $K^{\perp} \cap H_{i}=K_{i}^{\perp_{H_{i}}}$, so K is maximal in $A[N]$ iff each K_{i} is maximal in H_{i}.

Conversely, let $K=K_{1} \times K_{2}$ be a decomposition of a maximal standard isotropic K induced by a symplectic decomposition of $A[N]$. Take $\left(e_{1}, \ldots, e_{g}\right)$ a basis of $A_{1}[N]$ compatible with K, ie such that $K=\oplus_{i=1^{8}} K \cap\left\langle e_{i}\right\rangle$. This is possible because $A_{1}[N]$ is homogeneous. Then the dual basis $\left(f_{1}, \ldots, f_{g}\right)$ of $A_{2}[N]$ with respect to $\left(e_{1}, \ldots, e_{g}\right)$ is adapted to K_{2} because $K_{2}=K_{1}^{\perp} \cap A_{2}[N]$. Letting $H_{i}=\left(e_{i}, f_{i}\right)$, we get that $K=\oplus_{i=1}^{g} K \cap H_{i}$.

3. Gluing abelian varieties

We generalize Kani's study of gluing of elliptic curves [Kan97, § 2] to the case of abelian varieties. As mentioned in the introduction, this is mostly a straightforward generalisation of his proofs.
3.1. Gluing. Let A, B be two abelian varieties of dimension g. A gluing $F: A \times B \rightarrow C$ is an isogeny from the product $A \times B$ to a dimension $2 g$ abelian variety C. An uninteresting case is when F can be written as a diagonal isogeny $F=\left(f_{1}, f_{2}\right): A \times B \rightarrow A^{\prime} \times B^{\prime}$ where $f_{1}: A \rightarrow A^{\prime}$ and $f_{2}: B \rightarrow B^{\prime}$ are two isogenies. More generally, if $\operatorname{Ker} F=H_{A} \times H_{B}$ then F is the composition of a diagonal isogeny followed by an automorphism. We call such a F a product gluing (because its kernel is a diagonal product).

We will look at the case when A, B are principally polarised, and F is an N-isogeny. Note that in the case of a product isogeny $F=\left(f_{1}, f_{2}\right)$, if f_{1} is an N_{1}-isogeny and f_{2} a N_{2}-isogeny, then F is a $\left(N_{1}, N_{2}\right)$-isogeny.

We will call F a minimal gluing if it does not factorize through such a product gluing. An equivalent condition is that $\operatorname{Ker} F \cap A \times 0=\{0\}$ and $\operatorname{Ker} F \cap 0 \times B=\{0\}$. Let $g_{1}=\operatorname{dim} A$, $g_{2}=\operatorname{dim} B$, and F be a N-minimal gluing. Then the projections p_{A} and p_{B} are injective on $\operatorname{Ker} F$. Since $\operatorname{Ker} F$ is maximal isotropic in $(A \times B)[N]$, it is of cardinal $N^{g_{1}+g_{2}}$, so we get that $g_{1}+g_{2} \leq 2 g_{1}$ and $g_{1}+g_{2} \leq 2 g_{2}$, so $g_{1}=g_{2}$. Henceforth, we let $g=g_{1}=g_{2}$.
Lemma 3.1. Let $\psi: A[N] \rightarrow B[N]$ be an anti-isometry with respect to the Weil pairing. Then $K=\{(P, \psi(P) \mid P \in A[N]\}$ is the kernel of a minimal N-gluing $F: A \rightarrow B \times C$. Conversely, the kernel Ker F of a minimal N-gluing is of this form. Furthermore, to check that F is minimal it suffices to check that $\operatorname{Ker} F \cap 0 \times B=0$ or $\operatorname{Ker} F \cap A \times 0=0$.
Proof. Let F be a minimal gluing and $K=\operatorname{Ker} F$. Since $K \cap 0 \times B=\{0\}$, the projection $p_{A}: A \times B \rightarrow A$ is injective on K. Since $K \subset(A \times B)[N]$ is maximal isotropic in the N torsion, it is of cardinal $N^{2 g}$, so the image of K is surjective in $A[N]$. Hence $p_{A}^{-1}: A[N] \rightarrow K$ is well defined, and composing with p_{B} we see that there is a well defined function ψ such that $K=\{(P, \psi(P)) \mid P \in A[N]\}$.

Since K is maximal isotropic, we get $e_{A \times B, N}\left(\left(P_{1}, \psi\left(P_{1}\right)\right),\left(P_{2}, \psi\left(P_{2}\right)\right)\right)=e_{A, N}\left(P_{1}, P_{2}\right) e_{B, N}\left(\psi\left(P_{1}\right), \psi\left(P_{2}\right)\right)=$ 1 , so $\psi: A[N] \rightarrow B[N]$ is an anti-isometry.

Conversely, the same computation shows that if ψ is an anti-isometry, $K=\{(P, \psi(P) \mid$ $P \in A[N]\}$ is isotropic in $(A \times B)[N]$, hence is maximal isotropic since it is of cardinal $N^{2 g}$. Furthermore, since ψ is an anti-isometry, it is injective (hence bijective), so $K \cap A \times 0=0$. This proves the last statement.

Remark 3.2. Since $(1,-1)$ and $(-1,1)$ are automorphisms of $A \times B$, the kernel $K^{\prime}=$ $\{(P,-\psi(P) \mid P \in A[N]\}$ also define a minimal N-gluing which is isomorphic to the one associated to K.
3.2. Reducible gluing. Now it can happen that in a minimal gluing $F: A \times B \rightarrow C, C$ splits into a product even when F is not a product isogeny. We say that F is reducible.

When $g=1$, in that case C splits as a product of elliptic curves, so $F=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is automatically a matrix of n-isogenies (n depending on the component), because elliptic curves have their Neron-Severi group of rank 1 (ie is trivial). In dimension $g>1, C$ may not split into a product of two dimension g abelian varieties. And even if it does, the matrix $F=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ may not be given by individual n-isogenies if A or B has non trivial NeronSeveri group.

Definition 3.3. A (minimal) gluing $F: A \times B \rightarrow C$ is said to be reducible if $C \simeq A^{\prime} \times B^{\prime}$ with A^{\prime}, B^{\prime} of dimension g, and $F=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ is given by a n_{a}-isogeny $a: A \rightarrow A^{\prime}$, a n_{b}-isogeny $A \rightarrow B^{\prime}$, a n_{c}-isogeny $c: B \rightarrow A^{\prime}$ and a n_{d}-isogeny $d: B \rightarrow B^{\prime}$. It is said to be non trivial reducible if F is not a product gluing.

Here by abuse of notation, we allow the case $n=0$, where the notion of " 0 -isogeny" means that the morphism is 0 (so is not an actual isogeny).
Lemma 3.4. Let F be a reducible N-gluing. Then $F=\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$, with $n_{a}=n_{d}, n_{b}=n_{c}$, $n_{a}+n_{b}=N, \tilde{c} a=-\tilde{d} b$.

In particular, F is not diagonal iff $n_{b}=n_{c} \neq 0$.
Proof. The contragredient isogeny is given by $\tilde{F}=\left(\begin{array}{cc}\tilde{a} & \tilde{b} \\ \tilde{c} & \tilde{d}\end{array}\right)$, and the equation $\tilde{F} F=N$ gives $n_{a}+n_{b}=N, n_{c}+n_{d}=N, \tilde{a} c+\tilde{b} d=0, \tilde{c} a+\tilde{d} b=0$. By duality the last equation is already implied by the third one. The third equation also implies $n_{a} n_{c}=n_{b} n_{d}$, so $n_{a}=n_{d}$, $n_{b}=n_{c}$.

3.3. Isogeny diamonds. Lemma 3.4 shows that the following notion is natural:

Definition 3.5. A $\left(n_{1}, n_{2}\right)$-isogeny diamond is a decomposition of a $n_{1} n_{2}$-isogeny f : $A \rightarrow B$ between principally polarised abelian varieties into two different decompositions $f=f_{1}^{\prime} \circ f_{1}=f_{2}^{\prime} \circ f_{2}$ where f_{1} is a n_{1}-isogeny and f_{2} is a n_{2}-isogeny. (Then f_{1}^{\prime} will be a $n_{2^{-}}$ isogeny and f_{2}^{\prime} a n_{1}-isogeny.) This decomposition is said to be minimal if $\operatorname{Ker} f_{1} \cap \operatorname{Ker} f_{2}=\{0\}$ (this is equivalent to the fact that f_{1} and f_{2} do not factorize through a common isogeny), and it is said to be orthogonal if n_{1} is prime to n_{2} (in which case it is automatically minimal).

In [Kan97, §2], Kani reserves the name isogeny diamond to what we call here a minimal isogeny diamond. We changed the term here slightly, because an isogeny diamond always induces a reducible gluing $F: A \times B \rightarrow A_{1} \times B_{2}$, even if it is not minimal.

Remark 3.6.

If we have an isogeny diamond starting from A as above, taking duals where needed we also have an isogeny diamond starting from A_{1}, A_{2} and B. If the isogeny diamond starting from A is minimal, we will see in the proof of Corollary 3.9 that the one from B is too, ie $\operatorname{Ker} \widetilde{f}_{1}^{\prime} \cap \operatorname{Ker} \widetilde{f}_{2}^{\prime}=0$. However, the one from A_{1} (or A_{2}) may not be minimal.

As a counterexample, take a symplectic decomposition $A[\ell]=K_{1} \oplus K_{2}, f_{1}: A \rightarrow A_{1}$ the quotient by K_{1} and $f_{2}: A \rightarrow A_{2}$ the quotient by $K_{2} ; f_{1}^{\prime}$ the quotient of A_{1} by $f_{1}\left(K_{2}\right)$ and f_{2}^{\prime} the quotient of A_{2} by $f_{2}\left(K_{1}\right)$. Then $f_{1}^{\prime}: A_{1} \rightarrow A$ is exactly the dual isogeny $\widetilde{f_{1}}$, so $\operatorname{Ker} f_{1}^{\prime} \cap \operatorname{Ker} \widetilde{f_{1}}=\operatorname{Ker} f_{1}^{\prime} \neq 0$.
An isogeny diamond is completely determined by $\left(f_{1}, f_{2}, f\right)$. So it determines $H_{1}=\operatorname{Ker} f_{1}$, $H_{2}=\operatorname{Ker} f_{2}$ and $H=\operatorname{Ker} f$. In particular, H is maximal isotropic in $A\left[n_{1} n_{2}\right], H_{1} \subset$ H maximal isotropic in $A\left[n_{1}\right]$, and $H_{2} \subset H$ maximal isotropic in $A\left[n_{2}\right]$. Note that if $H_{1} \cap H_{2}=0$ (ie the diamond is minimal), then $H=H_{1} \oplus H_{2}$ since both members have the same cardinality.
When we have a commutative square as above, this square is a pushout $\operatorname{iff} \operatorname{Ker} f=\operatorname{Ker} f_{1}+$ $\operatorname{Ker} f_{2}$ where $f=f_{2}^{\prime} \circ f_{2}=f_{1}^{\prime} \circ f_{1}$. So a minimal isogeny diamond is a pushout square.

Conversely, if f is the pushout of a n_{1}-isogeny f_{1} by a n_{2}-isogeny f_{2}, and $\operatorname{gcd}\left(n_{1}, n_{2}\right)=1$, then f is a (orthogonal) isogeny diamond. But in general, the pushout f_{1}^{\prime} of f_{1} need not be an n_{1}-isogeny, in which case the pushout is not a diamond.

Lemma 3.7 (Kani). Let $f=f_{1}^{\prime} \circ f_{1}=f_{2}^{\prime} \circ f_{2}$ be a $\left(n_{1}, n_{2}\right)$-isogeny diamond as above. Then $F=\left(\begin{array}{cc}f_{1} & \widetilde{f_{1}^{\prime}} \\ -f_{2} & \widetilde{f_{2}^{\prime}}\end{array}\right)$ is a n-isogeny $A \times B \rightarrow A_{1} \times A_{2}$ where $n=n_{1}+n_{2}$. Furthermore, iff is minimal, $\operatorname{Ker} F=\left\{\left(\tilde{f}_{1}, f_{1}^{\prime} x\right), x \in A_{1}[n]\right\}$, and iff is an orthogonal isogeny diamond, then $\operatorname{Ker} F=\left\{\left(n_{1} x, f x\right), x \in A[n]\right\}$.
Proof. For the product polarisations, the dual isogeny \tilde{F} is given by $\tilde{F}=\left(\begin{array}{cc}\widetilde{f_{1}} & \widetilde{f_{2}} \\ -f_{1}^{\prime} & f_{2}^{\prime}\end{array}\right)$ and we directly check that $\tilde{F} F=\left(n_{1}+n_{2}\right)$ Id. Furthermore, $\operatorname{Ker} F$ is the image of \tilde{F} on $A \times B[d]$, and if n_{1} is prime to n_{2} this is also the image of \tilde{F} on $A[n] \times\{0\}$, so $\operatorname{Ker} f=\left\{\left(\tilde{f}_{1} x,-f_{1}^{\prime} x\right), x \in\right.$ $A[n]\}=\left\{\left(n_{1} x,-f x\right), x \in A[n]\right\}$.

Remark 3.8. - One may of course permute f_{1} and f_{2}, to get the same matrix F up to permutation of the coordinates. In terms of kernels, this amount to permuting H_{1} and H_{2} and replacing f by $-f$. It is not hard to prove that $\operatorname{Ker} F$ is completely determined by $\left(H_{1}, H_{2}, f\right)$, and that there is a bijection between the $\operatorname{Ker} F$ for the isogeny diamonds, and the triplet $\left(H_{1}, H_{2}, f\right)$ modulo the above equivalence: $\left(H_{1}, H_{2}, f\right) \equiv\left(H_{2}, H_{1},-f\right)$. The exact same proof as in [Kan97, Theorem 2.3] (more precisely the first three paragraphs p. 9) hold.

- Since we have automorphisms $(-1,-1),(-1,1)$ and $(1,-1)$ on $A \times B$, we can also use the matrix $F^{\prime}=\left(\begin{array}{cc}f_{1} & -\widetilde{f_{1}^{\prime}} \\ f_{2} & \widetilde{f_{2}^{\prime}}\end{array}\right)$, whose kernel, in the case of an orthogonal isogeny diamond, is $\operatorname{Ker} F^{\prime}=\left\{\left(n_{1} x,-f x\right), x \in A[n]\right\}$. In general, $\operatorname{Ker} F^{\prime} \neq \operatorname{Ker} F$: there are two different reducible isogenies $A \times B \rightarrow A_{1} \times A_{2}$.
- Note that F is not a product gluing, so in particular is a non trivial reducible gluing. Indeed if $\operatorname{Ker} F$ was a digonal product $G_{1} \times G_{2}$, we would have $G_{1} \subset \operatorname{Ker} f_{1}$, $G_{2} \subset \operatorname{Ker} \widetilde{f_{2}^{\prime}}$. So $\# G_{1} \leq n_{1}^{g}, \# G_{2} \leq n_{2}^{g}$, but $\operatorname{Ker} F=\# G_{1} \# G_{2}=n^{2 g}$, which is a contradiction.

Corollary 3.9. There is a bijection between triple $\left(H_{1}, H_{2}, f\right)$ of isogeny diamonds modulo the equivalence defined above, and non diagonal maximal reducible kernels K of $A[n]$.

This bijection induces an equivalence between minimal isogeny diamonds and minimal reducible gluing.

Proof. The first statement result from the combination of Lemmas 3.4 and 3.7 and Remark 3.8.
For the second statement, we need to prove that F is minimal iff $\operatorname{Ker} f_{1} \cap \operatorname{Ker} f_{2}=0$. Note that $\operatorname{Ker} F \cap A \times 0=\operatorname{Ker} f_{1} \cap \operatorname{Ker} f_{2}$, so one application is clear. For the converse, since $\operatorname{Ker} F \cap 0 \times B=\operatorname{Ker} \widetilde{f_{1}^{\prime}} \cap \operatorname{Ker} \widetilde{f_{2}^{\prime}}$ we need to prove that if the diamond is minimal, $\operatorname{Ker} \widetilde{f_{1}^{\prime}} \cap \operatorname{Ker} \widetilde{f_{2}^{\prime}}=0$, ie the diamond starting from B is also minimal. But this is a consequence of Lemma 3.1.

References

[CD22] W. Castryck and T. Decru. An efficient key recovery attack on SIDH (preliminary version). Cryptology ePrint Archive, Paper 2022/975. 2022. URL: https: //eprint.iacr.org/2022/975.
[FC90] G. Faltings and C.-L. Chai. Degeneration of abelian varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 22. Springer-Verlag, Berlin, 1990.
[Kan97] E. Kani. "The number of curves of genus two with elliptic differentials." In: Journal für die reine und angewandte Mathematik 485 (1997), pp. 93-122.
[MM22] L. Maino and C. Martindale. An attack on SIDH with arbitrary starting curve. Cryptology ePrint Archive, Paper 2022/1026. 2022. URL: https://eprint. iacr.org/2022/1026.
[Mil91] J. Milne. Abelian varieties. 1991. URL: http://www.jmilne. org/math/ CourseNotes/av.html.
[MFK94] D. Mumford, J. Fogarty, and F. Kirwan. Geometric invariant theory. Vol. 34. Springer Science \& Business Media, 1994.
[PSV1o] A. Prasad, I. Shapiro, and M. Vemuri. "Locally compact abelian groups with symplectic self-duality". In: Advances in Mathematics 225.5 (2010), pp. 24292454.
[Rob22a] D. Robert. "Breaking SIDH in polynomial time". Aug. 2022. URL: http://www. normalesup. org/~robert/pro/publications/articles/breaking_sidh. pdf. eprint: 2022/1038.
[Rob22b] D. Robert. "Evaluating isogenies in polylogarithmic time". Aug. 2022. URL: http://www. normalesup. org/~robert/pro/publications/articles/ polylog_isogenies.pdf. eprint: 2022/1068.

INRIA Bordeaux-Sud-Ouest, 200 avenue de la Vieille Tour, 33405 Talence Cedex FRANCE
Email address: damien. robert@inria.fr
URL: http://www.normalesup.org/~robert/
Institut de Mathématiques de Bordeaux, 351 cours de la liberation, 33405 Talence cedex FRANCE

[^0]: Date: September 26, 2022.

